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We propose an econometric model that captures the e¤ects of market microstructure on a latent price process. In particular, we allow for correlation between the measurement error and the return process and we allow the measurement error process to have a diurnal heteroskedasticity. We propose a modi…cation of the TSRV estimator of quadratic variation. We show that this estimator is consistent, with a rate of convergence that depends on the size of the measurement error, but is no worse than n 1=6 . We investigate in simulation experiments the …nite sample performance of various proposed implementations.

Introduction

It has been widely recognized that using very high frequency data requires taking into account the e¤ect of market microstructure (MS) noise. We are interested in the estimation of the quadratic variation of a latent price in the case where the observed log-price Y is a sum of the latent log-price X that evolves in continuous time and an error u that captures the e¤ect of MS noise.

There is by now a large literature that uses realized variance as a nonparametric measure of volatility. The justi…cation is that in the absence of market microstructure noise it is a consistent estimator of the quadratic variation as the time between observations goes to zero. For a literature review, see Barndor¤-Nielsen and Shephard (2007). In practice, ignoring microstructure noise seems to work well for frequencies below 10 minutes. For higher frequencies realized variance is not robust, as has been evidenced in the so-called 'volatility signature plots', see, e.g. [START_REF] Andersen | Great realizations[END_REF].

The additive measurement error model where u is independent of X and i.i.d. over time was …rst introduced by [START_REF] Zhou | High-frequency data and volatility in foreign-exchange rates[END_REF]. The usual realized volatility estimator is inconsistent under this assumption. The …rst consistent estimator of quadratic variation of the latent price in the presence of MS noise was proposed by Zhang, Mykland, and Aït-Sahalia (2005a) who introduced the Two Scales Realized Volatility (TSRV) estimator, and derived the appropriate central limit theory. TSRV estimates the quadratic variation using a combination of realized variances computed on two di¤erent time scales, performing an additive bias correction. It has a rate of convergence n 1=6 . [START_REF] Zhang | E¢ cient estimation of stochastic volatility using noisy observations: a multiscale approach[END_REF] introduced the more complicated Multiple Scales Realized Volatility (MSRV) estimator that combines multiple ( n 1=2 ) time scales, which has a convergence rate of n 1=4 . This is known to be the optimal rate for this problem. Both papers assumed that the MS noise was i.i.d. and independent of the latent price. This assumption, according to an empirical analysis of [START_REF] Hansen | Realized variance and market microstructure noise (with comments and rejoinder)[END_REF], "seems to be reasonable when intraday returns are sampled every 15 ticks or so". Further studies have tried to relax this assumption to allow modelling of even higher frequency returns. Aït-Sahalia, Mykland and Zhang (2006a) modify TSRV and MSRV estimators and achieve consistency in the presence of serially correlated MS noise. Another class of consistent estimators of the quadratic variation was proposed by Barndor¤-Nielsen, [START_REF] Barndorff-Nielsen | Designing Realised Kernels to Measure the Ex-post Variation of Equity Prices in the Presence of Noise[END_REF]. They introduce realized kernels, a general class of estimators that extends the unbiased but inconsistent estimator of [START_REF] Zhou | High-frequency data and volatility in foreign-exchange rates[END_REF], and is based on a general weighting of realized autocovariances as well as realized variances. They show that realized kernels can be designed to be consistent and derive the central limit theory. They show that for particular choices of weight functions they can be asymptotically equivalent to TSRV and MSRV estimators, or even more e¢ cient. Apart from the benchmark setup where the noise is i.i.d. and independent from the latent price Barndor¤-Nielsen et. al. (2006) have two additional sections, one allowing for AR [START_REF] Andersen | Intraday periodicity and volatility persistence in …nancial markets[END_REF] structure in the noise, another with an additional endogenous term albeit one that is asymptotically degenerate.

We generalize the standard additive noise model (where the noise is i.i.d. and independent from the latent price) in three directions. The …rst generalization is allowing for (asymptotically nondegenerate) correlation between MS noise and the latent returns. This is motivated by a paper of [START_REF] Hansen | Realized variance and market microstructure noise (with comments and rejoinder)[END_REF], where, for very high frequencies: "the key result is the overwhelming evidence against the independent noise assumption. This …nding is quite robust to the choice of sampling method (calendar-time or tick-time) and the type of price data (transaction prices or quotation prices)". 1 Another generalization concerns the magnitude of the MS noise. All of the papers above, like most of related literature, assume that the variance of the MS noise is constant and does not change depending on the time interval between trades. We call this a large noise assumption. We explicitly model the magnitude of the MS noise via a parameter , where the = 0 case corresponds to the benchmark case of large noise. We allow also > 0 in which case the noise is "small" and speci…cally the variance of the noise shrinks to zero with the sample size n: The rate of convergence of our estimator depends on the magnitude of the noise, and can be from n 1=6 to n 1=3 , where n 1=6

is the rate of convergence corresponding to the "big" noise case when = 0.

How could the size of the noise "depend" on the sample size? We give a fuller discussion of this issue below, but we note here two arguments. First, there is a negative relationship between the bidask spread (an important component of the MS noise for transaction data) and a number of (other) liquidity measures, including number of transactions during the day. This negative relationship is a stylized fact from the market microstructure literature. See, for example, [START_REF] Copeland | Information E¤ects on the Bid-Ask Spread[END_REF] and [START_REF] Mcinish | An analysis of intraday patterns in bid/ask spreads for NYSE stocks[END_REF]. Also, Awartani, Corradi and Distaso (2004) write that "an alternative model of economic interest [to the standard additive noise model] would be one in which the microstructure noise variance is positively correlated with the time interval". This is in principle a testable hypothesis. Using Dow Jones Industrial Average data, the authors test for and reject the hypothesis of constant variance of the MS noise across frequencies.

The third feature of our model is that we allow the MS noise to exhibit diurnal heteroscedasticity. This is motivated by the stylized fact in market microstructure literature that intradaily spreads and intradaily stock price volatility are described typically by a U-shape (or reverse J-shape). See Andersen and Bollerslev (1997), [START_REF] Gerety | Price formation on stock exchanges: The evolution of trading within the day[END_REF], [START_REF] Harris | A transaction data study of weekly and intradaily patterns in stock returns[END_REF], [START_REF] Kleidon | trading of British cross-listed stocks: An intraday analysis of market integration[END_REF], [START_REF] Lockwood | An examination of stock market return volatility during overnight and intraday periods, 1964-1989[END_REF], and McInish and Wood (1992). Allowing for diurnal heteroscedasticity 1 By "independent noise" Hansen and Lunde (2006) mean the combination of the i.i.d. assumption and the assumption that the noise is independent from the latent price. Our paper proposes to relax the second assumption. As to the …rst assumption, we do not allow for serial correlation in the noise. At the same time, we only impose approximate stationarity compared to [START_REF] Hansen | Realized variance and market microstructure noise (with comments and rejoinder)[END_REF] since we allow for intraday heteroscedasticity of the noise.

in our model has the e¤ect that the original TSRV estimator may not be consistent because of end e¤ects. In some cases, instead of estimating the quadratic variation, it would be estimating some function of the noise. We propose a modi…cation of the TSRV estimator that is consistent, without introducing new parameters to be chosen. Our model is not meant to be de…nitive and can be generalized in a number of ways.

