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Abstract

In this paper, we propose a new algorithm to mesh implicit surfaces which produces meshes both with a good triangle aspect ratio

as well as a good approximation quality. The number of vertices of the output mesh is defined by the end-user. For this goal, we

perform a two-stage processing : an initialization step followed by an iterative optimization step. The initialization step consists

in capturing the surface topology and allocating the vertex budget. The optimization algorithm is based on a variational vertices

relaxation and triangulation update. In addition a gradation parameter can be defined to adapt the mesh sampling to the curvature

of the implicit surface. We demonstrate the efficiency of the approach on synthetic models as well as real-world acquired data, and

provide comparisons with previous approaches.
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1. Introduction

Implicit modeling is a geometric interface representation

where the interface is expressed as the zero level-set of an

implicit function. This representation is nowadays used to

represent geometrically and topologically complex shapes (see

Figure 1, 10). They are also used to represent constructive

solid geometric objects (referred as CSG objects), i.e. objects

defined as results of Boolean operations on geometrical shapes,

etc.

Implicit modeling has received a lot of interest with the

recent development of 3D acquisition technologies, such as

range scanner and LIDAR, etc. Indeed, implicit surface based

reconstruction methods, like [1, 2], are efficient to overcome

topological difficulties in a reasonable time. A brief survey is

given in [3]. Implicit modeling is also widely used in medical

imaging to segment disconnected components via the level-sets

formalism [4, 5, 6].

While implicit surfaces are nowadays common for surface

modeling, most of the current hardware cannot directly display

or process them. Moreover, it is difficult to make any mea-

surement on the shape as long as the geometry is not explicitly

known. For these reasons, linear approximations, i.e. polygo-

nal meshes are largely preferred. Consequently the conversion

from the implicit surface to polygonal meshes, i.e. polygoniza-

tion, has received a lot of interest. The main challenges for a

polygonizer are to (i) capture the topology of the implicit sur-

face, (ii) to provide a good approximation of the geometry and

normals of the implicit surface, (iii) have a good triangle aspect

ratios even in presence of sharp edges. Our objective is so to

develop a method which addresses all these problems simulta-

neously.

1.1. Contributions

We introduce a novel meshing algorithm of implicit surfaces

with a user-defined number of points, where the contribution is

twofold: (i) we propose a meshing algorithm which captures

efficiently the topology and geometry of the given implicit sur-

face, and (ii) an optimization algorithm, which improves the

quality of the resulting mesh, both in terms of shape approxi-

mation quality and triangle aspect ratio. The initialization algo-

rithm is a Delaunay refinement method guided by two straight-

forward tests that provides a manifold mesh where the accu-

racy is fixed via a user defined coefficient. The optimization

algorithm, based on vertex relaxation, is driven by variational

and approximation quality criteria. The relaxation process deals

simultaneously with the problems of implicit surface approxi-

mation and mesh quality. The resulting mesh is an accurate

approximation of the shape geometry, with good triangle as-

pect ratios, and is guaranteed to be locally Delaunay conform.

Distribution of the mesh vertices can either be uniform or adap-

tive to the local curvature on the implicit surface via a gradation

parameter.

1.2. Related Work

Implicit surface polygonization methods can be classified

into four different categories according to the generation

principle: surface tracking, tessellation based, Morse theory

based and Delaunay refinement methods.
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Figure 1: Starting from a given implicit function, we first take few random points on the implicit surface; To capture the topology and to construct a coarse

approximation of the implicit surface we use a Delaunay refinement; To enhance geometry and triangles quality of the resulting mesh, we use a variational

approach. Finally our method provides a mesh which is homeomorphic to the implicit surface, with a very good approximation of its geometry.

