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Abstract:  Finite  Element  Analysis/Boundary  Element 
Methods (the so-called FEA/BEM) are a key-tool for the 
simulation of elastic waveguides and transducers used for 
the design of RF filters, sources and sensors. We analyze 
the  optimal  convergence  conditions  of  corresponding 
computations,  showing  the  interest  of  2nd degree 
interpolation to improve both the accuracy and the delay 
of  such  calculations.  We  also  propose  a  general  and 
efficient approach to integrate boundary integrals of 3D 
problems, allowing to minimize the computation delay of 
the BEM part, the most costly of the whole model.

I- INTRODUCTION

The  interest  of  simulation  tools  based  on  the 
combination of finite element analysis and boundary 
element  method  (FEA/BEM)  now  has  been  well 
established  for  the  analysis  of  periodic  waveguide 
properties. The flexibility of FEA is particularly well-
suited  to  simulate  interfaces  exhibiting  complex 
shapes involving materials of different nature whereas 
the BEM approach provides an accurate description of 
the susbtrate, whatever its composition (semi-infinite 
media,  finite  thickness  plates,  stacks)  assuming  flat 
interfaces.  It  can  be  performed  in  2D  and  3D, 
accounting  for  acoustic  and  dielectric  losses. 
Compared  to  the  approach  promoted  by Ventura [1] 
where  finite  elements  only are used  to  compute the 
acoustic  contribution  of  the  electrodes,  the 
computation delay of our method still  appears as its 
main flaw.

As  a  consequence,  the  possibility  to  improve  the 
convergence and to optimize the computation delay of 
periodic  FEA/BEM  has  been  investigated.  We 
particularly focus on the use of high accuracy finite 
elements to address the problem. We have considered 
the case of 4-degree-of-freedom 2D and 3D elements 
to compute the harmonic admittance of Rayleigh-type 
Surface  Acoustic  Wave  (SAW) on  AT-X quartz  and 
shear-polarized leaky wave trapped on Y+42° LiTaO3 

under  thick  electrode  grating.  For  2D  analysis,  we 
have  used  the  Lagrange  interpolation  scheme  to 
develop finite and boundary elements up to the third 
degree. For 3D analysis, we only have considered first 
and  second  degree  polynomials  for  both  finite  and 
boundary  elements.  However,  in  that  latter  case, 
contrarily to what proposed by Wilm et al [2], we have 
developed  an  approach  based  on  non  isoparametric 
boundary elements, as the radiation interface always 
must remain flat. This approach allows for a dramatic 
gain  in  computation  delay  without  any  loss  in 
accuracy.

In  both  cases,  calculation  details  are  explained  in 
details  and  the  corresponding  implementation  is 
illustrated  by  comparing  numerical  results  for  the 
above  mentioned  case  studies.  It  is  found  that  the 
degree of interpolation polynomials plays an important 
role  in  the  convergence  velocity.  For  instance,  2D 
analysis  achieved  with  2nd degree  polynomials  for 
Rayleigh waves converges 4 times faster than using 1st 

degree  interpolation.  We  also  observe  less  dramatic 
gains  when  increasing  the  polynomials  degree.  The 
limit  of  the  approach  is  emphasized  in  terms  of 
accuracy/convergence  delay/elementary  matrix  size 
trade-off.

II- 2D INTERPOLATION ISSUES

Since  more  than  15  years  now  we  develop  in  our 
group a  software  called  TRPP3D based  on a mixed 
Finite  Element  Analysis  and  Boundary  Element 
Method, the so-called FEA/BEM analysis allowing the 
simulation of any periodic structure radiating into any 
stratified layer. It  is not the purpose of this paper to 
describe the basis of FEA/BEM, this can be found in 
many  references  [1-4],  nevertheless  its  principle  is 
summarized in Fig.  1 for the case of an inter-digital 
transducer on a single piezoelectric material. This kind 
of approach exploits two main features : considering 
periodic structures allows for reducing the FEA part of 
the  model  to  the  very  minimum  (i.e.  the 
inhomogeneous region within a single period), and as 
acoustic radiations are taken into account by  Green's 
functions, only a very small part of the substrate needs 
to be meshed.