The structure of the paper is as follows. Section 2 introduces the model. Section 3 describes the estimator. Section 4 gives the main result and the intuition behind it. Section 5 investigates the numerical properties of the estimator in a set of simulation experiments. Section 6 illustrates the ideas with an empirical study of IBM transaction prices. Section 7 concludes. We use =) to denote convergence in distribution.

The Model

Suppose that the latent (log) price process fX t ; t 2 [0; T ]g is a Brownian semimartingale solving the stochastic di¤erential equation 

dX t = t dt + t dW t ; (1) 
Y t i = X t i + u t i ; (2) 
where u t i is a random variable representing measurement error. Without loss of much generality we are going to restrict attention to the case of equidistant observations with T = 1: This type of model was …rst introduced by Zhou (1996) who assumed that u t i is i.i.d. over i and independent of fX t ; t 2 [0; 1]g: In this case the signal to noise ratio for returns decreases with sample size, i.e., var( X t i )=var( u t i ) ! 0 as n ! 1; and at a speci…c rate such that lim n!1 nvar( X t i )=var( u t i ) < 1; which implies inconsistency of realized volatility. We are going to modify the properties of the process fu t i g and its relation to fX t ; t 2 [0; 1]g:

We would like to capture the idea that the measurement error can be small. This can be addressed by adopting a model u t i = t i ; where t i is an i.i.d. sequence with mean zero and variance one, and is a parameter such that ! 0: Many authors have found small in practice. As usual one wants to make inferences about data drawn from the true probability measure of the data where both n is …nite and > 0 by working with a limiting case that is more tractable. In this case there are a variety of limits that one could take. Bandi and Russell (2006a) for example calculate the exact MSE of the statistic of interest, and then in equation ( 24) implicitly take ! 0 followed by n ! 1:

We instead take the sound and well established practice in econometrics of taking pathwise limits, that is we let = (n) and then let n ! 1: Such a limit with "small" noise has been used before to derive Edgeworth approximations [START_REF] Zhang | Edgeworth Expansions for Realized Volatility and Related Estimators[END_REF] [START_REF] Back | Kyle meets Glosten and Milgrom[END_REF] who show the link between the two key papers in asymmetric information modelling, Glosten and Milgrom (1985) and Kyle (1985) using a limit with small noise. In particular, they consider a limit of Glosten and Milgrom (1985) as the arrival rate of trades explodes (so the number of trades in any interval goes to in…nity) and order size (and hence incremental information per trade) goes to zero, thus reaching the Kyle (1985) model as a limit. We are also mindful not to preclude the case where (n) is "large" i.e., (in our framework) does not vanish with n; and our parameterization below allows us to do that.

We next present our model. We assume that

u t i = v t i + " t i (3) 
v t i = n W t i W t i 1 " t i = m (t i ) + n =2 ! (t i ) t i ; 2 [0; 1=2)
with t i i.i.d. mean zero and variance one and independent of the Gaussian process fW t ; t 2 [0; 1]g with Ej t i j 4+ < 1 for some > 0: The functions m and ! are di¤erentiable, nonstochastic functions The process for the latent log-price is motivated by the fundamental theory of asset prices, which states that, in a frictionless market, log-prices must obey a semi-martingale; we are specializing to the Brownian semimartingale case [START_REF] Andersen | Intraday periodicity and volatility persistence in …nancial markets[END_REF]. We want to model log-prices at very high frequency where frictions are important and observed prices do not follow a semimartingale. One way of partly reconciling the evidence in volatility signature plots of the price behavior in very high and moderate frequencies is to assume that observed prices can be decomposed as in [START_REF] Andersen | Great realizations[END_REF]. The …rst component X is a semi-martingale with …nite quadratic variation, while the second component u is not a semimartingale and has in…nite quadratic variation. In particular, the increments in u are of larger magnitude than that of X, and this di¤erence is the key in identifying the quadratic variation of X:

We split the noise component u into an independent term " that has been considered in the literature, and a 1-dependent endogenous part v, which is correlated with X due to being driven by the same Brownian motion. At the same time, v preserves the features of not being a semi-martingale and having in…nite quadratic variation, the main motivation of the way " is modelled.

There are three key parts to our model: the correlation between u and X; the relative magnitudes of u and X; and the heterogeneity of u:

We have E[u t i ] = m(t i ) and var[u t i ] = 2 2 n (t i t i 1 ) + 2n 2 (i=n):
To have the variance of both terms in u equal, we set2 n = n 1 : This seems like a reasonable restriction if both components are generated by the same mechanism. In this case, both of the measurement error terms are O p (n ). In our model the signal to noise ratio of returns varies with sample size in a way depending on so that only lim n!1 n 1 var( X t i )=var( u t i ) < 1:

We exploit the fact that for consistency of the TSRV estimator, it is enough to assume that noise increments are of larger order of magnitude than the latent returns, and the usual stronger assumption

lim n!1 nvar( X t i )=var( u t i ) < 1 is not necessary.
The process " t i is a special case of the more general class of locally stationary processes of [START_REF] Dahlhaus | Fitting time series models to nonstationary processes[END_REF]. The generalization to allowing time varying mean and variance in the measurement error allows one to capture diurnal variation in the measurement error process, which is likely to exist in calendar time. Nevertheless, the measurement error in prices is approximately stationary under our conditions, which seems reasonable.

The term v in u induces a correlation between latent returns and the change in the measurement error, which can be of either sign depending on : Correlation between u and X is plausible due to rounding e¤ects, price stickiness, asymmetric information, or other reasons [Bandi and Russell (2006c), [START_REF] Hansen | Realized variance and market microstructure noise (with comments and rejoinder)[END_REF], [START_REF] Diebold | On Market Microstructure Noise and Realized Volatility[END_REF]]. 2 In the special case that t = and ! (t i ) = !;

we …nd corr( X t i ; u t i ) ' q [2 2 + 2! 2 ]
:

In this case, the range of correlation is limited, although it is quite wide -one can obtain up to a correlation of 1= p 2 depending on the relative magnitudes of ; !:
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An alternative model for endogenous noise has been developed by Barndor¤-Nielsen, Hansen, Lunde, and Shephard (2006). In our notation, they have the endogenous noise part such that var(v t i ) = O (1=n) ; and an i.i.d., independent from X part with var(" t i ) = O (1) : They conclude robustness of their estimator to this type of endogeneity, with no change to the …rst order asymptotic properties compared to the case where v t i = 0.