Surface tracking methods [7, 8] start from seeds (points or

faces) and successively compute the resulting mesh by tracking

the surface next to its tangent plane. In [9], Schreiner et al.

proposed a tracking method guided by the maximum curvature

with a minimal set of samples. They assume that the gradient

and the Hessian of the implicit function are provided. How-

ever, the choice of the seeds is determinant with these tracking

approaches. Indeed in the case of multi-component surface, if

seeds are not taken carefully some parts may not be meshed at

all.

Tessellation based methods first compute a tessellation of

the domain, generally a grid based one, and then analyze inter-

sections of the implicit surface with each cell. Following the

work of Wyvill et al. [10], Lorensen and Cline introduced the

very popular marching cubes [11]. It first samples the implicit

function on a uniform grid and then analyzes the intersection of

the grid edges with the implicit function. While this algorithm

is fast and simple to implement, it faces several limitations

regarding topological guarantees, difficulty to represent sharp

edges, bad triangle aspect ratio, bad vertex degree distribution.

For these reasons, some modified versions have been intro-

duced in the last decade to represent sharp edges [12], remove

topological ambiguities in the given configurations [13, 14].

Some post-processing methods have also been introduced to

improve resulting mesh characteristics, by decimation [15],

geometrical adaptation [16], and remeshing [17, 18, 19].

In [20], Karatasheva et al. proposed to first extract a base mesh

using [21], then apply a similar optimization to [16] in order

to first polygonize the implicit surface before generating a

volume mesh suitable for finite element analysis. Some other

methods use an octree based decomposition of the domain [22],

and/or add one vertex per cells which intersects the implicit

surface [23]. Note that the location of this vertex can be

optimized to effectively represent sharp edges [24].

By computing intermediate level sets and changing the

topology of the mesh when critical points are encountered,

Stander and Hart [25] proposed a solution to the problem of

homeomorphic polygonization of implicit surfaces. Later,

Boissonnat et al. [26] provided an algorithm which updates

an octree data structure (further subdivided into a tetrahedral

mesh) according to smooth and discrete Morse theory, and

extracts the complex from tetrahedra which have vertices with

different signs. Under the assumption that critical points are

provided, this algorithm ensures that the resulting mesh and the

implicit surface are isotopic; however this last algorithm does

not provide an accurate approximation of the surface.

Delaunay refinement methods, first introduced for meshing

2D domains, have been extended to 3D surfaces. Chew de-

scribed in [27] a furthest point based algorithm to construct a

restricted Delaunay triangulation of the surface by iteratively

inserting the furthest intersection of all Voronoi edges and the

surface. Cheng et al. [28] were the first one to add the topolo-

gical ball criterion [29] in their refinement for a specific type of

smooth surface called skin surface. Boissonnat and Oudot [30]

introduced criteria to guarantee the resulting mesh to be home-

omorphic to the surface, without using the topological ball pro-

perty. They assume that the local feature size can be easily

computed, or is provided. Unfortunately, the computation of

the local feature size is not easy and remains computationally

expensive. In [31], the authors ensure the homeomorphism be-

tween the surface and the resulting mesh via a Delaunay refine-

ment method driven by the Morse theory, and the topological

disk constraint. Note that these two last methods [30, 31] intro-

duced and discussed the quality of the resulting mesh by the use

of geometrical refinement. Even if these methods have theoreti-

cal guarantees, they can not efficiently capture sharp edges. Re-

cently, Dey and Levine [32] presented a software called DelPSC

which has the capability of meshing non-smooth surfaces when

the feature edges are provided by the end-user.

2. Background

2.1. Restricted Delaunay Triangulation

Let P be a finite set of points in R3.

Voronoi Diagram. The Voronoi cell of the site pi ∈ P is given

as Vi =
{

x ∈ R3 : ∀ q ∈ P, ‖x − pi‖ 6 ‖x − q‖
}

. The Voronoi

diagram Vor P of P is the collection of all Voronoi cells and

their intersections (see Figure 2(b)). Note that faces shared by
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(a) (b) (c) (d)

Figure 2: Restricted Delaunay triangulation for a curve in the plane. Given

points on a curve in the plane (a). Voronoi diagram of this set of points (b).

