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Abstract. Debris flows are very dangerous phenomena
claiming thousands of lives and millions of Euros each
year over the world. Disaster mitigation includes non-
structural (hazard mapping, insurance policies), active struc-
tural (drainage systems) and passive structural (check dams,
stilling basins) countermeasures. Since over twenty years,
many efforts are devoted by the scientific and engineering
communities to the design of proper devices able to capture
the debris-flow volume and/or break down the energy. If con-
siderable theoretical and numerical work has been performed
on the size, the shape and structure of check dams, allow-
ing the definition of general design criteria, it is worth noting
that less research has focused on the optimal location of these
dams along the debris-flow pathway.

In this paper, a methodological framework is proposed
to evaluate the influence of the number and the location of
the check dams on the reduction of the debris-flow intensity
(in term of flow thickness, flow velocity and volume). A
debris-flow model is used to simulate the run-out of the de-
bris flow. The model uses the Janbu force diagram to resolve
the force equilibrium equations; a bingham fluid rheology is
introduced and represents the resistance term. The model
has been calibrated on two muddy debris-flow events that
occurred in 1996 and 2003 at the Faucon watershed (South
French Alps).

Influence of the check dams on the debris-flow intensity is
quantified taking into account several check dams configura-
tions (number and location) as input geometrical parameters.
Results indicate that debris-flow intensity is decreasing with
the distance between the source area and the first check dams.
The study demonstrates that a small number of check dams
located near the source area may decrease substantially the
debris-flow intensity on the alluvial fans.

Correspondence to:A. Remâıtre
(alexandre.remaitre@eost.u-strasbg.fr)

1 Introduction

Debris flows are a common type of mass movement in moun-
tainous areas; they consist of fully saturated mixtures of wa-
ter, sediment and debris (Iverson, 1997) that can travel, in a
series of surges, several kilometres. Debris flows are widely
recognized as one of the dominant geomorphic processes in
steep mountainous terrain (Pierson, 1980; Costa, 1984; John-
son and Rodine, 1984; Takahashi, 1991; Scott et al., 1995;
Corominas et al., 1996; Hungr et al., 2001; VanDine and Bo-
vis, 2002; Godt adn Coe, 2007).

From a practical point of view, several analyses were con-
ducted through a “temporal” approach to understand the trig-
gering mechanisms and associated rainfall thresholds. These
analyses were based on empirical hydrological correlations
and pointed out a rather wide range of rainfall thresholds for
several study areas (e.g. Campbell, 1974, 1975; Lumb, 1975;
Okuda et al., 1980; Caine, 1980; Crozier and Eyles, 1980;
Cannon and Ellen, 1985; Wieczorek, 1987). Other studies
were conducted through a “spatial approach” in order to de-
fine the areas which could potentially trigger a debris flow
(the susceptibility) (Montgomery and Dietrich, 1994; Iovine
et al., 2003; Ḧurlimann et al., 2006; Guinau et al., 2007).

Moreover, unlike other types of landslides, the evaluation
of the hazard requires, besides the prediction of the time oc-
currence and of the source material location, the assessment
of the run-out susceptibility (e.g. O’Brien et al., 1993; Ayotte
and Hungr, 2000; Laigle and Marchi, 2000; D’Ambrosio et
al., 2007). Run-out distances of debris flows are strongly
controlled both by the rheological behaviour of the material
and the topography of the debris-flow track (Ancey, 2007).
Considering this last point, one of the most important miti-
gation works in order to reduce the debris-flow impact con-
sists to modify the topography of the debris-flow track by
building check-dams along the torrential pathway. If consid-
erable theoretical and numerical works have been performed
on the size, shape and structure of torrential check dams,
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1404 A. Remâıtre et al.: Influence of check dams on debris-flow run-out intensity

Fig. 1. Morphological sketch of the Faucon watershed(a), photograph of a concrete check dam(b), photograph of masonry check dam(c).

allowing the definition of general design criteria (Johnson
and McCuen, 1989; Couvert et al., 1991; Armanini and Scot-
ton, 1992; Deymier et al., 1994; Miyazawa et al., 2003), it
is worth noting that less research has focused on the opti-
mal number and location of these dams along the debris-flow
pathway.

The aim of this paper is to analyse with a simple numerical
model the effect of check dams on the debris-flow intensity
(in terms of flow height, velocity and volume) according sev-
eral configurations (number of check dams, location).