Meshed part : 
Finite Element Analysis

Radiation : Green function

Junction by BEM

Figure 1 : Typical structure and principle of the FEA/BEM approach 
for the simulation of periodic elastic wave transducers

In  our  software,  elements  using  1st and  2nd degree 
polynomials  are both implemented for  the Lagrange 
interpolation, however it was not obvious which one 
should  be  preferred  to  address  the  simulation  of 
acoustic  waveguides.  We  used  to  adopt  1st degree 
interpolation to reduce computation durations and 2nd 
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degree  polynomial  to  improve  the  computation 
accuracy, as the displacement and potential solutions 
should  be  continuous  in  the  whole  computation 
domain. 

At  first  glance,  it  sounds  obvious  that  for  a  given 
number of elements, the use of 1st degree interpolation 
favors the computation speed,  but until  now we did 
not establish an objective criterion to emphasize the 
impact  of  the  interpolation  degree  on  the  model 
accuracy.  To address  this  issue,  we have  considered 
the simple problem of a Rayleigh wave propagating 
under an infinite periodic aluminum electrode grating 
on (AT,X) quartz. 1st and 2nd degree interpolation then 
was used to compute the harmonic admittance of the 
corresponding transducer structure. The mesh density 
is characterized by the number of radiating elements, 
as it conditions the size of the final FEA/BEM linear 
system to solve [5] and hence the computation delay 
and  accuracy  as  well.  Figures  2(a,b)  show  two 
examples of the implemented meshes (for 20 and 80 
radiating elements respectively). When increasing the 
number  of  radiating  elements,  we  also  made  the 
aluminum electrode mesh denser to avoid abnormally 
stretching the elements (i.e. length/width smaller than 
3).

(a)

(b)
Figure 2 : Examples of the implemented meshs for assessing the 

intrication between computation delay and accuracy, the blue domain 
corresponds to the aluminum electrode, the red one is a thin layer of 

subtrate connecting FEA with BEM, p=5µm, a/p=0.6, h/2p=3% 
(a) 20 radiating elements (b) 80 radiating elements

Figure 3 shows the calculated imaginary part  of the 
harmonic  admittance  using  1st degree  interpolation 
whereas Fig. 4 shows the same result obtained using 
2nd degree interpolation. In both cases, as expected, the 
resonance  frequency  first  is  overestimated  but  the 
calculation tends to converge toward the exact solution 
when the mesh density increase. From theses results, 
we easily deduce first that the calculation convergence 
is  obviously  much  faster  for  the  2nd degree 
interpolation analysis than for the 1st degree one. We 
also show that with only 10 radiating elements using 
2nd degree interpolation elements, the accuracy is the 
same than the one obtained with 80 radiating elements 
for 1st degree interpolation elements.

The relative accuracy and calculation delay are plotted 

on  Fig.5  for  both  1st and  2nd degree  interpolation 
elements  versus  mesh  density,  represented  by  the 
number  of  radiating  elements  as  stated  above.  It 
emphasizes  what was first  expected, i.e.  for a  given 
mesh  density,  2nd degree  interpolation  is  more 
accurate,  and  1st degree  interpolation  yields   faster 
computations. However, plotting the relative accuracy 
of  the  results  versus  computation delay learns  more 
about the optimal computation configuration. Figure 7 
clearly  shows  that  for  a  given  calculation  time,  the 
accuracy  is  always  better  using  2nd  degree 
interpolation than using 1st degree one.

Figure 3 : Harmonic susceptance vs frequency computed using 1st

degree interpolation elements

Figure 4 : Harmonic susceptance vs frequency computed using 1st

degree interpolation elements

Figure 5 : Calculation time and relative accuracy vs mesh density 
(number of radiating elements) 
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Figure 6 : Comparison between accuracy/calculation delay relations 
for 1st and 2nd degree interpolation elements

As  a  conclusion  of  this  section,  we  can  reliably 
consider  that  it  is  always  a  better  choice  to  use  2nd 

degree  interpolation  elements  rather  than  1st degree, 
whether  fast  computations  or  accurate  results  are 

looked for.