Restricted Voronoi edges to the blue curve, i.e. intersection of Voronoi edges

and the curve, are represented by red segments (c). Corresponding restricted

Delaunay triangulation and Voronoi diagram (d) represented by a thick red line.

two Voronoi cells are called Voronoi faces, and edges shared by

three Voronoi cells are called Voronoi edges.

Delaunay Triangulation. The Delaunay Triangulation Del P

of a set of points P is dual to the Voronoi diagram Vor P. Note

that the computational complexity of building a Delaunay tri-

angulation of N points in 3D is of O(N2).

Restricted Delaunay Triangulation. Let P be a point set on a

surface S. Any Voronoi face Vσ ∈ Vor P which intersects the

surface, i.e. Vσ ∩ S , ∅, is called a restricted Voronoi face

(see Figure 2(c)). The restricted Voronoi diagram VorP|S is

the collection of all restricted Voronoi faces and the restricted

Delaunay triangulation, DelP|S , consists of the dual Delaunay

simplices of the restricted Voronoi faces, that is, DelP|S = {σ ∈

DelP | Vσ ∩ S , ∅} (see Figure 2(d)).

Topological ball property. A restricted Voronoi diagram satis-

fies the topological ball property if each k dimensional Voronoi

face either does not intersect the surface, i.e. Vσ ∩ S = ∅, or

intersects it in a (k − 1)-ball. In [29], Edelsbrunner and Shah

show that if VorP|S satisfies the topological ball property then

DelP|S is homeomorphic to S. Note that if the sampling of S

is ”sufficiently dense”, this condition is satisfied and the res-

tricted Delaunay triangulation is an excellent approximation of

the surface with theoretical bounds on the geometrical error and

normal deviation (see [28, 30]).

2.2. Centroidal Voronoi Tessellation

2.2.1. Planar case

In the planar case, a centroidal Voronoi tessellation (CVT) is

a particular tiling of the plane whose Voronoi sites are the cen-

troids (centers of mass) of its corresponding Voronoi regions

(see Figure 3). The centroid pi of a Voronoi region Vi is com-

puted as:

pi =

∫

Vi
x · χ(x) dx
∫

Vi
χ(x) dx

(1)

where χ(x) is a given density function.

CVT construction is of great interest in many applications.

One can refer to [33] for more details about CVT. There are var-

ious methods to achieve the goal of building such tessellation.

Figure 3: Lloyd algorithm on a square domain at various steps: initial Voronoi

sites and Voronoi diagram (left), after 2 iterations (middle), after 50 iterations

(right).

One can consider the minimization of the following functional:

E =

N
∑

i=1

∫

Vi

χ(x) · d(x,pi)
2 dx (2)

where d is a distance in the plane. It can easily be shown that

for a given set of sites, the functional is minimized when each

region Vi is the Voronoi cell of its site, and for a given set of

regions, the sites minimize the functional when they are the

centers of mass of their Voronoi region.

Several methods have been introduced to produce such tes-

sellation, the most known and used is the Lloyd algorithm [34].

See Figure 3 for a simple example on the square. Given an

initial configuration, i.e. initial sites {pi}
N
i=1

and initial regions

{Vi}
N
i=1

, the algorithm iteratively updates pi andVi.

2.2.2. 3D surface mesh case

While CVTs are well-defined on the plane, various defini-

tions and implementations have been proposed for 3D surface

meshes, mainly for remeshing or surface segmentation pur-

pose [17, 18, 19]. In [18], Alliez et al. use the Lloyd algo-

rithm in parametric space. This method suffers from the need to

compute a mesh parameterization at a first stage which creates

distortions. In [17], the authors avoid the computation of the

mesh parameterization by using local parameterization instead,

i.e. for each vertex the relaxation is performed onto a paramete-

rization of its 0-ring. In [35], Valette and Chassery introduced

a fully discrete algorithm for CVT construction.