2 Description of the test site and characteristics of the
2003 debris flow

2.1 The Faucon torrent

The Faucon torrent (44◦25′ N, 6◦40′ E) evolves in a steep
forested watershed with an area of 10.5 km2 which rises to
2984 m a.s.l. (Fig. 1a). Local slopes are steeper than 25◦,
reaching 80◦ at the highest parts of the massif which con-
sist of two sheet thrusts of faulted sandstones and calcareous
sandstones. Lower slopes consist of Callovo-Oxfordian
black marls, covered by various Quaternary deposits chara-
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Fig. 2. GIS database of the Faucon torrent.(a) Torrential stretches
characteristics,(b) Morphology of the 2003 debris flow (height of
deposits and scouring depth).

cterized by a sandy-silt matrix, may include boulders up to
1–2 m in size and are between 3 and 15 m thick. The in-
cised channel has an average slope of about 20◦, ranging
from 35◦ in the headwater basin to 3◦ on the alluvial fan,
and is approximately 5500 m in length. The Faucon torrent
has formed a 2 km2 debris-fan that spreads across the Ubaye
valley floor. The fan slope gradient ranged from 4 to 9◦ and
is made mostly of cohesionless and high-permeable debris
(debris-flows strata and/or torrent deposits).

Since 1850, fourteen major debris flows have occurred in
the Faucon torrent. In order to prevent flooding, authorities
have built a hundred check dams on the torrent since
the 1890’s; but only a half of them are still efficient. Two
main types of check dams can be observed: concrete check
dams (Fig. 1b) and masonry check dams (Fig. 1c). The last
major events occurred in 1996 (Remaı̂tre et al., 2005a, b) and

Fig. 3. Morphology of the scouring zones after the 2003 debris-flow
event at the Faucon torrent.(a) View of a scoured stretch,(b) View
of a strong scouring at the toe of a check dam.

in 2003 (Remâıtre, 2006; Remâıtre et al., 2008). A GIS
database of the check dams has been built. For each dam,
several characteristics have been recorded like the type, the
size, and the year of construction (Fig. 2a). A sample of the
database is presented in Table 1; the complete database is
available on request.

2.2 Kinematics of the 2003 debris flow

The 2003 debris flow has been triggered on two specific
spots on the East flank of the Faucon watershed: the Trois
Hommes area, and the upper part of the Champerousse tor-
rent (Fig. 6). For both cases, the morphology of the source
area corresponds to a strong incision in scree slopes. In order
to facilitate the sediment budget estimation, a GIS map of the
morphology of the debris-flow (height of deposits and scour-
ing depth) has been built (Fig. 2b). The average depth of the
incision is about 2 m; the total volume of the debris flow for
the source areas is estimated to be in the range from 7500 to
9500 m3. Channel scour is responsible for the important dif-
ference between the 7500–9500 m3 of the two source areas
and the 60 000 m3 that spread over the fan (Remaı̂tre, 2006).
The total length of the debris-flow track is about 3500 m,
with a slope gradient of about 20◦. Considering both the
triggered and the deposited volumes and the length of the
debris-flow track, the channel scour rate per metre amounts
to 15 m3 m−1. This value is in agreement with values ob-
served by other authors in various lithological environments
(Hungr et al., 1984; Jibson, 1989; Jakob et al., 2000). Obser-
vations of the channel after the event indicate that the scour
depth ranges between 0.5 and 4 m (Fig. 3a and b). The most
intense scour depth was observed at the toe of some check
dams, resulting from regressive channel erosion (Fig. 3b).
The material deposited in the channel consisted mostly of
clast-rich, slightly bouldery, sandy, muddy gravel, with the
clast-rich and coarser fractions of this facies fringing the lobe
margins and the top of the levees, where fine boulders and
cobbles are concentrated.

www.nat-hazards-earth-syst-sci.net/8/1403/2008/ Nat. Hazards Earth Syst. Sci., 8, 1403–1416, 2008
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Table 1.Characteristics of the Faucon check dams before the 2003 debris flow.