III- 3D BEM INTEGRATION

A. Position of the problem 

In  3D,  the  boundary  elements  are  2D  elements 
corresponding to the faces of the 3D elements, i.e. in 
our case triangles or quadrangles. This will be referred 
as  “element”  in  what  follows.  One  part  of  the 
implementation  of  the  periodic  boundary  elements 
consists in calculating many double sum integrals such 
as

∬Real element
Pn x , ye−2j x y dx dy  (1)

where  Pn represent  one  of  the  interpolation 
polynomials in the real element coordinates. However, 
calculating this  sum over the real  element  is  not an 
option  as  describing  the  integration  bounds  of  a 
general triangle or quadrangle is not an easy task. This 
means  that  this  operation  must  be  achieved  in  the 
reference element [6] which is perfectly in accordance 
with the finite element method. This yields

∬Reference element
J  ,Pn Ref  , .

e
−2jP exp ,

d d 
 (2)

where  PnRef represents  one  of  the  interpolation 
polynomials in the reference element (which are then 
perfectly known),  η and  ξ are the coordinates in the 
reference  system  of  axes  and  J represents  the 
geometrical  transformation's  jacobian  [6].  The 
exponential argument is now a new polynomial  Pexp. 
Note  that  we  can  state  that  PnRef  and  Pexp are 
polynomials  as  we  consider  the  geometrical 
transformation  to  be  also  polynomial  (which  is  the 
case in the finite element method [6]).

The first approach that has been implemented in our 
software  consisted  in  performing  numerical 
integration.  This  was  done  using  a  Gauss-Kronrod 
adaptative method (adapted from netlib's quadpack for 
double  sum),  providing reliable  and  accurate  results 
[2]. However, it rapidly turned out that this approach 

was not really efficient as this part of the calculation 
was taking quite a lot of time. This can be explained as 
follows. The number N of integrations to be performed 
for the BEM part is given by

N=x  y hx h y e n (3)

where γx and γy represent respectively the number of γ 
excitation parameter on both axes x and y defining the 
radiating surface,  hx and  hy the number of harmonics 
for  the  calculation  of  the  Green's  function  on  both 
axes,  e represents  the  number  of  radiating elements 
and  n the number of integration polynomials on the 
element. If  we consider a very small case where the 
radiating surface is composed of 100 elements (10 on 
each axes),  8  integration polynomials,  20 harmonics 
on each axes and only 1 excitation parameter, this will 
give us N=1 280 000. Now each sum requires a certain 
number of function evaluations, for example using a 
15 points  Gauss-Legendre  integration will  need  225 
functions evaluations (152) which leads to a total  of 
288 000 000 (note  that  this  is  even  worse  with the 
Gauss-Kronrod  method  which  needs  a  minimum of 
484  function  evaluations).  One  then  can  easily 
understand the penalizing nature of this approach.

B. Analytical solution

As it is stated in reference [7], integrals of functions of 
several variables, over regions with dimension greater 
than one, are “not easy” and it always involves a lot of 
function evaluations. Consequently,  we have tried to 
use an other approach consisting in using an analytical 
solution of equation (2).  However this solution only 
exist  if  the degree of  the polynomial  Pexp  is  1.  This 
analytical solution is given by equation (4) [8] for the 
case of a one variable function. P(k) represent the k-th 
derivative of the degree m polynomial Pm.

∫ Pm x eax
dx=

eax

a
∑
k=0

m
P

k  x 

a
k

(4)

The degree of  Pexp will only be 1 if the geometrical 
transformation that  is  used between the real element 
and the reference element is linear. The elements we 
use in our software are iso-parametric,  which means 
that the geometrical transformation is described by the 
same polynomials that are used for interpolation. The 
initial  approach  consisted  to  use  this  “natural” 
transformation,  but  the  only  case  for  which  this 
transformation  is  linear  corresponds  to  the  3-node 
triangle element (i.e. 1st degree Lagrange interpolation 
polynomials). In our new approach, we then do not use 
this  transformation  but  a  linear  one.  This  is  an 
acceptable  approximation as  the radiating surface  in 
our model has to be a plane.

C. Linear Transformation

We first  consider  the  case  of  triangle  elements.  As 
previously  emphasized,  the  transformation 
corresponding to 1st degree Lagrange interpolation is 
linear,  we  then  use  it  for  all  our  triangle  elements 
whatever  their  interpolation  degree  is.  In  finite 
element  formalism [6],  the  transformation  allows  to 
easily  transform  coordinates  from  the  reference 
element to the real ones, this is given by equation (5) 

3



Acc
ep

te
d 

M
an

us
cr

ip
t

where xi,yi represent the coordinates of the 3 summits 
of the triangle in real coordinates :

[ x y]=[1−−  ][
x1 y1

x2 y2

x3 y3
] (5)

once developed this expression gives (6) :

{ x=x 2−x1x 3− x1x1

y= y2− y1 y3− y1 y1

(6)

The Jacobian matrix MJ is given by (7)