3. Variational Isotropic Meshing

For the sake of clarity, we consider an implicit function f ,

with S its corresponding implicit surface (a 2-manifold) on

a given finite domain Ω ⊂ R
3. Note that we only consider

implicit surface S without boundaries, and implicit function f

where we can compute for any point x ∈ Ω its value f (x) and

gradient ∇ f (x).

We propose to compute high quality meshes from a given im-

plicit surfaceS in two phases. First, we compute an initial mesh

(see Section 3.1) which is homeomorphic to the implicit sur-

face and approximates well its geometry via Delaunay refine-

ment. Then, after a geometrical refinement to reach the number
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Figure 4: Output of the Delaunay refinement process for PRETZEL5 implicit surface for decreasing face distance condition bounds L = λ · d. Decreasing λ value,

increases the number of points NP and triangles NT : {λ: 0.2, NP: 234, NT : 474} (a), {λ: 0.1, NP: 398, NT : 812} (b), {λ: 0.05, NP: 750, NT : 1516} (c), {λ: 0.025,

NP: 1380, NT : 2776} (d), {λ: 0.01, NP: 3831, NT : 7678} (e). As expected, with too large bound L regarding to the local feature size, the output of the Delaunay

refinement does not capture the right topology (a).

of points fixed by the user, we optimize the mesh by using a

relaxation algorithm (see Section 3.2) which in the same time

improves the sample distribution on the surface and the appro-

ximation quality of the resulting Delaunay conform mesh.

3.1. Initialization

The first step of our method is to build an initial mesh which

is homeomorphic to the implicit surface and provides a good

approximation of the surface. Our initialization can be decom-

posed into two different phases. Some random points are first

projected onto the surface by a Newton descent method. Then,

we compute the corresponding restricted Delaunay triangula-

tion (see Section 2.1). We then attempt to capture the topol-

ogy of the implicit surface on the given domain by applying

Delaunay refinement (see Section 3.1.1), and to improve the

geometrical approximation and characteristics of the resulting

mesh by applying geometrical refinement adapted to the user

requirements (see Section 3.1.2).

3.1.1. Delaunay refinement

We propose a straightforward refinement method with only

two tests, in spirit with [36]. The first test is to check the to-

pological disk condition, this proves that the resulting mesh is

manifold. The second test is to measure the distance between

the resulting mesh and the implicit surface, i.e. we refine the

mesh until this distance is below a given parameter L for all

facets. Note that this test is closely related to the geometrical

approximation error, and will determine the topology of the re-

sulting mesh (see Figure 4). The parameter L is directly linked

to the size of the object to be meshed, via a user-defined coeffi-

cient λ. The refinement process is repeated until both conditions

hold for all facets and all points of the resulting mesh.

Face distance condition. For any facet σ ∈ DelP|S, we define

DF(σ) as the distance between the circumcenter of σ and the

furthest intersection q of the dual Vσ (Voronoi edge) with the

implicit surface S. In our refinement process, we fix a bound L

on DF(σ), i.e. we refine until all facets σ satisfy:

DF(σ) < L = λ · d (3)

where d is the shortest edge of the bounding box of the domain

Ω, and 0 < λ < 1 is a user-defined coefficient. If this condi-

tion is violated, we insert the corresponding intersection q, i.e.

intersection between the dual of σ and the surface into VorP|S

and update it.

Topological disk condition. Since we consider manifold im-

plicit surfaces, the output should satisfy the topological disk

condition, i.e. all facets Np incident to a vertex p should form

a topological disk. If this condition is not fulfilled, we find the

facet σ ∈ Np which maximizes DF(σ). Then we insert the cor-

responding intersection q, i.e. intersection between the dual of

σ and the surface into VorP|S and update it.