The focus of this paper is on estimating increments in quadratic variation of the latent price process, 3 but estimation of parameters of the MS noise in our model is also of interest. We acknowledge that not all the parameters of our model are identi…able. In particular, the endogeneity parameter may not be identi…ed unless one knows something about the distribution of and in particular that it is not Gaussian. 4 However, other parameters are identi…ed. In Linton and Kalnina (2005) we provided a consistent estimator of , see also Section 6 here for empirical implementation and discussion. Estimating the function ! ( ) would allow us to measure the diurnal variation of the MS noise. In the benchmark measurement error model this is a constant ! ( ) ! that can be estimated consistently by ). In our model, instead of n 1 , the appropriate scaling is

P n 1 i=1 Y t i+1 Y t i 2 =2n (Bandi
n 1 . Such an estimator would converge to 2 + R ! 2 (u) du.
Hence, this estimator would converge asymptotically to the integrated variance of the MS noise. Following [START_REF] Kristensen | Filtering of the realised volatility: a kernel-based approach[END_REF], in the special case = 0, we could also estimate ! ( ) at some …xed point using kernel smoothing,

b ! 2 ( ) = 1 2n 1 P n i=1 K h (t i 1 ) Y t i 1 2 P n i=1 K h (t i 1 ) (t i t i 1 ) :
When the observations are equidistant, this simpli…es to b

! 2 ( ) = P n i=1 K h (t i 1 ) Y t i 1 2 =2n :
In the above, h is a bandwidth that tends to zero asymptotically and K h (:) = K(:=h)=h; where K(:)

is a kernel function satisfying some regularity conditions. If we also allow for endogeneity ( 6 = 0), 3 There is a question about whether one should care about the latent price or the actual price. This has been raised elsewhere, see Zhang, Mykland, and Aït-Sahalia (2005). We stick with the usual practice here, acknowledging that the presence of correlation between the noise and e¢ cient price makes this even more debatable, Aït-Sahalia, Mykland, and Zhang (2006b). Also, note that we are following the literature and estimating the quadratic variation of the latent log-price and not the latent price. 4 Suppose that

X i+1 = X i + ( = p n)z i+1 and Y i = X i + z i + i ;
where z i is standard normal and " i is i.i.d. with mean zero and variance one. Then

r i+1 = Y i+1 Y i = p n + z i+1 z i + i+1 i : We have var[r i+1 ] = 2 2 + 2 + 2 p n + 2 n ; cov[r i+1 ; r i ] = 2 + 2 p n ;
and cov[r i+j ; r i ] = 0; j > 1: Therefore, from the covariogram we obtain 2 = n(var[r i+1 ] + 2cov[r i+1 ; r i ]) but we can only identify 2 + 2 not the two quantities separately. There are just two equations in two unknowns and if i is also Gaussian, then there is no more information. If there is a non-Gaussian distribution one can identify using parametric restrictions. This is similar to the classical measurement error problem, Maddala, (1977, p 296). b ! 2 ( ) estimates ! 2 ( ) plus a constant, and so we still see the pattern of diurnal variation. See Section 6 for implementation.

Estimation

We suppose that the parameter of interest is the quadratic variation of X on

[0; 1]; denoted QV X = R 1 0 2 t dt: Let [Y; Y ] n = n 1 X i=1 Y t i+1 Y t i 2
be the realized variation (often called realized volatility) of Y; and introduce a modi…ed version of it (jittered RV) as follows,

[Y; Y ] fng = 1 2 n K X i=1 Y t i+1 Y t i 2 + n 1 X i=K Y t i+1 Y t i 2 ! : (4) 
This modi…cation is useful for controlling the end e¤ects that arise due to heteroscedasticity.

Our estimator of QV X makes use of the same principles as the TSRV estimator in Zhang et. al.

(2005a). We split the original sample of size n into K subsamples, with the j th subsample containing n j observations. Introduce a constant and c such that K = cn . The dependence of K on n is suppressed in the sequel. For consistency we will need > 1=2 : The optimal choice of is discussed in the next section. By setting = 0, we get the condition for consistency in Zhang et. al.

(2005a), that > 1=2: 5 Let [Y; Y ] n j denote the j th subsample estimator based on a K-spaced subsample of size n j ;

[Y; Y ] n j = n j 1 X i=1 Y t iK+j Y t (i 1)K+j 2 ; j = 1; : : : ; K;
and let

[Y; Y ] avg = 1 K K X j=1 [Y; Y ] n j
be the averaged subsample estimator. To simplify the notation, we assume that n is divisible by K and hence the number of data points is the same across subsamples, n 1 = n 2 = ::: 

= n K = n=K: Let n = n=K:
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De…ne the adjusted TSRV estimator (jittered TSRV) as

d QV X = [Y; Y ] avg n n [Y; Y ] fng : (5) 
Compared to the TSRV estimator, this estimator does not involve any new parameters that would have to be chosen by the econometrician, so it is as easy to implement. The need to adjust the TSRV estimator arises from the fact that under our assumptions TSRV is not always consistent. The problem arises due to end-of-sample e¤ects induced by heteroscedastic noise. For a simple example where the TSRV estimator is inconsistent, let us simplify the model to the framework of Zhang et. al.

(2005a), and introduce only heteroscedasticity in the noise, the exact form of which is to be chosen below. Let us evaluate the asymptotic bias of TSRV estimator.6 

n 1=6 E n d QV T SRV X QV X o = n 1=6 E[u; u] avg n n E [u; u] n + o (1) = c 1 n 1=2 n K X i=1 ! 2 t i+K 2 t i+K + ! 2 t i 2 t i c 1 n 1=2 n 5=6 n 1 X i=1 ! 2 t i+1 2 t i+1 + ! 2 t i 2 t i + o (1) = n 5=6 n 1 X i=1 ! 2 t i+1 2 t i+1 + ! 2 t i 2 t i c 1 n 1=2 ( K X i=2 ! 2 t i 2 t i + n 1 X i=n K+1 ! 2 t i 2 t i ) + o (1) :
We see that the …rst and last K returns that are "ignored" by averaged subsampled realized volatility [u; u] n . For this bias correction to work, the volatility of the microstructure noise in the morning and afternoon has to be "close" to the volatility of the noise during the day. A simple counter-example that is motivated by our empirical section 6.3 is a parabola on

[0; 1], ! 2 (i=n) = a + i n 0:5 2 =100,
where a is any constant. In this case simple calculations give that TSRV estimator is inconsistent,

n 1=6 E( d QV T SRV X QV X ) = 1 300 n 1=6 + o (1) :
By contrast, jittered RV , [Y; Y ] fng , mimics the structure of the volatility component that needs to be bias corrected for in [Y; Y ] avg , which is

1 p n n K X i=1 ! 2 t i+K 2 t i+K + ! 2 t i 2 t i
and so delivers a consistent estimator d QV X .

We remark that ( 5) is an additive bias correction and there is a nonzero probability that d QV X < 0:

One can ensure positivity by replacing d QV X by maxf d QV X ; 0g; but this is not very satisfactory. Note, however, that we usually have d

QV X > d QV T SRV X
(except for when …rst and last subsamples have all ‡at prices and so d

QV X = d QV T SRV X
), so the probability that d QV X < 0 is lower than the probability that d QV T SRV X < 0.