N◦ Type Distance to Dam 1 Toe elevation Top elevation Height Width min. Width max. Status
(m) (m) (m) (m) (m) (m)

1 Concrete 0 1271 1272 1.80 8.00 12.00 Good
2 Concrete 312 1311 1318 7.00 2.80 20.00 Good
3 Masonry 345 1319 1320 0.50 3.00 18.00 Good
4 Concrete 357 1321 1330 8.70 8.20 29.80 Good
5 Concrete 426 1334 1344 9.00 5.00 19.50 Good
6 Concrete 486 1348 1349 1.00 8.00 8.00 Good
7 Concrete 500 1350 1356 5.80 8.80 25.00 Good
8 Concrete 560 1361 1371 9.40 6.00 16.40 Good
9 Concrete 583 1374 1377 3.00 5.00 18.00 Good

10 Concrete 596 1376 1377 0.50 5.00 11.00 Buried
11 Concrete 616 1378 1381 2.70 3.10 11.90 Damaged
12 Concrete 706 1392 1400 7.70 7.20 23.00 Damaged
13 Concrete 760 1405 1414 8.80 6.00 24.00 Damaged
14 Concrete 787 1415 1423 8.00 5.20 19.00 Damaged
15 Masonry 809 1426 1427 1.00 5.00 5.00 Destroyed
16 Masonry 815 1427 1427 0.00 5.00 5.00 Destroyed
17 Masonry 854 1435 1435 0.00 4.00 4.00 Destroyed
18 Masonry 947 1460 1463 3.00 5.50 5.50 Destroyed
19 Masonry 978 1469 1469 0.00 4.20 4.20 Destroyed
20 Masonry 1000 1477 1477 0.00 4.00 4.00 Destroyed
21 Masonry 1006 1483 1483 0.00 4.00 4.00 Destroyed
22 Masonry 1024 1490 1498 7.80 11.50 29.00 Damaged
23 Masonry 1038 1498 1503 4.30 6.00 20.50 Damaged
24 Masonry 1064 1507 1510 2.50 3.50 9.00 Damaged
25 Concrete 1157 1525 1530 4.60 4.50 12.50 Damaged
26 Concrete 1164 1531 1535 4.00 6.00 16.00 Good
27 Concrete 1169 1536 1538 1.80 7.50 19.00 Good
28 Masonry 1186 1539 1541 1.60 1.50 3.50 Destroyed
29 Masonry 1219 1543 1549 6.00 6.70 10.40 Good
30 Concrete 1248 1548 1557 9.50 6.00 16.40 Good
31 Masonry 1311 1566 1569 3.00 3.50 13.00 Good
32 Concrete 1334 1568 1574 5.20 4.50 16.50 Good
33 Concrete 1372 1578 1584 5.50 5.50 16.00 Good
34 Concrete 1397 1585 1588 2.70 5.00 18.00 Good
35 Concrete 1562 1623 1628 5.00 10.00 20.00 Good
36 Concrete 1567 1628 1630 2.00 10.00 20.00 Good
37 Concrete 1585 1632 1634 2.10 12.00 22.00 Good
38 Masonry 1625 1635 1635 0.00 4.00 15.00 Destroyed
39 Masonry 1775 1667 1667 0.00 4.00 4.00 Destroyed
40 Masonry 1785 1668 1668 0.00 5.00 5.00 Destroyed
41 Masonry 1809 1672 1675 2.60 6.00 14.60 Damaged
42 Concrete 2000 1704 1712 8.50 7.00 27.00 Good
43 Masonry 2021 1711 1712 1.40 9.00 22.00 Buried
44 Masonry 2042 1715 1715 0.00 11.00 25.00 Destroyed
45 Masonry 2366 1777 1777 0.00 25.00 25.00 Destroyed
46 Masonry 2373 1780 1780 0.00 25.00 25.00 Destroyed
47 Masonry 2410 1788 1788 0.00 10.00 10.00 Destroyed
48 Concrete 2514 1813 1816 2.80 5.00 16.50 Good
49 Concrete 2524 1817 1819 2.70 5.30 21.00 Good
50 Concrete 2545 1821 1825 3.50 5.00 18.60 Good
51 Concrete 2562 1825 1828 3.00 5.00 16.50 Good
52 Concrete 2579 1828 1830 2.40 5.00 25.00 Good
53 Concrete 2597 1833 1837 3.20 5.00 18.00 Good
54 Concrete 2621 1840 1842 3.10 5.00 19.00 Good
55 Concrete 2637 1845 1847 1.40 5.00 14.70 Good

Nat. Hazards Earth Syst. Sci., 8, 1403–1416, 2008 www.nat-hazards-earth-syst-sci.net/8/1403/2008/
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Table 1.Continued.

