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Abstract—The thermal sensitivity of acoustic-wave-based devices 

still is an optimization key-point for various applications (filters, 

sources,  sensors).  As the architecture of such devices becomes 

more  and  more  complex  to  fit  the  RF  manufacturer 

requirements,  simple  analytical  models  usually  exploited  to 

optimize their frequency thermal drift are found obsolete. The 

optimization  of  these  complex  periodic  wave-guide  thermal 

sensitivities require the development of simulation tools capable 

to address the problem. This paper describes a Finite Element 

Analysis-Boundary  Element  Method  (FEA/BEM)  model 

allowing for the simulation any 2D and 3D periodic wave-guide 

thermal sensitivity, and more specifically the extraction of the 

corresponding  Temperature  Coefficient  of  Frequency  (TCF). 

Validation  of  the  computation  approach  first  is  reported.  Its 

capabilities then are illustrated by computing the TCF of Love 

wave resonator on quartz.

I. INTRODUCTION

The control of thermal stability of acoustic wave transducers 
still  is  one  of  the  major  problems in  developing advanced 
solutions for passive radio-frequency (RF) signal processing. 
Controlling  the  thermal  frequency  drift  of  such  devices 
enables one to reduce the transition bandwidth of such filters, 
then increasing their selectivity and allowing for high density 
spectrum channeling. Different approaches have been tested 
to  efficiently  address  this  problem,  yielding  complex 
transducer  architectures  combining  highly  coupled  single 
crystal  substrates with various overlays.  Also new kinds of 
wave excitation and guiding have been imagined and tested in 
that  purpose,  such  as  interface  waves.  The  same  kind  of 
challenge occurs for film bulk acoustic resonators (FBARs), 
the  very  serious  alternative  to  SAW  when  addressing 
telecommunication standard frequency rising for instance, for 
which a combination of positive and negative thermal drift 
material  allows  for  reducing  the  overall  temperature 
sensitivity of the final devices.

We have been developing a mixed finite element/boundary 
element modeling code capable to simulate almost any kind 
of 1D-periodic as well as 2D-periodic transducer structures, 

accounting for acoustic radiation above and below the wave-
guide and of course different nature of material losses (visco-
elastic, dielectric). In this work, this code has been enhanced 
to  account  for  the  thermal  evolution  of  material 
characteristics  as  well  as  wave-guide  thermal  expansion to 
simulate the temperature dependence of guided (or partially 
guided  or  even  radiated)  modes  in  layered  transducer 
structures.  The  basis  of  these  developments  consists  of  a 
material coefficient perturbation according to the celebrated 
Campbell & Jones approach [1], with an appropriate strategy 
to  expanse  the  meshed  region  along  temperature.  In  these 
developments,  we neglect  thermo-differential  stresses.  This 
represents  a  severe  limitation of  this  approach,  but  reveals 
reasonable  for  achieving  reliable  predictions  of  the  actual 
SAW  Temperature  Coefficients  of  Frequency  (TCF)  as 
demonstrated  by Pastureaud  & al  [2].  The principle of  the 
calculation  then  consists  in  computing  the  harmonic 
admittance of a given transducer at different temperatures and 
to  automatically  extract  parameters  such  as  resonance  and 
antiresonance frequencies (and also the stop-band width when 
accessible). The thermal sensitivity of these parameters then 
is  obtained  by  fitting  the  results  considering  quadratic  or 
cubic  temperature  dependence  according  to  the  regarded 
configuration.

In this paper, we expose the basic theory of our temperature-
dependent model, and we show various results validating the 
proposed approach for bulk acoustic wave (BAW) and SAW 
devices.  We  then  propose  to  simulate  more  complex 
transducer  structures  such  as  thick  guiding  layers,  or  even 
interface wave transducer,  to illustrate  the capability of the 
model  to  address  complex  guiding  structures  without 
restriction.
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II. THEORETICAL BASIS

A. FEA-BEM Model

As already reported in many references (the most detailed 
description of the model will be found in ref. [3]), FEA can 
be  performed  for  periodic  devices  with  rather  simple 
modifications of the basic algebraic formula associating the 
displacement  and  electrical  fields  to  the  boundary 
solicitations.  Figure  1  shows  the  typical  configuration  for 
which  the  model  was  developed.  We  assume  an 
inhomogeneous  region  of  the  wave-guide  treated  by  finite 
element  techniques  above  semi-infinite  or  finite  thickness 
homogeneous  regions  (the  substrate)  treated  by  boundary 
integral methods. Note that the substrate can be composed of 
a single material or a stack of layers provided flat interfaces 
between the involved materials.