Asymptotic Properties

The expansion for [Y; Y ] avg and [Y; Y ] n both contain terms due to the correlation between the measurement error and the latent returns. The main issues can be illustrated using the expansion of

[Y; Y ] avg , conditional on the path of t : [Y; Y ] avg = QV X | {z } (a) + 2 n K 1 Z 0 t dt | {z } (b) + E [u; u] avg | {z } (c) + O 0 B B @ n 1=2 | {z } (d) + r n Kn 2 | {z } (e) 1 C C A Z; (6) 
where Z N (0; 1) ; while the terms in curly braces are as follows: (a) the probability limit of 

E [u; u] avg = 2nn 0 @ 1 Z 0 ! 2 (u) du + 2 1 A + O n + n 1 = O nn ;
i.e., it is of order nn : So without further modi…cations, this is what [Y; Y ] avg would be estimating.

Should we be able to correct that, the next term would be 2( n =K) R t dt arising from E [X; u] avg : This second term is zero, however, if there is no correlation between the latent price and the MS noise, i.e., if = 0: Interestingly when we use the TSRV estimator for bias correction of E [u; u] avg , we also cancel this second term.

The asymptotic distribution of our estimator arises as a combination of two e¤ects, measurement error and discretization e¤ect. After correcting for the bias due to the measurement error (terms like b and c in eqn. 6), we still have the variation due to the measurement error (term e in eqn. 6). We can see that its contribution to the asymptotic distribution by observing how the estimator converges to the realized variance of the latent price X, 

r Kn 2 n d QV X [X; X] avg =) N 0 @ 0; 8 4 + 16 2 1 Z 0 ! 2 (u) du + 8 1 Z 0 ! 4 (u) du 1 A ; (7) 
n 1=2 ([X; X] avg QV X ) =) M N 0 @ 0; 4 3 1 Z 0 4 t dt 1 A ; (8) 
where M N (0; S) denotes a mixed normal distribution with conditional variance S independent of the underlying normal random variable.

The …nal result is a combination of the two results ( 7) and ( 8), as well as the fact that they are asymptotically independent. The fastest rate of convergence is achieved by choosing K so that the variance from the discretization is of the same order as the variance arising from the MS noise, so set n 1=2 = p n=Kn 2 : The resulting optimal magnitude of K is such that = 2 (1 ) =3.

The rate of convergence with this rule is n 1=2 = n 1=6 =3 . The slowest rate of convergence is n 1=6 , and it corresponds to large MS noise case, = 0. The fastest rate of convergence is n 1=3 , which corresponds to = 1=2 case. If we pick a larger (and hence more subsamples K) than optimal, the rate of convergence in [START_REF] Aït-Sahalia | Comments on 'Realized Variance and Market Microstructure Noise[END_REF] increases, and the rate in [START_REF] Awartani | Testing and Modelling Market Microstructure E¤ects with and Application to the Dow Jones Industrial Average[END_REF] decreases and so dominates the …nal convergence result. In this case the …nal convergence is slower and only the …rst term due to discretization appears in the asymptotic variance (see [START_REF] Back | Kyle meets Glosten and Milgrom[END_REF]). Conversely, if we pick a smaller (and hence K) than optimal, we get a slower rate of convergence and only the second term in the asymptotic variance ("measurement error" in ( 9)), which is due to the MS noise.

We obtain the asymptotic distribution of d QV X in the following theorem Theorem. Suppose that fX t ; t 2 [0; 1]g is a Brownian semimartingale satisfying [START_REF] Andersen | Intraday periodicity and volatility persistence in …nancial markets[END_REF]. Suppose that f t ; t 2 [0; 1]g and f t ; t 2 [0; 1]g are measurable and càdlàg processes, independent of the process fW t ; t 2 [0; 1]g. Suppose further that the observed price arises as in (2) with 2 [0; 1=2). Let the
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measurement error u t i be generated by (3), with t i i.i.d. mean zero and variance one and independent of the Gaussian process fW t ; t 2 [0; 1]g with Ej t i j 4+ < 1 for some > 0. Then,

V ( ) 1=2 n 1=2 d QV X QV X =) N (0; 1) ; V ( ) = 4 3 1 Z 0 4 t dt | {z } discretization + c 3 0 @ 8 4 + 16 2 1 Z 0 ! 2 (u) du + 8 1 Z 0 ! 4 (u) du 1 A | {z } measurement error > 0 a.s. (9) 
Remarks. 3. The main statement of the theorem can also be written as 

n 1=6+ =3 d QV X QV X =) M N (0; cV ( )) ; where V ( ) = V 1 ( ) + c 3 V 2 ; with V 1 ( )
then b c opt ( ) = (2 b V 2 ( )= b V 1 ( )) 1=3 is consistent in the sense that b c opt ( ) c opt ( ) = o(1) a.s.
4. Suppose now that the measurement error is smaller than above and we have 2 [1=2; 1) instead of 2 [0; 1=2). Then, there is a consistency condition > 1=3 that becomes binding and therefore optimal allows the measurement error to converge faster than the discretization error. For = 1=3 + (where small and positive) the rate of convergence is

n 1=2 = n (1 )=2 = n 1=3+ =2 .
Note that this is exactly the rate that occurs when there is no measurement error at all. So choose 2 (1=3; 1). The conclusion of the theorem becomes

V ( ) 1=2 n (1 )=2 d QV X QV X =) N (0; 1) ; where V 1 ( ) = (4=3) R 4 t dt:
This can be shown by minor adjustments to the proofs.

What if

1? This means that [u; u] is of the same or smaller magnitude than [X; X]: In the case = 1 they are of the same order and identi…cation breaks down. When > 1 , realized volatility
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of observed prices is a consistent estimator of quadratic variation of latent prices, as measurement error is of smaller order. This is an arti…cial case and does not seem to appear in the real data.

How can we put this analysis in context? A useful benchmark for evaluation of the asymptotic properties of nonparametric estimators is the performance of parametric estimators. Gloter and Jacod (2001) allow for the dependence of the variance of i.i.d. Gaussian measurement error n on n and establish the Local Asymptotic Normality (LAN) property of the likelihood, which is a precondition to asymptotic optimality of the MLE. For the special case n = they obtain a convergence rate n 1=4 , thus allowing one to conclude that the MSRV and realized kernels can achieve the fastest possible rate. They also show that the rate of convergence is n 1=2 if n goes to zero su¢ ciently fast, which is the rate when there is no measurement error at all. Our estimator has a rate n 1=3+ when there is no measurement error, which is also the rate of convergence when the noise is su¢ ciently small. Also, Gloter and Jacod have that for "large" noise, the rate of convergence depends on the magnitude of the noise, similarly to our results. The rate of convergence and the threshold for the magnitude of the variance of the noise is di¤erent, though.