N◦ Type Distance to Dam 1 Toe elevation Top elevation Height Width min. Width max. Status
(m) (m) (m) (m) (m) (m)

56 Concrete 2658 1848 1852 3.40 5.00 15.50 Good
57 Concrete 2683 1851 1857 5.50 6.00 31.00 Good
58 Concrete 2806 1882 1886 3.90 5.00 12.00 Good
59 Concrete 2824 1887 1890 3.50 5.00 29.00 Good
60 Masonry 2870 1895 1895 0.00 25.00 25.00 Destroyed
61 Masonry 3114 1952 1954 3.00 6.00 15.00 Damaged
62 Masonry 3364 2031 2032 1.00 8.20 15.00 Damaged
63 Masonry 3383 2035 2035 0.00 8.50 12.00 Destroyed
64 Masonry 3454 2050 2051 1.00 9.00 18.50 Damaged
65 Masonry 3470 2053 2054 1.50 13.00 16.80 Damaged
66 Masonry 3544 2071 2074 2.00 3.50 3.50 Damaged
67 Masonry 3645 2093 2095 2.20 9.00 15.00 Damaged
68 Masonry 3661 2101 2101 0.00 11.70 29.00 Destroyed
69 Masonry 3681 2103 2106 3.00 11.00 25.00 Damaged
70 Masonry 3770 2126 2126 0.00 4.00 7.00 Destroyed
71 Masonry 3776 2127 2130 2.50 8.00 15.00 Damaged
72 Masonry 3807 2135 2135 0.00 12.50 12.50 Destroyed
73 Masonry 3825 2141 2143 2.20 4.50 12.00 Destroyed
74 Masonry 3842 2145 2149 3.50 6.00 18.00 Damaged
75 Masonry 3886 2158 2162 4.00 9.00 15.00 Damaged
76 Masonry 3898 2163 2167 4.00 4.50 18.50 Good
77 Masonry 3924 2173 2176 3.00 3.00 8.00 Damaged
78 Masonry 3939 2177 2178 0.50 6.00 15.00 Destroyed
79 Masonry 3955 2181 2184 2.50 6.00 16.00 Damaged
80 Masonry 4108 2226 2233 5.50 10.00 18.00 Good
81 Masonry 4197 2295 2300 4.50 6.00 7.00 Good
82 Masonry 4306 2364 2370 6.00 5.00 5.50 Good

Velocities were back calculated on two cross sections
along the channel using both the vortex equation and the
run-up equation (Johnson and Rodine, 1984; Hungr et al.,
1984; Iverson et al., 1994; Jakob et al., 2000; Remaı̂tre et al.,
2005a) and multiplied by the cross-sectional area to estimate
peak discharge. Velocities ranged from 6.4 to 8.9 m s−1; ve-
locities back-calculated with the run-up equation are some-
how higher than those obtained with the vortex equation.
Peak discharges ranged from 150 to 200 m3 s−1 (Table 2).

2.3 Sedimentology and rheology of the 2003 debris flow

Nine samples of matrix were gathered at several locations
both on the two triggering spots (Trois Hommes and Cham-
perousse) and along the main axis of the debris-flow track
(Fig. 4). Debris-flow deposits were sampled at 20 and 50 cm
depth; the average weight of the samples was about 50 to
150 kg. The fraction>20 mm has been measured and charac-
terized (petrography) in the field. For the fraction<20 mm,
all samples were oven dried and sieved from less than 20 mm
to 0.050 mm. The proportion of fines (<0.050 mm) was
analysed by laser diffractometry. The grain-size distribu-

tion obtained on the fraction passing 20 mm sieve shows a
remarkable difference between the debris-flow deposits sam-
ples (Fig. 5). The Trois Hommes (TH03) and the Cham-
perousse (CHA03) deposits, sampled in the triggering areas,
correspond to granular debris-flows flows deposits; indeed
the fraction of fine elements (finer than 0.050 mm) did not
exceed 10%. The Faucon deposits (FAU03) correspond to
muddy debris-flow deposits (D50 varies from 0.15 to 1 mm),
indeed the clay and silt content ranges from 16 to 33%, and
they are sandy clay loam or sandy clay. According to scour-
ing phenomena, proportion of fine elements increases with
the distance to the triggering areas. This has been either ob-
served during the 1996 debris-flow event (Remaı̂tre et al.,
2005b).

