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Extreme values of the DedekindΨ function
Patrick Soĺe Michel Planat

Abstract

Let Ψ(n) := n
∏

p|n(1 +
1
p
) denote the DedekindΨ function. Define, forn ≥ 3, the ratioR(n) := Ψ(n)

n log log n
.

We prove unconditionally thatR(n) ≤ eγ for n ≥ 31. Let Nn = 2 · · · pn be the primorial of ordern. We prove
that the statementR(Nn) >

eγ

ζ(2) for n ≥ 3 is equivalent to Riemann Hypothesis.

Keywords: DedekindΨ function, Euler totient function, Mertens formula, Nicolas bound, Primorial
numbers

I. INTRODUCTION

The DedekindΨ function is an arithmetic multiplicative function defined for every integern > 0 by

Ψ(n) := n
∏

p|n

(1 +
1

p
).

It occurs naturally in questions pertaining to dimension ofspaces of modular forms [2]. It is related to
the sum of divisor function

σ(n) =
∑

d|n

d

by the inequalities
Ψ(n) ≤ σ(n),

and the fact that they coincide forn squarefree. It is also related to Eulerϕ function by the inequalities

n2 > ϕ(n)Ψ(n) ≥
n2

ζ(2)

derived in Proposition 5 below.

In view of the studies of large values ofσ [8] and of low values ofϕ [4], it is natural to study both
the large and low values ofΨ. To that end, we define the ratioR(n) := Ψ(n)

n log logn
. The motivation for

this strange quantity is the asymptotics of Proposition 3. We prove unconditionally thatR(n) ≤ eγ , for
n ≥ 31 in Corollary 2. Note that this bound would follow also from Robin inequality

σ(n) ≤ eγn log log n

for n ≥ 5041 under Riemann Hypothesis (RH) [8], sinceΨ(n) ≤ σ(n).
In the direction of lower bounds, we prove that the statementR(Nn) >

eγ

ζ(2)
for n ≥ 3 is equivalent to

RH, whereNn = 2 · · ·pn is the primorial of ordern. The proof relies on Nicolas work on Euler totient
function [4].
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II. REDUCTION TO PRIMORIAL NUMBERS

Define the primorial numberNn of indexn as the product of the firstn primes

Nn =
n∏

k=1

pk,

so thatN1 = 2, N2 = 6, · · · and so on. The primorial numbers and their multiples up to thenext primorial
(precisely OEIS sequenceA060735 [7]) play the role here of superabundant numbers in [8] or of primorials
in [4]. They are champion numbers (ie left to right maxima) ofthe functionx 7→ Ψ(x)/x :

Ψ(m)

m
<

Ψ(n)

n
for anym < n, (1)

We give a proof of this fact, which was observed in [5].
Proposition 1: The primorial numbersNn and their multipleslNn in the rangeNn ≤ lNn < Nn+1 are

exactly the champion numbers of the functionx 7→ Ψ(x)/x.
Proof: The proof is by induction onn. The induction hypothesisHn is that the statement is true up to

Nn. OEIS sequenceA060735 begins2, 4, 6 . . . so thatH2 is true. AssumeHn true. LetNn ≤ m < Nn+1

denote a generic integer. The prime divisors ofm are ≤ pn. ThereforeΨ(m)/m ≤ Ψ(Nn)/Nn with
equality iff m is a multiple ofNn. FurtherΨ(Nn)/Nn < Ψ(Nn+1)/Nn+1. The proof ofHn+1 follows.

In this section we reduce the maximization ofR(n) over all integersn to the maximization over
primorials.

Proposition 2: Let n be an integer≥ 2. For anym in the rangeNn ≤ m < Nn+1 one hasR(m) ≤
R(Nn).

Proof: Like in the preceding proof we have

Ψ(m)/m ≤ Ψ(Nn)/Nn

Since0 < log logNn ≤ log logm, the result follows.

III. Ψ AT PRIMORIAL NUMBERS

We begin with an easy application of Mertens formula [3, Th. 429].
Proposition 3: For n going to∞ we have

limR(Nn) =
eγ

ζ(2)
≈ 1.08.

Proof: Writing 1+1/p = (1−1/p2)/(1−1/p) in the definition ofΨ(n) we can combine the Eulerian
product forζ(2) with Mertens formula

∏

p≤x

(1− 1/p)−1
∼ eγ log(x)

to obtain

Ψ(Nn) ∼
eγ

ζ(2)
log(pn),

Now the Prime Number Theorem [3, Th. 6, Th. 420] shows thatx ∼ θ(x) for x large. whereθ(x) stands
for Chebyshev’s first summatory function:

θ(x) =
∑

p≤x

log p.
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This shows that, takingx = pn we have

pn ∼ θ(pn) = log(Nn).