Simulation study

In this section we explore the behavior of the estimator (5) in …nite samples. We simulate the Heston (1993) model:

dX t = ( t v t =2) dt + t dW t dv t = ( v t ) dt + v 1=2 t dB t ;
where v t = 2 t , and W t ; B t are independent standard Brownian motions. For the benchmark model, we take the parameters of Zhang et. al. (2005a): = 0:05; = 5; = 0:04; = 0:5: We set the length of the sample path to 23400 corresponding to the number of seconds in a business day, the time between observations corresponding to one second when a year is one unit, and the number of replications to be 100,000. 7 We set = 0. We choose the values of ! and so as to have a homoscedastic measurement error with variance equal to 0:0005 2 (again from 7 Note that in the theoretical part of the paper we had for brevity taken interval [0,1]. For the simulations we need the interval [0,1/250]. Suppose the parameter of interest is R 0 2 t dt, the quadratic variation of X on [0; ]: In that case the asymptotic conditional variance of the theorem becomes

V ( ) = 4 3 Z 0 4 t dt + c 3 0 @ 8 2 4 + 16 2 Z 0 ! 2 (u) du + 8 1 Z 0 ! 4 (u) du 1 A :
This follows by simple adjustments in the proofs. We take = 1=250:

ACCEPTED MANUSCRIPT Zhang et. al. (2005a)), and correlation between the latent returns and the measurement error equal to 0:1. For this we use the identity

corr( X t i ; u t i ) = E ( ) p 2E ( 2 ) p 2 + ! 2
and the fact that for our volatility we have E ( ) = ; var ( ) = 2 =2 : We set = 2 (1 ) =3:

Figure 1 shows the common volatility path for all simulations. First, we construct di¤erent models to see the e¤ect of varying and the number of observations within a day. We take the values of and ! that arise from the benchmark model, and then do simulations for the following combinations of and n. When interpreting the results, we should also take into account that both of these parameters change the size of the variance of the measurement error. We measure the proximity of the …nite sample distribution to the asymptotic distribution by the percentage errors of the interquartile range of n 1=2 ( d QV X QV X ) compared to 1:3 p V ; the value predicted by the distribution theory. We note that this is not the same as the MSE or variance of the estimator: it can be that a very e¢ cient estimator can be poorly approximated by its limiting distribution and vice versa. This measure is easiest to interpret if we work with a …xed variance, i.e., when we condition on the volatility path. Hence, we simulate the volatility path for the largest number of observations, 23400, and perform all simulations using this one sample path of volatility.

The last parameter to choose is K, the number of subsamples. This is the only parameter that an econometrician has to choose in practice. We examine four di¤erent values as follows (the expressions are all rounded to the closest integer): ) asymptotically optimal rate and c Tables 2 and3 n ) variation of above Tables 4 and5 n 2 3

Table 1. Choices of K (2V 2 =V 1 ) 1=3 n 2 3 (1 
2 3 (1 
variation of above Table 6 3RV 2 2RQ

1=3 n 1=3 Bandi and Russell (2006a, eq. 24) Table 7 Table 2 contains the interquartile range errors (IQRs), in per cent, with the asymptotically optimal rate and constant (in terms of minimizing asymptotic mean squared error) for K. That is, we use K = (2V 2 =V 1 ) 1=3 n 2(1 )=3 , rounded to the nearest integer, where V 1 and V 2 are discretization and measurement errors from [START_REF] Back | Kyle meets Glosten and Milgrom[END_REF]. Table 3 contains the values of K.

***Tables 2 -8 here*** First of all, for small values of ; the percentage errors decrease with n as predicted by the theory.

However, we do see some large errors, and from the values of K in Table 3 we can guess this is due to the asymptotically optimal rule selecting very low c opt . In fact, for the volatility path used here, c opt = (2V 2 =V 1 ) 1=3 = 0:0242: Hence, another experiment we consider is an arbitrary choice c = 1:

The next two tables (Table 4 and5) contain the percentage errors and values of K that result from

using K = n 2(1 )=3 :
The performance of this choice is much better. We can see from Table 4 that for small values of , the asymptotic approximation improves with sample size. The sign of the error changes as increases for given n, meaning that the actual IQR is below that predicted by the asymptotic distribution for small and small n but this changes into the actual IQR being above the asymptotic prediction.

Another variant that does not include the unobservable would be to use K = n 2=3 .

Finally, we consider a method proposed by Bandi and Russell (2006a), which requires some discussion. They establish the exact mean squared error of TSRV under the assumptions of the independent additive noise model, and in addition they assume asymptotically constant volatility, i.e.,

t i R t i 1 2 u du = 1 R 0 2
u du=n for each i, as well as E ( 4 ) = 3E 2 ( 2 ). Two assumptions are not satis…ed in our simulation setup, the independence between the noise and the latent returns, as well as the assumption

t i R t i 1 2 u du = 1 R 0 2
u du=n for each i (see Figure 1). Therefore, this should be considered as another ad hoc selection method in our simulation setup. We note that this bandwidth choice results in an inconsistent estimator in our framework and in the framework of ZMA (2005a) (i.e., when = 0, > 1=2 is required for consistency). Note that the choice K BR was derived for d QV

T SRV
without jittering, but this end-of-sample adjustment, though theoretically crucial, is negligible in simulations and, as we will see in the next section, also in real data. 

P ( Y low ) 4 .
Here, Y low is low frequency (15 minute) returns, which gives S = 24 to be the number of low frequency observations during one day.

We see that the IQR errors of this choice get worse with sample size for small ; which re ‡ects the inconsistency predicted by the theory. On the other hand the errors are small and improve with n for
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large ; i.e., when the noise is small. The performance is generally better than with asymptotically optimal K, except for cases that have both large n and small , including the case = 0 usually considered in the literature. We notice that K BR rule gives better results than the asymptotically optimal rule when it chooses a larger K, which is in most cases, but not all. In comparison to rules K = n 2(1 )=3 and K = n 2=3 (Tables 4 and6, respectively), the performance of this choice is still disappointing, especially for small . We conclude that in this setting the K BR rule is not always the best choice according to our criterion.

It has been noted elsewhere that the asymptotic approximation can perform poorly, see Gonçalves and Meddahi (2005) and Aït-Sahalia, Zhang and Mykland (2005a).

From Tables 2,4, and 6 we see that magnitude of noise does not a¤ect the quality of the asymptotic approximation. Although we see the interquartile range error having some relationship with in Table 4 and especially Table 2, this is purely driven by changes in K. This is evidenced by Table 6 where the rule for K does not depend on and the respective error is close to constant for the same number of observations and di¤erent . Another conclusion here is that a good rule for K does not necessarily have to depend on , which is convenient for practical purposes.

In a second set of experiments we investigate the e¤ect of varying !; which controls the variance of the second part of the measurement error, for the largest sample size: Denoting by ! 2 b the value of ! 2 in the benchmark model, we construct models with

! 2 = ! 2 b ; 4! 2 b ; 8! 2 b ; 10! 2 b ; and 20! 2 b :
The corresponding interquartile errors are 0:96%; 1:26%; 1:93%; 2:29%; and 4:64%:

In a third set of experiments we investigate the e¤ect of varying ; which controls the size of the correlation of the latent returns and measurement error. Denoting by 2 b the value of 2 in the benchmark model, we construct models with 2 being from 0:01 2 to 20 2 . The exact values of 2 , as well as corresponding correlation between returns and increments of the noise, and the resulting interquartile errors are reported in Table 8. We can see that when the number of observations is 23400, there is no strong e¤ect from the correlation of the latent returns and measurement error on the approximation of the asymptotic interquartile range of the estimator.