The rheological analyses have been performed for the
clay-rich deposits (FAU031, FAU03 2, and FAU033) with
several methods: rheometry, slump tests, flume tests and field
estimation. The detailed physical characteristics (including
the rheological properties) of the source formations (black
marls, moraines, weathered limestones, etc.) can be found in
Malet et al. (2003) and Remaı̂tre et al. (2005b). We evaluated
the rheological behaviour at different solid fractions (from
37 to 55%, by volume). The results are compiled in Fig. 6.

www.nat-hazards-earth-syst-sci.net/8/1403/2008/ Nat. Hazards Earth Syst. Sci., 8, 1403–1416, 2008
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Fig. 4. Location of the 2003 debris-flow deposits samples at the Faucon torrent.
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Fig. 5. Grain-size distribution of the 2003 debris-flow deposits.

The material behaves as a viscoplastic fluid, with a shear
rate dependent behaviour, as obtained by other authors for
clay-rich mixtures at similar stress conditions (e.g. O’Brien
and Julien, 1988; Major and Pierson, 1992; Coussot et al.,
1996; Sosio et al., 2007). The FAU03 deposit exhibits vis-
coplastic behaviour for all shearing velocities and is well fit
by a Herschel-Bulkley model. Rheological parameters (τc,
κ) decreased with the total solid concentration by volume
(Fig. 6). The yield strength ranged from 1 to 270 Pa and vis-
cosity from 9 to 71 Pa s.

3 The debris-flow run-out model (JDFM-1D)

The JDFM-1D debris-flow run-out model has been devel-
oped by van Asch (van Asch et al., 2004). The constitutive
equation used in the model is a simplified 2-parameters Bing-
ham plastic rheology described mathematically as follows in
simple shear geometry:

∂v

∂y
=

1

η
(τ−τ0) (1)

where,v is the velocity (m s−1), y is the depth perpendicular
to the velocity (m),η is the dynamic viscosity (kPa s),τ is the
shear stress (kPa) andτ0 is the yield strength (kPa). Bingham
plastic fluids exhibit linear shear-stress shear-rate behaviour
after an initial shear-stress threshold has been reached (An-
cey, 2007).

Since the debris-flow has a changing geometry, inter slice
forces are not symmetrical like in the infinite slope model.
Therefore the shear stress and yield strength in Eq. (1)
are calculated with the simplified Janbu equilibrium model
(Janbu, 1954; Nash, 1987):

F t
=

∑
[c′L+(W t

−(U t
normal+U t−1

excess)) tanφ′
]/nα∑

W t tanα
=

( ∑
S∑
T

)
(2a)

Fig. 6. Empirical relationships relating yield strength and viscosity
on varying the solid concentration by volume for the 2003 debris-
flow event at the Faucon torrent.

nα= cos2 α

(
1+ tanα

tanϕ′

F t−1

)
(2b)

where,W is the weight of an individual slicej (kN); U is
the pore water force on the slip surface of slicej (kN), c′ is
the cohesion (kPa),φ’ is the effective friction angle (◦), α is
the slope angle of slicej (◦), L is the length of the slip surface
of slicej (m),S=τ0L is the resisting force of slice j (kN) and
T =τL is the mobilized shearing force of slice j (kN). This
stability model satisfies force equilibrium on each slice and
moment equilibrium on the whole failure surface (Duncan
and Wright, 1980).

In the presented simulation, the width of the slices is 5 m.
The Janbu equation delivers the yield strength and the shear
stress, which are needed for Eq. (1). Equation (2a) contains
F on both sides, which is solved iteratively in the first time
step. In the following time stepsF t on the left side of Eq. (2)
is calculated withF t−1 obtained from the former time step
and which is substituted for each slice in Eq. (2b) to calculate
the right side of Eq. (2a). Assuming a velocity profile, which
increases linearly with flow depth, the displacement of mass
in m3 m−1 per times step is given by:

q=1/2v1t(hp+hj ) (3)

where,v is the velocity,1t is the time step (5 s in our simu-
lations),hp the thickness of the rigid plug (m) andhj is the
total depth of the slicej (m).

www.nat-hazards-earth-syst-sci.net/8/1403/2008/ Nat. Hazards Earth Syst. Sci., 8, 1403–1416, 2008
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Table 2.Velocities and peak discharge of the 2003 debris flow.