Figure 1.  Typical 1-D periodic 2D wave-guide structure addressed by the 
model 

Considering the harmonic excitation illustrated by (1), we 
relate  all  the  degrees  of  freedom (dof)  on  boundary  ΓA to 
those on boundary ΓB, yielding the following expression 

{u Γ B

φ Γ B

}={u Γ A

φ Γ A

}e− j2πγ
(1)

in which u represents the mechanical displacements and φ the 
electrical  potential.  The  excitation  parameter  γ allows  to 
account for the harmonic excitation figure applied to the array 
(see ref. [4] for a comprehensive definition of this parameter). 
This  relation  then  is  used  to  reduce  the  number  of 
independent dof of the FEA model. This is performed without 
changing  the  total  number  of  dof  of  the  problem  and  by 
simply using a variable change operator  C depending on the 
excitation parameter  γ. This provides the following form of 
the FEA algebraic system to solve

t [C u γ  0

0 C
φ
 γ  ][K uu−ω2 M uu K uφ

K
φu

       K
φφ

][Cu  γ  0

0 C
φ
 γ  ]{vφ}=

t [Cu
 γ  0

0 C
φ
 γ ]{FQ }

 (2)

where  K and  M are respectively the FEA stiffness and mass 
matrices,  ν and  φ the independent dof of the problem and  F 

and  Q the  right  hand  side  boundary  forces  and  electrical 
charges. The upper script * denotes a complex conjugation. 
Since  K can be complex, the left hand side matrix in (2) is 

complex  general  (hermitian  if  K∈ℜ ),  but  sparse.  These 
properties  are  considered  when  solving  the  problem.  The 
algebraic system (2) is solved, allowing for the computation 
of the total electrical charge under active electrodes simply by 
nodal  value  summation.  The  harmonic  (frequency  and  γ 

dependent) admittance then is equal to the electrode current 
for a unit voltage excitation (φ0=1V.).

We  now  regard  the  case  of  acoustic  radiation  on  one 
border  of  the meshed domain.  In  that  purpose,  the general 
variationnal  equation  is  considered,  limited  to  the  purely 
elastic problem without any loss of generality 

∭


 ρω
2
u i δui−

∂ δui

∂ x j

C ijkl

∂ul

∂ x k

dV=∬
Γ

δu i T ij n j dS (3)

in which δui is the variationnal unknown and nj the normal to 
the  boundary  Γ (bordering  the  domain  Ώ)  on  which  the 
radiation boundary condition may partially occur. The mass 
density  is  represented  by  ρ and  Cijkl holds  for  the  elastic 
constants.  Equation  (3)  is  written  in  3D but  of  course  its 
restriction to 2D problems does not induce any fundamental 
difficulty.  The  right  hand  side  of  (3)  then  is  considered 
separately. In this matter, one can relate the dynamic stress Tij 

to the displacement uk in the spectral domain (denoted by ∼ ) 
by using a Green’s-function-based relation which generalizes 
the  usual  surface  stress  relation  widely  used  in  SAW 
modeling as follows 

T ij= Gijk s1 ,ω uk (4)

Note  that  in  this  equation,  the  Green’s  function 
asymptotically behaves like  s1 when  s1 tends to infinity and 
this property must be carefully accounted for. Equation (4) 
allows  one  for  considering  any  flat  boundary  for  the 
application of the radiation conditions,  even if tilted in the 
(x1,  x2)  plane.  Using  the  now  well-established  periodic 
Green’s  function  formalism,  the  right  hand  side  of  (4)  is 
expressed as 

∬
Γ

δui T ij n j dS=

∬
Γ

δui x ∑
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p
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(5)
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with  p the period of  the problem and  l the number of  the 
current  space  harmonic.  The  classical  FEA  interpolation 
procedure then is applied to (5), yielding the final expression 
of the boundary radiation operator [3].