Empirical analysis

To illustrate the above ideas, we perform a small empirical analysis. We discuss estimation of , !(:), and the quadratic variation of the latent price. The endogeneity parameter is unfortunately nonparametrically unidenti…ed and so cannot be estimated. Its sole purpose is in allowing for ‡exible size and sign of endogeneity, with respect to which our estimator of quadratic variation is robust.

Figure 5 in the appendix shows the volatility signature of the data we use, which is IBM transaction data, year 2005. The plot indicates that market microstructure noise is prevalent at the frequencies of 10 15 minutes and higher. Since the volatility signature plot does not become negative, one cannot …nd evidence of endogeneity using the method of HL (2006). As pointed out already by HL(2006), this does not mean there is no endogeneity.

The Data

We use IBM transactions data for the whole year 2005. We employ the data cleaning procedure as in HL (2006), main paper and rejoinder. First, we use transactions from NYSE exchange only as this is the main exchange for IBM. Second, we use only transactions from 9:30AM to 4:00PM. Third, for transactions with the same time stamp, we use the average price. Fourth, we remove outliers as follows. If the price is too much above the ask price or too much below the bid, we remove it. Too high means more than spread above the ask, and too low means more than spread below the bid.

Fifth, we remove days with less than 5 hours of trading (there were none). For discussion of the advantages of this procedure see HL (2006). The mean number of transactions per day in our cleaned data set is 4,484 (for comparison, there are 4,680 intervals of 5 seconds in the 6.5 hours between 9:30 and 16:00).

Estimation of

The parameter that governs the magnitude of the microstructure noise, ; can be consistently estimated. Recall that the leading term of realized volatility

[Y; Y ] n is [u; u] n i.e., [Y; Y ] n = n 1 X i=1 (u t i+1 u t i ) 2 + o p (n 1 ) = n n 1 X i=1 (! t i+1 t i+1 ! t i t i + p n(W t i+1 W t i )) 2 + o p (n 1 ) = n 1 c + o p (n 1 )
for some positive constant c:

It follows that log([Y; Y ] n =n) = log n + log c + o p (log n):
We therefore estimate by

b = log ([Y; Y ] n =n) log(n) ; (10) 
see [START_REF] Linton | Discussion of Aït-Sahalia and Shephard[END_REF].

Although this is a consistent estimator for , it has a bias that decays slowly. To reduce the bias, we estimate over windows of 60 days instead of 1 day, i.e., we take our …xed interval [0; 1] to
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represent 3 months instead of 1 day. Figure 2 shows the estimates over the whole year 2005 where we roll the 60 day window by 1 day. We see that b varies between 0.64 and 0.7 with an average value of 0.67. Although this is a consistent estimator for , it is not precise enough to give a consistent estimator of n . As a consequence, this estimator cannot be used for consistent inference for d QV x . In Linton and Kalnina (2005) we provide a sharper bias adjusted version of b , b adj , but the adjusted estimator is not feasible as it requires knowledge of ! ( ). This last parameter can only be consistently estimated if = 0 and = 0. The lack of precision in b also prevents us from developing a test of the null hypothesis = 0: Therefore, the deviations of b we see in Figure 2 provide only a heuristic evidence that the true is positive.

Estimation of Scedastic function !(:)

Now we estimate the function ! ( ) that allows us to measure the diurnal variation of the MS noise.

In the benchmark measurement error model this is a constant ! ( ) ! that can be estimated consistently by 

P n 1 i=1 Y t i+1 Y t i 2 =2n (Bandi
! 2 ( ) = P n i=1 K h (t i 1 ) Y t i 1 2 2n : (11) 
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We pick a random day, say 77th, which corresponds to 22nd of April. Assume = 0 and = 0 and note that if these assumptions are not true, the level will be incorrect, while the diurnal variation will still be correct. Figure 3b shows the estimated function b ! 2 ( ) using calendar time with 30 seconds frequency. We see that the variance of MS noise is far from being constant, and is closer to U-shape. 

Estimation of Quadratic Variation

Our theory predicts that original T SRV estimator is asymptotically as good as our jittered version if intraday volatility pattern is "close enough" to constant volatility. Visual inspection of the estimated volatilities in the previous section suggest that there is some deviation from constant volatility, so one might call for adjustment to the T SRV estimator. How important is this adjustment in practice?

We check empirically the e¤ect of jittering on daily point estimates of quadratic variation using IBM data in 2005. Figure 4a shows a plot of relative di¤erences

d QV X d QV T SRV X d QV T SRV X
for every day in 2005 where we use tick time sampling (with 1-tick and K = n 2=3 ). The plot for 5 minute calendar time sampling (CTS) is very similar. The mean of these relative di¤erences over all days is 0.0009. Figure 4b shows means of this relative di¤erence for CTS, across di¤erent
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frequencies. 8 We see that, on average, for high frequencies, jittering makes very little di¤erence. For lower frequencies the change is more visible. This arises from the fact that the jittering changes the T SRV estimator on two subsamples only (see eqn. 12). The more subsamples there are, the less important our adjustment (this can also be achieved for any …xed frequency by using larger number of subsamples than our choice K = n 2=3 ). Another important observation is that jittering always increases the value of QV estimates, since we can write

d QV T SRV X = d QV X + 1 2 K 1 X i=1 Y t i+1 Y t i 2 + n X i=n K+1 Y t i+1 Y t i 2 ! > d QV X : (12) 
The more there is variation in the beginning of the day and the end of the day, the larger is the adjustment. This implies that jittering partly alleviates the problem that the usual TSRV estimator can sometimes become negative. With our data set, the only negative value (though very small) we saw was on February 28 when we calculated TSRV estimator with 10 minutes CTS frequency. The jittered version was positive.

We conclude that for most applications our estimator is very close to the T SRV estimator, and so for practical applications plain T SRV estimator can be used, without adjustment for heteroscedastic market microstructure noise. As a result, as far as point estimates are concerned, the existing empirical studies of T SRV estimator are still valid in our theoretical framework. See, for example, investigations of forecasting performance in Aït-Sahalia and Mancini (2006), Andersen, Bollerslev, and Meddahi (2006), Bandi, Russell, and Yang (2007), and [START_REF] Ghysels | Volatility Forecasting and Microstructure Noise[END_REF].