Cross- Channel Radius of Banking Height Velocity Peak discharge
sectional longitudinal curvature angle of of run-up
area slope the flow
(m2) (◦) (m) (◦) (m) (m s−1) (m3 s−1

Vortex eq. Run-up Vortex eq. Run-up

A 24.6 10 22.6 5 2.6 6.4 7.1 157.1 175.7
B 22.1 16 24.7 12 3.9 7.8 8.9 173.3 195.8

The thickness of the rigid plug is given by:

hp=
cLhj

T −N ′tanϕ′
(4)

N ’ is obtained by resolving the forces per slice vertically:

N ′
=W/ cosα−U−T tanα (5)

The routing of the material in a time step is done by a simple
mass balance equation:

1qj=qj−1−qj (6)

where the slicej−1 lies upstream of slicej . A zeroφ-value
in Eq. (2) delivers Bingham behaviour of the material. For
the Coulomb viscous flow behaviour a combination of c- and
φ-values (including ac=0 condition) can be selected.

A pore pressure ratiopu, defined by Eq. (7), is applied for
each slice during the run-out:

pu=
hwγw

hjγs

(7)

where,hw is the vertical height of the groundwater (m),γw

is the unit weight of water (kN m−3), γs is the unit weight
of saturated material (kN m−3). For a given pu-value, a pore
water forceU can be calculated for equation 2a for each slice
as follows:

U=puhjγsL (8)

During run-out, a constant pore pressure ratio or a dissipation
of excess pore pressure can be assumed. Assuming that the
muddy debris-flow is completely saturated (hw=hj in Eq. 7)
the amount of excess pore pressure in terms of the pore pres-
sure ratio is:

pexcess
u =pu−

γw

γs

(9)

During run-out, dissipation of excess pore pressure is esti-
mated by Therzaghi’s theory of one-dimensional consolida-
tion of an open layer (Whitlow, 1995). The fractional dissi-
pation (Fr ) of pu-excess during an elapsed run-out timet=i

is given by:

t=i

Fr =1−
8

π2

[
e−(π2/4)Tv+

1

9
e−(9π2/4)Tv+

1

25
e−(25π2/4)Tv . . .

]
(10)

where, Tv is the dimensionless time factor of one-
dimensional consolidation and pore water dissipation pro-
cess.Fr has a value between 0 and 1 (=complete dissipation
of excess pore pressure).

Tv in Eq. (10) is defined as follows:

Tv=
Cvti

d2
(11)

where, ti is the elapsed time (s),d is the length of the
drainage path that for an open layer equals half the mean
thickness of the flow (m),Cv is the coefficient of consolida-
tion (m2 s−1).

For each time step the amount of excess pore pressure is
calculated by equation (12):

t=i

pexcess
u =

t=0
pexcess

u −Fr
t=0

pexcess
u (12)

The input parameters (Fig. 7) are the topography of the tor-
rential track, and the characteristics of the initial source ma-
terial: volume (m3), unit weight (KN m3), the internal fric-
tion angle (◦), the cohesion (kPa) and the dynamic viscosity
(kPa s).

The model has been previously tested on real debris-flows
track profiles. For instance, the model has been calibrated
and validated on two landslide-induced debris flows at the
Super-Sauze mudslide (van Asch et al., 2004).

A scoured volume determined with a semi-empirical ap-
proach is added for each cell of the flow prototype at each
time step (Fig. 7). According to Rickenmann et al. (2003),
we assumed that this scoured volume depends essentially on
a kind of integrated mean shear stress of the debris-flow mix-
ture which passed through section of the torrent, and is con-
trolled by the slope gradient, the volume and the density of
the mixture which enters this section. Moreover, we consid-
ered that scouring occurs if (Eq. 1) the flow height is at least
1 m (Hc: critical height) and (Eq. 2) the distance between the
debris-flow front (Xfront) and the location of a scoured stretch
(X) is less than 100 m.

Nat. Hazards Earth Syst. Sci., 8, 1403–1416, 2008 www.nat-hazards-earth-syst-sci.net/8/1403/2008/
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Fig. 7. Characteristics of the JDFM 1D model and of the scouring calculation rules.