MJ=[
∂
∂
∂
∂

][ x y ]=[ x 2−x 1 y2− y1

x 3−x 1 y3− y1
] (7)

and the Jacobian J, determinant of the Jacobian matrix 
is given by (8)

J=x1 y2−x 1 y 3x2 y3

−x2 y1 y1 x3− y2 x 3

  (8)

Note that for this linear transformation, J is a constant 
representative of the current element and that can be 
taken outside the integral. Now we come back to our 
formulation of equation (2). As summarized in Fig.7, 
the  procedure  is  rather  easy:  the  archetypal 
interpolation polynomials (whatever their degree) are 
considered  in  the  reference  element,  the  jacobian  is 
given by (8) and  Pexp(ξ,η) is obtained by inserting (6) 
in  αx+βy  which  gives  the  expression  in  (9)  (of  1st

degree)

P exp ,= x2−x1 y2− y1
 x3−x1 y3− y1 x1 y1

(9)

Real element

x

y

ξ

η
Reference element

1
2

3

0 1

1

1 2

3

Exponential
Linear transform Interpolation

polynomials

Figure 7 : FEA transformation of the linear triangle from real to 
reference coordinates

For the quadrangle, things are more complicated as a 
linear  transformation  for  4  points  does  not 
mathematically exists. The methodology developed in 
that  case is  summarized in Fig.8.  The calculation of 
the  sum  is  achieved  over  two  “pseudo”  triangle 
reference  elements.  Each  quadrangle  is  divided  into 
two triangles (1 4 2) and (3 2 4). The exponential part 
Pexp is obtained into each triangle using the previously 
described  linear  transformation.  Concerning  the 
interpolation  polynomials,  they  are  known  into  the 
“true” quadrangle reference element. We then need to 
find their expressions into the two “pseudo” triangle 
reference elements. This is done using the expression 

of  the  transformation  between  the  reference 
quadrangle and the  two triangles  given  by (10) and 
(11).

Triangle 1: {=
1c

2
c=2−1

=
1c

2
c=2−1

(10)

Triangle 2:{=
1−c

2
c=1−2

=
1−c

2
c=1−2

(11)

-1 1

-1

1

1 2

34

ξ

η

0 1

1

1

2

4

ξ

η

0 1

1

1

4

2

ξ
c

η
c

Reference
quadrangle Triangle 1

Triangle 2
1

2

3
4

Real quadrangle

Interpolation
polynomials

Exponential
Linear transform

Interpolation
polynomials

Exponential
Linear transform

Figure 8 : FEA transformation of the linear quadrangle from real to 
reference coordinates via 2 pseudo-triangles

D. Implementation

Once  all  the  principles  have  been  set,  we  enter  the 
implementation  process.  After  examining  all  the 
possible  polynomials  (corresponding  to  triangle  and 
quadrangle  Lagrange  degree  1  and  2),  the  general 
expression of the integrals to compute is given by (12) 

∫=0

1

∫=0

1−

 a1a2a3a 4
2

a5a6
2a7

2a8
2  .

e
−2j123d  d 

(12)

Even if the analytical solution for this sum exists, its 
expression if far two long to be written here. We have 
used  the  commercial  software  Maple  to  derive  this 
expression. Furthermore, Maple allows the generation 
of  Fortran  code  for  implementing  this  expression, 
which has been used for practical coding. After final 
implementation we have gain more than two orders of 
magnitude in the calculation time, with absolutely no 
significant differences.

IV- CONCLUSION

We  have  proposed  an  analysis  of  the 
accuracy/computation  speed  conditions  of  2D 
FEA/BEM  analysis  of  infinite  1-D  periodic 
transducers.  It  turns  out  that  2nd degree polynomials 
used  to  interpolate  the  physical  unknowns  of  the 
problem always  yield  the  best  trade-off  in  terms  of 
calculation  delay  for  a  given  accuracy  (and  vice-
versa).  This  work  will  be  extended  soon  to  higher 
degree  interpolations  for  definitely  find  out  the 
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optimal  interpolation  configuration  in  terms  of 
accuracy/delay.  We also  have  proposed  a  pragmatic 
approach  for  integrating  BEM  integrals  for  3D 
periodic  FEA/BEM  computations.  The  proposed 
approach allows for gaining two orders of magnitude 
in  computing  the  integrals  of  the  BEM part  of  the 
model.  Next  work will  be dedicated to  find out  the 
best trade-off for accuracy/computation delay for 3D 
problems as what has been achieved here in 2D.
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