We use Berk's (1973) central limit theorem for m-dependent variables with m = 1. Note that we can prove the CLT for the special case = 0 and convergence rate n 1=6 , then get the needed result by multiplying and dividing the main expression by n =3 . We proceed in the case where all three terms contribute, which is the case where K is chosen optimally to be K = O(n 2=3 ): Also, we can do all calculations, conditional on = f t ; t 2 [0; 1]g. Then, since is independent of all other randomness, we can conclude the same CLT unconditionally. We apply Berk's CLT to the following sums of U ni ,

T n = V ( ) 1 n 1=2 [X; X] avg E [X; X] avg + [u; u] avg E [u; u] avg 1 K [u; u] fng + 1 K E [u; u] fng = n 1=2 n 1 X i=1 V ( ) 1=2 U ni ; U ni = n K ( K X j=1 X t iK+j X t (i 1)K+j 2 Z t iK+j t (i 1)K+j 2 u du ) + n K ( K X j=1 u t iK+j u t (i 1)K+j 2 E u t iK+j u t (i 1)K+j 2 ) n K ( 2K 1 X s=1 1 2 u (i 1)K+1+s u (i 1)K+s 2 E 1 2 u (i 1)K+1+s u (i 1)K+s 2 ) U x ni + U u1 ni + U u2 ni U x ni + U u ni :
There are 4 conditions to be satis…ed in Berk's CLT, which we denote (i)-(iv). Notice that fU ni g n 1 i=1 is (conditionally on ) a sequence of 1-dependent random variables. Therefore, condition (iv) on dependence is trivially satis…ed. Condition (iii) requires the following to exist and be non-zero,

V ( ) = lim n!1 n 1 var ( n 1 X i=1 U ni ) :
This follows by our moment calculations,

V ( ) = lim n!1 ( nvar [X; X] avg + nvar [u; u] avg + n 3=2 n 2 var [u; u] fng 2 n 2 n cov [u; u] fng ; [u; u] avg ) = 4 3 
Z 4 t dt + 2 c 3 12 4 + 4E 4 R ! 4 (u) du + 24 2 R ! 2 (u) du 2 c 3 8 4 + 4 E 4 1 R ! 4 (u) du + 16 2 R ! 2 (u) du = 4 3 
Z 4 t dt + c 3 8 4 + 16 2 R ! 2 (u) du + 8 R ! 4 (u) du :
Condition (ii) requires var (U ns+1 + ::: + U ns 0 ) (s 0 s) M 0 for all i, j, and n su¢ ciently large,

where M 0 is some constant. We have that var U x ns+1 + :::

+ U x ns 0 = var n 1 K K X j=1 s 0 X i=s+1 ( X t iK+j X t (i 1)K+j 2 Z t iK+j t (i 1)K+j 2 u du )! 2 (s 0 s) ( sup u2[0;1] 2 (u) ) var U u ns+1 + ::: + U u ns 0 = n 2 K 2 s 0 X i=s+1 ( 4 K X j=1 var u iK+j u (i 1)K+j + 2K 1 X j=1 var u (i 1)K+1+j u (i 1)K+j ) + n 2 K 2 s 0 X i=s+1 1 4 var u 2 iK K+1 3 4 var u 2 iK+K + var u 2 iK+1 + o(1) (s 0 s) C u 6c 3 + c 4 + o(1);
where the o(1) terms arise from the mean m(:) and are asymptotically negligible, while c is the constant in the de…nition of K and C u is the maximum of the upper bound for (var (u i )) 2 and the upper bound for var (u 2 i ). Their respective expressions are as follows:

var (u i ) 2 + ( sup t2[0;1] !(t) ) 2 var u 2 i 2 4 + 4 ( sup t2[0;1] m(t) ) 2 ( sup t2[0;1] !(t) ) 2 + 4 sup t2[0;1] m(t) ( sup t2[0;1] !(t) ) 3 Ej j 3 + ( sup t2[0;1] !(t) ) 4 E 4 1 + 4 ( sup t2[0;1] m(t) ) 2 2 + 4 ( sup t2[0;1] !(t) ) 2 2 : 
By the Cauchy-Schwarz inequality we obtain (13).

Finally, condition (i) is:

For some > 0 and M < 1; E jU ni j 2+ M for all i and n:

Then for some constant 

C; E[jU ni j 2+ ] C(E[jU x ni j 2+ ] + E[jU u1 ni j 2+ ] + E[jU u2 ni j 2+ ]):

2

u du = O(K=n); we have E[jw nij j r ] C r < 1 for all r; i; j: Note that X t iK+j X t (i 1)K+j and X t iK+j 0 X t (i 1)K+j 0 for j 6 = j 0 are highly dependent. We write

U x ni = n K ( K X j=1 X t iK+j X t (i 1)K+j 2 Z t iK+j t (i 1)K+j 2 u du ) = n K K n K X j=1 w nij :
Therefore, by Minkowski inequality

E[jU x ni j 2+ ] 1=2+ nK Kn K X j=1 E jw nij j 2+ 1=2+ = 1 K K X j=1 E jw nij j 2+ 1=2+ < 1:
Similar arguments apply to the terms U u1 ni and U u2 ni ; where we make use of the assumption that E[j t i j 4+ ] < 1: We just show the argument for U u1 ni : Recall that u t iK+j u t (i 1)K+j = v t iK+j v t (i 1)K+j + " t iK+j " t (i 1)K+j ; where v t i = p n W t i W t i 1 and " t i = m (t i ) + ! (t i ) t i ; so it su¢ ces to show this result for the two components. The arguments to do with v t i are straightforward because all moments exist and the magnitude is just right. Regarding the " t iK+j terms, let nj = (" t iK+j " t (i 1)K+j ) 2 E(" t iK+j " t (i 1)K+j ) 2 ; where nj are independent and mean zero random variables across j = 1; : : : ; K:

First, notice that E[j t iK+j j 4+2 ] < 1; sup u2[0;1] jm(u)j < 1; and sup u2[0;1] j!(u)j < 1 imply that E[j" t iK+j j 4+2 ] < 1: Then, E[j" t iK+j j 4+2 ] < 1 implies that E[j(" t iK+j " t (i 1)K+j ) 2 j 2+ ] < 1 and hence E[j nj j 2+ ]: Then, by the Marcinkiewicz-Zygmund inequality for independent random variables and Hölder's inequality for sums 

  of time. They are unknown as are the constants and : The usual benchmark measurement error model with noise being i.i.d. and independent from the latent price has = 0; n = 0 and !(:) and m(:) constant (see, e.g., Barndor¤-Nielsen and Shephard 2002, Zhang et. al. 2005a, Bandi and Russell 2006b).

  and Russell (2006b), Barndor¤-Nielsen et. al. (2006), Zhang et. al. (2005a)
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  This condition is implicit in Zhang et al. (2005) in Theorem 1 (page 1400) where the rate of convergence is p K=n = c p n 2 1 .

[

  Y; Y ] avg [u; u] avg have to be o¤-set by a fraction of the noise of all returns, coming from [Y; Y ] n

[

  X; X] avg , which we aim to estimate; (b) the bias due to correlation between the latent returns and the measurement error; (c) the bias due to measurement error; (d) the variance due to discretization; (e) the variance due to measurement error. Should we observe the latent price without measurement error, (a) and (d) would be the only terms. In this case, of course, it is better to use [X; X] n ; since that has an error of smaller order n 1=2 : In the presence of the measurement error, however, both [Y; Y ] avg and [Y; Y ] n are badly biased, the bias arising both from correlation between the latent returns and the measurement error, and from the variance of the measurement error. The largest term is (c), which satis…es

  The rate of convergence arises from var[u; u] avg = O (n=Kn 2 ) : Both parts of the noise u, which are v and ", contribute to the asymptotic variance. The …rst part of the asymptotic variance roughly arises from var[v; v] , the second part from var[v; "] (which is nonzero even though the correlation between both terms is zero), and the third part from var["; "]: If the measurement error is uncorrelated with the latent price, the …rst two terms disappear.Should we observe the latent price without any error, we would still not know its quadratic variation due to observing the latent price only at discrete time intervals. This is another source of estimation error. From Theorem 3 in Zhang et. al. (2005a) we have

1 .