The model has been calibrated for the 2003 event before
using it for scenario modelling (Fig. 8). Calibrations were
carried out on the run-out distance and the flow height. For
each model run aφ-value was selected starting withφ=0
(Bingham behaviour). The c- andφ-values were obtained by
calibration. The cohesion (c) could be calibrated on run-out
distance, while the dynamic viscosity (η) could be calibrated
on the flow height. With increasingφ-values the dynamic
viscosity decreases. This is explained by the overall increase
in resistance of the flow due to the dependency of friction on
flow depth. Therefore, in order to match the observed flow
height the dynamic viscosity has to be lowered. However
the calibrated viscosities (η) are much higher (8 kPa s) than
the viscosities measured in the laboratory with parallel-plates
rheometrical tests and inclined-plane tests; the maximum vis-
cosity is 0.1 to 0.2 kPa s (Remaı̂tre, 2006).

4 Modelling scenarios

For each modelling test, the same triggering scenario has
been used, based on the observations of the Faucon stream
after a debris-flow triggered in 2003 (Remaı̂tre et al., 2008).
A volume of 5000 m3 of material has been considered, which
corresponds to one of the source area (Trois Hommes area);
indeed it is not possible to choose more than one source area.
The 2003 debris-flow event started as a granular flow, bulked
increased in fine elements by incorporating marly sediments
along the torrential paths and transformed into a muddy de-
bris flow. Such phenomena have been also observed during
the 1996 debris-flow event (Remaı̂tre et al., 2005a, b). In the

model, the rheological characteristics of the debris-flow ma-
terial can not be changed during the run-out. Therefore, we
considered that the flow exhibits viscoplastic behaviour for
the entire simulation. The source area is located at the upper
part of the profile (the A point on the Fig. 9) while the check
point (the B point on the Fig. 9) location corresponds to the
upper part of the fan where the flow-track shows a clear flat-
tening of the slope gradient. The run-out distance is approx-
imately 4000 m. In the model, the check dams influence the
intensity of the debris-flow through topographic variations of
the flow track (slope angle). For the scenario A, the height of
check dams corresponds to the height observed in the field in
July 2003. For the scenarios B and C, a 5 m height has been
considered for all the check dams.

Three main run-out scenarios have been tested (Fig. 9):

(1) Scenario A: effect of the check dams on the intensity
of the 2003 debris-flow. Two configurations of debris-
flow pathway: profile with no check dams (A1), and
the profile with the check dams observed and mapped
before the 2003 debris-flow event;

(2) scenario B: effect of the location of check dams on the
intensity of a debris flow. Three configurations of check
dams location: check dams located in the upper part of
the torrential pathway (B1), the middle part (B2) and in
the lower part (B3);

(3) scenario C: effect of the number of check dams on the
intensity of a debris flow. Three configurations of check
dams number: 10 check dams (C1), 20 check dams (C2)
and 30 check dams (C3).
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Fig. 8. Calibration of the JDFM-1D code for the 2003 debris-flow event at the Faucon torrent.

Fig. 9. Settings for the three modelling scenarios.
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Fig. 10. Comparisons of computed debris-flow intensities (flow velocity, flow height and total volume) using JDFM-1D for three modelling
scenarios.

5 Modelling results

Different configurations of flow track profile were analysed
through a sensitivity analysis. For each configuration, the
maximal flow height, the maximal velocity and the total vol-
ume of debris where analysed and compared (Fig. 10).

For the scenario A, logically, the intensity of the debris
flow is decreasing when the torrent is equipped by check
dams. The maximum flow height is decreasing from 5.95 m
(A1: no check dams) to 2.21 (A2: 75 check dams), while the