The contribution of the total radiating boundary to the global 
algebraic system to be solved then consists in a frequency and 
excitation parameter dependent matrix X(ω,γ) related to both 
dof and variationnal unknowns and consequently computed in 
the  left  hand  side  of  (2).  Even  for  materials  without  any 
losses, the final algebraic system is general complex without 
any  specific  mathematical  characteristics.  Also  the  sparse 
nature  of  the  algebraic  system  is  degraded  due  to  the 
connection of all the dof one to the other via the radiation 
coupling. 

B. Thermal perturbation

Temperature effects can be simulated rather efficiently along 
the so-called Campbell & Jones approach [1]. It  consists in 
computing  the  effective  constants  of  materials  once 
temperature  has  changed,  along  a  Taylor  development. 
Physical  properties  of  the  structure  (elasticity, 
piezoelectricity,  dielectric  permittivity…)  actually  change 
with temperature, and the structure expand in a complicated 
manner  as  different  materials  may  be  involved.  Such 
phenomena perturb  the  acousto-electric  behavior  of  all  the 
elements of the structure (the substrate and the layers which 
compose the wave-guide) and consequently yields a thermal 
drift  of  the  synchronism  frequency  of  the  device.  This 
frequency variation can be expressed as a  relative function 
consisting in two major contributions in the vicinity of the 
reference temperature T0=25°C. The relative phase velocity 
variation which reads

dV

V
T =

V T −V T 0 

V T 0 
(6)

The  relative  propagation   distance  variation  is  written  as 
follows

de

e
T  (7)

As  the  frequency  is  given  as  a  first  approximation  by the 
relation  f=V/2e for BAW (with  e the actual thickness of the 
bulk resonator) and f=V/λ for SAW (with λ=2p, i.e. twice the 
mechanical period), the relative temperature sensitivity of the 
frequency reads

df

f
 T  =dV

V
 T  − de

e
 T  (8)

where  λ replaces  e  fort  SAW.  For  each  considered 
temperature  poin,  the  electromechanical  problem is  solved 
simply by changing the effective physical constants (elastic, 
piezoelectric and dielectric) and the mass density composing 

the structure. In this matter, one has to compute the thermal 
sensitivity coefficients of all the physical constants involved 
in the model in all the space directions as follows 

c ijkl T =c ijkl T 0 ∑
n=0

N
1

c ijkl T 0
∂n 

c ijkl

∂T
T−T 0

n=∑
n=0

N

κ ijkl

 n
ΔT

n

(9)

L x i
T =∑

n=0

N ∂n 
Lx i

∂T
T −T 0  n=∑

n=0

N

η x i

 n
ΔT

n (10)

where  the  sensitivity  coefficients  κ(n)
ijkl and  the  thermal 

expansion coefficient  η(n) are experimentally determined and 
accessible in the literature up to the third order at least for 
Quartz.  For  most  materials  however,  only  first  or  at  best 
second  order  coefficients  have  been  measured.  Concerning 
the mass density, it is related to the thermal expansion of the 
elementary crystal lattice Vme (T) as follows:

ρ T =
ρ T 0

V ol T 
 with    V me T =Lx 1

Lx 2
L x3

     (11)

However,  in  the  case  of  FEA-BEM computation,  the  FEA 
part must be expanded to actually account for the period or 
the layer thickness changes corresponding to (7). In the case 
of wave-guide composed of different materials (as for SAW 
with  Aluminum  electrodes  atop  thick  single  crystal 
substrates), a rigorous analysis of the problem needs a finite 
element  analysis  of  the  structure  expansion  accounting  for 
differential  thermal  stresses.  However,  as  in  ref.  [2],  we 
assume here that the substrate imposes its expansion to any 
film deposited atop its surface, but these materials do expand 
in the direction normal to the propagation surface along their 
own  physical  properties.  This  assumption  is  confirmed  by 
experimental  observations  [5]  on thin epitaxial  PZT layers 
and was found efficient in [2] to accurately simulate actual 
devices. 