 1 The quantity V ( ) collapses to the expression in Zhang et. al. (2005a) when !(:) is constant. 2. If one could …nd a consistent estimator b V ( ) such that b V ( ) V ( ) = o(1) a.s., then the above theorem can be strengthened along the lines of Barndor¤-Nielsen and Shephard to a feasible CLT, i.e., b V ( ) 1=2 n 1=2 ( d QV X QV X ) =) N (0; 1) from which one could obtain con…dence intervals for QV X . Without assuming = 0 or constant !(:), the procedure of Zhang et. al. (2005a), p. 1404, would work to estimate V ( ).

  being the discretization error, while M N denotes a mixed normal distribution with conditional variance cV ( ) independent of the underlying normal random variable. We can use this to …nd the value of c that would minimize the conditional asymptotic variance, c opt ( ) = (2V 2 =V 1 ( )) 1=3 ; provided V 1 ( ) > 0; resulting in the asymptotic conditional variance (3=2 2=3 )V If one has consistent estimators b V j ( ) V j ( ) = o(1) a.s., j = 1; 2;

3 Figure 1 .

 31 Figure 1. The common volatility path for all simulations.

  and Russell (2006c), Barndor¤-Nielsen et al. (2006), Zhang et al. (2005a)). In the special case = 0 and = 0 this estimator would converge asymptotically to the integrated variance of the MS noise, R ! 2 ( ) d . We can estimate the function ! 2 (:) at a speci…c point using a simple generalization of the approach of Kristensen (2006) to the case with market microstructure noise. For equidistant observations, the estimator is b

Higher b ! 2 (

 2 ) at the beginning of the day and low values around 13:00 are displayed by virtually all days in 2005, while higher values of b ! 2 ( ) at the end of the day are less common. Hence, overall, we con…rm the …ndings of the empirical market microstructure literature that the intraday patterns are of U or reverse J shape (see references in the introduction).

Figure 3 .

 3 Figure 3. IBM transactions data, 22nd of April 2005.

  Figure 4. What is the relative di¤erence d QV X d QV T SRV X

1 for any p for which E nj p < 1 :KC 2+ < 1 for

 111 It follows thatE[jU " ni j 2+ ] K = O(n 2=3 ):This establishes condition (i).A C C E P T E D M A N U S C R I P TACCEPTED MANUSCRIPT
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  Table 7 contains the IQR percentage errors and values of K that result from using K BR = (3RV 2 =2RQ)

1=3 n 1=3 , where RV is the realized variance, RV = P ( Y low ) 2 and RQ is the realized quarticity, RQ = S 3

  Figure 2. Estimated over a rolling window of 60 days (approx. 3 months). X axis shows the date of the …rst day in the window.
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  Di¤erent arguments are required for the U x ni and U u ni terms -the summands in U x ni are highly dependent but individually of small order while the summands in U u ni are independent or of low order dependence but of individually larger order. De…ne

	Then, since X t iK+j X t (i 1)K+j			N (0;	R t iK+j t (i 1)K+j	2 u du); where	R t iK+j t (i 1)K+j
	w nij =	n K	"	(X t iK+j X t (i 1)K+j ) 2	t (i 1)K+j Z t iK+j	2 u du	#	:

Table 4 .

 4 IQR percentage error with K = n

	2 3 (1	)

Table 5 .

 5 K = n

	2 3 (1	)

Table 6 .

 6 IQR percentage error with K = n

Table 7 .

 7 IQR percentage error with K BR = = 3RV 2

	2RQ	1=3	n 1=3

Table 8 .

 8 E¤ect of 2 on the estimates d QV x

	2 = 2		IQR error
	0.01	-0.0010	0.0133
	0.05	-0.0051	0.0128
	0.1	-0.0102	0.0049
	0.25	-0.0254	0.0182
	0.5	-0.0506	0.0037
	1	-0.1000	0.0136
	2	-0.1909	0.0100
	4	-0.3280	0.0090
	10	-0.4869	0.0130
	20	-0.5351	0.0105

b corr( X t i ; u t i )

In a recent survey of measurement error in microeconometrics models,[START_REF] Bound | Measurement error in survey data[END_REF] emphasize 'mean-reverting'measurement error that is correlated with the signal.

For the reader to be able to follow our calculations in the next few lines, she should use the exact de…nition of n, n = n K+1 K that Zhang et al. (2005) use. For all other purposes di¤erences between our and their de…nition are negligible.

This average excludes October 27. On this day our estimator, when calculated on fequencies above 7 minutes, became several times bigger than TSRV estimator.
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To conclude, the conditions of Berk's theorem are satis…ed conditional on and so we have shown that Pr(T n tj ) ! (t) for all t; which implies that Pr(T n t) ! (t); where (t) denotes the c.d.f. of a standard normal random variable.

In this paper we showed that the TSRV estimator is consistent for the quadratic variation of the latent (log) price process when the measurement error is correlated with the latent price, although some adjustment is necessary when the measurement error is heteroscedastic. We also showed how the rate of convergence of the estimator depends on the magnitude of the measurement error.

Inference for TSRV estimator is robust to endogeneity of the measurement error. Provided the suggested adjustment to the estimator is implemented to preserve consistency, inference is also robust to heteroscedasticity of the noise. However, since the rate of convergence depends on the magnitude of the noise, inference is not robust to possible deviations from assumptions about this magnitude.

We plan to investigate this question further.

Other examples where inference question needs to be solved include autocorrelation in measurement error (as in Aït-Sahalia, Mykland, and Zhang, 2006a), or other generalizations to the independent additive error model [START_REF] Li | Are volatility estimators robust with respect to modelling assumptions?[END_REF]. [START_REF] Gonçalves | Bootstrapping Realized Volatility[END_REF] have recently proposed a bootstrap methodology for conducting inference under the assumption of no noise and shown that it has good small sample performance in their model. Zhang, Mykland, and Aït-Sahalia (2005b) have developed Edgeworth expansions for the TSRV estimator, and it would be very interesting to use this for analysis of inference using bootstrap. The results we have presented may be generalized to cover MSRV estimators and to allow for serial correlation in the error terms, although in both cases the notation becomes very complicated.

A Appendix

We assume for simplicity that 0 in the sequel. Drift is not important in high frequencies as it is of order dt, while the di¤usion term is of order p dt (see, for example Aït-Sahalia et al.( 2006)). With the assumptions of Theorem, the same method as in the proof can be applied to the drift, yielding the conclusion that it is not important statistically.

Proof of Theorem. We will rely on the …rst and second moment calculations of [X; u] fng ;

[u; u] fng ; [X; u] avg ; [u; u] avg ; and respective covariances. These can be found in the technical appendix, [START_REF] Kalnina | Technical appendix[END_REF]. From there, 
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n 0 0:05 0:1 0:15 0:2 0:25 0:3 0:35 0:4 0:45 0:5