maximum velocity is decreasing from 1.58 m s−1 (A1) to
0.53 m s−1 (A2). The total volume of the debris-flows is de-
creasing from 69 000 m3 (A1) to 33 000 m3 (scenario A2).
According to this result, what is the best solution to improve
check dams effect on the debris-flow intensity? Authorities
should increase the number of check dams (scenarios C)? Or
shall they take more attention on some specific area of the
debris-flow track (scenarios B)?
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The run-out modelling according the influence of the
number of check dams (scenario C) shows a relative regu-
lar decrease of the flow intensity. The decrease is particu-
larly strong between the scenario A1 (no check dams) and
the scenario C1 (10 check dams): decreasing of the maximal
velocity, the maximal flow height and the volume are respec-
tively 29% (1.58 to 1.12 m s−1), 25% (5.95 to 4.41 m) and
26% (69 000 to 51 000 m3); while the decreasing is gently
moderate when the number of check dams is increasing (sce-
narios C1, C2 and C3). For instance, between the C1 and
the C3 scenarios, decreasing of the maximal velocity, the
maximal flow height and the volume are respectively 11%
(1.12 to 1.00 m s−1), 7% (4.41 to 4.12 m) and 10% (51 000
to 46 000 m3).

Concerning the scenario B, the comparison of the debris-
flow intensity for the three cases (B1, B2 and B3) shows that
the location seems to have a strong influence on the debris-
flow intensity. Indeed, the differences are significant between
the B1 scenario (dams located on the upper part) and the
B3 scenario (dams located on the lower part): decreasing of
the maximal velocity, the maximal flow height and the vol-
ume are respectively 37% (1.19 to 0.74 m s−1), 36% (4.97 to
3.18 m) and 33% (62 000 to 41 000 m3).

6 Discussion and conclusions

Morphological, kinematical and rheological features of the
2003 debris flow at the Faucon torrent have been used in the
present study to first calibrate a viscoplastic run-out model
and second to develop a methodology to assess and quantify
run-out intensity according to the presence (number, loca-
tion) or the absence of check dams.

The JFDM-1D model can take into account the amount
of material entrained by the flow along the path (scouring)
thereby increasing the final volume deposited. According to
Rickenmann et al. (2003), we assumed that the intensity of
the scouring is function of the integrated mean shear stress
of the debris-flow mixture which passed through sections of
the torrent, and is controlled by the slope gradient, the vol-
ume and the density of the mixture which enters this section.
Therefore, breaking the energy of the flow in the earlier stage
of the debris-flow event kinematics would reduce the total
amount of entrained material.

The modelling sensitivity analysis of the relative influence
of, on one hand the number of check dams, and on the other
hand the location of the check dams shows some interesting
results. The simulation which provides the lowest debris-
flow intensity corresponds to the case where the check dams
are located at the upper part of the flow track (Scenario B1),
near the source area. These results suggest that a relative
small number of check dams located near the potential source
areas could be very efficient by breaking early the energy of
the debris-flow. For this reason, additional river engineer-
ing measures could be proposed, such as construction of new

check dams in the upper reaches of the Faucon torrent. These
conclusions are valid for a debris flow that exhibited a muddy
behaviour; some additional modelling tests have to be pro-
vided for granular debris-flows.

This new approach opens a new direction for future re-
search. Additionally work remains to be done in order to
(i) analyse the influence of other check dam characteristics
(height, width) on the debris-flow intensity and (ii) to develop
a robust and efficient methodology which can be applied for
routine debris-flow hazard assessment.
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Basse Normandie, 487 pp., 2006.
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Remâıtre, A., Malet, J.-P., Ancey, C., Locat, J., and Maquaire, O.:
Flow behaviour and runout modelling of a complex debris flow in
clay-shales basin, Earth Surf. Proc. Land., 30, 479–488, 2005b.

Rickenmann, D., Weber, D., and Stepanov, B.: Erosion by debris
flows in field and laboratory experiments, in: Proceedings of the
3rd International Conference on Debris-Flow Hazard Mitigation:
Mechanics, edited by: Rickenmann, D. and Chen, L. C., Predic-
tion and Assessment, Davos, Switzerland, Milpress, Rotterdam,
883–894, 2003.

Scott, K. M., Vallance, J. W., and Pringle, P. T.: Sedimentology,
behaviour and hazards of debris flows at Mount Rainier, Wash-
ington, USGS Prof. Paper 1547, 56 pp., 1995.

Sosio, R., Crosta, G. B., and Frattini, P.: Field observations, rheo-
logical testing and numerical modelling of a debris-flow event,

www.nat-hazards-earth-syst-sci.net/8/1403/2008/ Nat. Hazards Earth Syst. Sci., 8, 1403–1416, 2008

http://www.nat-hazards-earth-syst-sci.net/7/703/2007/
http://www.nat-hazards-earth-syst-sci.net/3/457/2003/
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