Following this process, the resonance frequency of any mode 
of the infinite grating or of the BAW resonator is computed 
for each temperature point to derive an analytical frequency-
temperature law. We generally assume that this law can be 
established  according  to  the  numerous  results  obtained  for 
BAW and SAW devices as a third order polynomial function 
which reads

Δf

f
=θ

α T −T 0 θ
β T−T 0

2
θ

γ T−T 0 
3

   (12)

where θα, θβ and θγ respectively represent the first, second and 
third order  TCF computed at  room temperature  T0 (25°C). 
This  computation process  only has  a  sense if  it  allows for 
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accurately  identifying  the  resonance  frequency  at  each 
considered temperature. In that purpose, we use a parametric 
isomorphic  function describing  the  admittance  close  to  the 
resonance. The parameters of the model then are computed 
using  a  3-point  fit  method  described  in  [6].  A  simple 
approach for fitting the resonance frequency consists in fixing 
γ to a value corresponding to the actual excitation conditions 
applied to the grating (typically ½ for SAW) and then fit the 
admittance  changes  versus  frequency  only.  The  resonance 
then no more depend on the excitation parameter, yielding the 
following isomorphic fitting function

Y ω  =Y r ω 
Y p ω 
ω p−ω

(13)

where  ωp represents the resonance frequency, and  Yp(ω) and 
Yr(ω) hold for the pole magnitude and the other contributions 
respectively.  The 3-point  fitting  method quickly  converges 
and  reveals  stable  for  well-posed  problems.  It  can  also  be 
applied  to  identify  anti-resonance  parameters,  simply 
changing the admittance to impedance in (13). This approach 
holds faor SAW and BAW as well. Finally it must be noted 
that  all  these  developments  are  valid  also  for  wave  guide 
simulated by periodic FEA only, in 2D and 3D as well. The 
method  finally  can  be  extended  for  any  FEA  structure 
submitted  to  quasi-static  thermal  perturbation  provided  the 
assumption of negligible thermo-differential  effects remains 
valid.

III. VALIDATION RESULTS

A. BAW on Quartz

The very first case to treat in order to check the validity of 
such a calculation corresponds to BAW in quartz, for which 
second order compensation effects on AT cut is well known 
and predicted by simple analytical models. In that case, we 
consider  a  very simple  mesh corresponding  to  a  2D plane 
surface resonator.  The thickness was arbitrarily fixed to 50 
µm  to  provide  a  resonance  frequency  near  35  MHz 
considering AT quartz. The width of the resonator also was 
arbitrarily fixed, but this figure had no impact on the results 

as the electrodes extend along the whole surfaces, Setting  γ  
to an integer value (arbitrarily 1) yields the simulation of an 
infinitely  long  transducer,  as  it  is  generally  the  case  for 
simple  analytical  models.  For  achieving  the  computation, 
Slobodnik et al. elastic, piezoelectric dielectric constants and 
density  have  been  used  [7]  but  the  considered  effective 
thermal coefficients of those physical constants were those of 
Bechmann et al. [8]. Figure 2 shows the implemented mesh 
and fig.3 a&b show the evolution of the resonance frequency 
for pure shear BAW on AT and BT quartz cuts respectively. 
The comparison with analytical model results reveal a good 
agreement  between  the  two  approaches,  yielding  a  first 

validation  element.  Only  FEA  was  used  ion  this  first 
validation step.