The result follows.
This motivates the search for explicit upper bounds onR(Nn) of the form eγ

ζ(2)
(1+o(1)). In that direction

we have the following bound.
Proposition 4: For n large enough to havepn ≥ 20000, that isn ≥ 2263, we have

Ψ(Nn)

Nn

≤
exp(γ + 2/pn)

ζ(2)
(log logNn +

1.125

log pn
)

So, armed with this bound, we derive a bound of the formR(Nn) ≤ eγ for n ≥ A with A an absolute
constant.

Corollary 1: For n ≥ 4, we haveR(Nn) < eγ = 1.78 · · ·
Proof:

For pn ≥ 20000, we use the preceding proposition. We need to check that

exp(2/pn)(1 +
1.125

log(pn) log log(Nn)
) ≤ ζ(2).

Since the LHS is a decreasing function ofn it is enough to check this inequality for the firstn such that
pn ≥ 20000.
For 5 ≤ pn ≤ 20000, that is3 ≤ n ≤ 2262 we simply computeR(Nn), and check that it is≤ eγ .

We can extend this Corollary to all integers≥ 30 by using the reduction of preceding section, combined
with some numerical calculations for30 ≤ n ≤ N4.

Corollary 2: For n ≥ 30, we haveR(n) < eγ .

We prepare for the proof of the preceding Proposition by a pair of Lemmas. First an upper bound on
a partial Eulerian product from [9, (3.30) p.70].

Lemma 1: For x ≥ 2, we have
∏

p≤x

(1− 1/p)−1
≤ eγ(log x+

1

log x
)

Next an upper bound on the tail of the Eulerian product forζ(2).
Lemma 2: For n ≥ 2 we have

∏

p>pn

(1− 1/p2)−1
≤ exp(2/pn)

Proof: Use Lemma 6.4 in [1] withx = pn and t = 2.
We are now ready for the proof of Proposition 4.

Proof:
Write

Ψ(Nn)

Nn

=

n∏

k=1

1− 1/pk
2

1− 1/pk

and use both Lemmas to derive

Ψ(Nn)

Nn

≤
exp(γ + 2/pn)

ζ(2)
(log pn +

1

log pn
).
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Now we get rid of the firstlog in the RHS by the bound of [8, p.206]

log(pn) < log logNn +
0.125

log pn
.

The result follows.

IV. L OWER BOUNDS

We reduce first to Euler’sϕ function.
Proposition 5: For n ≥ 2 we have

n2 > ϕ(n)Ψ(n) ≥
n2

ζ(2)

Proof: The first inequality follows at once upon writing
ϕ(n)Ψ(n)

n2
=

∏

p|n

(1− 1/p2),

a product of finitely many terms< 1. Notice for the second inequality that
ϕ(n)Ψ(n)

n2
=

∏

p|n

(1− 1/p2) ≥
∏

p

(1− 1/p2),

an infinite product that is the inverse of the Eulerian product for ζ(2).

Theorem 1: Under RH the ratioR(Nn) is > eγ

ζ(2)
for n ≥ 3. If RH is false, this is still true for infinitely

manyn.
Proof:

Follows by Proposition 5, combined with [4, Theorem 2].
In view of this result and of numerical experiments the natural conjecture is
Conjecture 1: For all n ≥ 3 we haveR(Nn) >

eγ

ζ(2)
.

The main result of this note is the following.
Theorem 2: Conjecture 1 is equivalent to RH.

Proof: If RH is true we refer to the first statement of Theorem 1. If RH is false we consider the
function

g(x) :=
eγ

ζ(2)
log θ(x)

∏

p≤x

(1 + 1/p)−1,

Observing thatlog θ(pn) = logNn, we see thatg(pn) < 1 is equivalent toR(Nn) >
eγ

ζ(2)
. We need to

check that forx large enoughg(x) can be> 1 or equivalentlylog g(x) > 0. Using once again the identity
1− 1/p2 = (1− 1/p)(1 + 1/p), and [1, Lemma 6.4], we obtain, upon writing

− log(ζ(2) =
∑

p≤x

log(1− 1/p2) +
∑

p>x

log(1− 1/p2),

the bound

log g(x) ≥ log f(x)− 2/x,

wheref is the function introduced in [4, Theorem 3], that is

f(x) := eγ log θ(x)
∏

p≤x

(1− 1/p).

We know by [4, Theorem 3 (c)] that, if RH is false, there is a0 < b < 1 such thatlim sup x−bf(x) > 0.
Since forx large2/x << x−b, the result follows.
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V. CONCLUSION

In this note we have derived upper and lower bounds on the DedekindΨ function, an arithmetic function
that occurs in quantum physics [6] and also in the theory of modular forms [2]. We show unconditionally
that the functionΨ(n) satisfies Robin inequality. Sinceψ(n) ≤ σ(n) this could be proved underRH [8]
or by referring to [1]. Of special interest is Conjecture 1 which is shown here to be equivalent to RH.
We hope this new RH criterion will stimulate research on the DedekindΨ function.

Acknowledgements: The authors thank Fabio Anselmi, Pieter Moree, and Jean-Louis Nicolas for
helpful discussions.
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