Figure 2.  Mesh of the BAW resonator

(a)

(b)
Figure 3.  Thermal sensitivity of pure shear wave on (a) AT and (b) BT 

Quartz cuts computed along the proposed approach

B. Rayleigh wave on Quartz

The second unavoidable case to be addressed by the model 
corresponds  to  Rayleigh  waves  on  (ST,X)  Quartz  and  the 
sensitivity  of  the  temperature  compensation  to  electrode 
loading, as it also consists in a so-called “classics” which was 
treated along various approaches.  In  that case,  we used the 
same data set as in section III.A, adding the contribution to 
Aluminum for which elastic and temperature coefficient was 
found in [9]. In that case, we combined FEA and BEM, both 
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being thermally perturbed as described above. Figure 4 shows 
the implemented mesh and fig.5 shows the evolution of the 
Rayleigh wave frequency for 2 different metal thickness (100 
and 200 nm), the wavelength being arbitrarily set to 10µm. It 
clearly shows that the turnover temperature shifts down with 
the  electrode  thickness,  which  actually  corresponds  to 
experimentally  observed  phenomena  and  agree  well  with 
theoretical results reported in [2].

Figure 4.  Mesh of the SAW grating, the metal ratio is set to 0.5, the 
mechanical period equals 5µm and the electrode thickness varies from 100 to 

200 nm.

Figure 5.  Thermal sensitivity of SAW under the above grating (fig.4) for 2 
different electrode thickness (100 and 200 nm).

IV.THERMAL SENSITIVITY OF COMPLEX WAVE-GUIDE

Passivation layers are used to protect the surface of SAW 
devices  from  any  dusts  or  surface  pollution  that  could 
counteract the IDT operation. To illustrate the capability of 
our  model  to  correctly  predict  the  response  of  complex 
surface structures and their particular thermal sensitivity, we 
have theoretically and experimentally check the influence of 
an  amorphous  silica  (SiO2)  coating  on  a  two  port  surface 
transverse wave (STW) resonator, yielding a so-called Love 
wave resonator.  These devices consists in a four-port STW 
synchronous resonator operating close to 500 MHz (grating 

period  p=5  µm,  relative  electrode  height  h/λ=1.5%, 
metallization  ratio  a/p=0.5)  built  on  AT  cut  of  quartz 
(propagation along Z’) covered by a 0.5 µm thick amorphous 
silica  layer.  It  presents  2  resonances  corresponding 
respectively to the beginning and the end of the frequency 

stop-band.  The  stop-band  width  only  can  be  accurately 
predict  if  considering  a  conformal  deposition,  i.e.  the 
corrugation due to the metal strip is reproduced at the silica 
surface,  as  shown  in  fig.6.  A  comparison  between  the 
harmonic admittance and the transfer function of the above-
mentioned  resonator  is  reported  in  fig.7,  showing  a  good 
agreement  between  theory  and  experiment.  We  then  have 
applied our TCF calculation process, allowing for identifying 
the behavior of each independently. The results are reported 
in  fig.8,  showing  that  the  two  resonance  does  not  exhibit 
exactly  the  same  temperature  behavior,  although  their 
polarization  is  about  the  same  (phase  quadrature).  This 
actually  corresponds  to  what  is  experimentally  observed, 
even  if  the  actual  turnover  temperatures  occur  at  smaller 
temperature (cf Fig.9).  This of course can be controlled by 
changing the effective elastic temperature constants, as they 
are not known as accurately as those of quartz.

Figure 6. Mesh of the Love-wave grating, the metal ratio is set to 0.5, the 
mechanical period equals 5µm, the electrode thickness is set to 150 nm and 

the silica overlay is 0,5µm thick.

Figure 7. Superposition of harmonic admittances computed using the present 
approach and the above with the experimentally measured admittance of a 

passivated 4-port STW resonator

V. CONCLUSION

We  have  proposed  an  approach  based  on  finite  element 
analysis  to  simulate  the  thermal  effects  on  the  resonance 
frequency of complex wave guide. The basic computation has 
been validated for standard plane BAW resonators on Quartz. 
The possibility to integrate radiation effects using boundary 
elements based on Green's functions also has been validated 
for  Rayleigh  wave  on  quartz  too,  as  the  most  difficult 
problem  generally  consists  in  accurately  predicting  the 
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temperature compensation effects. This work is applied also 
to address Love wave device thermal behavior for which no 
simple model is capable to account for the influence of the 
IDT covered by th silica overlay. This work will be extended 
in the near future to address the problem of FBAR and SMR 
also  requiring  an  accurate  computation  of  the  unperturbed 
model to correctly simulate the resonance conditions.
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