3.1.2. Geometrical Refinement

At this point, we assume that the resulting meshM is home-

omorphic to the implicit surface S. IfM has enough vertices

regarding to the user requirements, we skip this part; else new

vertices must be added. This can be achieved by using Delau-

nay refinement. However, this operation remains computationa-

lly expensive, because of the need to maintain a 3D Delaunay

triangulation during the refinement process, thus we prefer to

process the refinement directly with the surface meshM.

The geometrical refinement is guided by the user objective.

In the uniform case the geometrical refinement should distribute

the triangle area on the mesh as uniformly as possible. In the

curvature-adapted case, the geometrical refinement should dis-

tribute the normal variation per triangle on the mesh as uni-

formly as possible. This is done by using one priority queue in

which we push each triangle t with the priority Pt defined as:

Pt = |t| ·
((

9 − ‖n1 + n2 + n3‖
2
)γ
+ ǫ
)

(4)

where |t| is the area of t, nk is the estimated normal for the kth

vertex of t, i.e. nk = −
∇ f (pk)

‖∇ f (pk)‖
; γ is a gradation parameter allow-

ing uniform sampling (γ = 0) and curvature-adaptive sampling

(γ > 0). ǫ is an arbitrary small value used as an offset in order

to deal correctly with perfectly flat regions (in our experiments,

we set ǫ = 10−50). Intuitively, Pt gives an objective measure of

normal variation inside the triangle, and then provides a good

indicator of curvature.
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Afterwards, we pop the triangles with the highest priority Pt

from the queue. Each time a triangle t is popped:

• a new vertex qt is added, located at the circumcenter of t,

• t is split into three new triangles, made of the three original

vertices of t plus qt,

• the triangulation is locally updated by means of edge flips

in order to restore the local Delaunay property (see sec-

tion 3.2.3),

• the priority queue is updated in order to take into account

the three new triangles of the mesh.

This way, new vertices are inserted until the desired number of

vertices is obtained.

3.2. Relaxation

Our relaxation algorithm is driven by two objectives:

• Isotropic sampling of the surface: we want a uniform (pos-

sibly curvature-adapted) sampling of the surface.

• Approximation quality: we want a good approximation of

the implicit surface in terms of the Haussdorf distance.

Those objectives are closely related: isotropic sampling

involves control of the vertex positions in their respective para-

metric space (i.e. the local tangent plane) and approximation

quality can be improved by moving the vertices in their normal

direction.

We propose a two-step relaxation algorithm which takes into

account both constraints. At each relaxation iteration, isotropic

sampling is achieved by approximating a geodesic CVT with

a Lloyd-like relaxation step, then approximation is enhanced

by means of a Quadric Error Metrics (QEM)-based reloca-

tion strategy. After these two relaxation operations, a possi-

ble update of the triangulation is processed to maintain a local

Delaunay-conforming mesh criterion, used for the computation

of our geodesic Voronoi diagram approximation. The overall

quality of the mesh increases with the number of relaxation it-

erations both in terms of shape approximation quality (geome-

try and normal approximation) and triangle aspect shape ratio

distribution.

3.2.1. Isotropic sampling: CVT for Implicit Surfaces

CVT have been introduced for surfaces only for the case of

3D surface meshes (see Section 2.2.2). Note that Ohtake and

Belyaev [16] proposed an approach to optimize the meshing

of implicit surfaces, by means of vertices relaxation, but this

approach operates at fixed connectivity. Instead we propose to

approximate a geodesic CVT for implicit surfaces leading to an

isotropic mesh.

Figure 5: Approximation of Voronoi cells: the planar (top) and 3D mesh (bot-

tom) are shown on the left, and their approximated Voronoi diagram on the

right

Functional minimization. We adapt the minimization of the

functional given in Equation 2 for the case of implicit surfaces.

Following our statement that the implicit surface S and the

mesh M are homeomorphic, the Euclidean distance must not

be considered since it may change the topology of the result-

ing mesh. For this reason, we decide to deal with the geodesic

distance instead and minimize the following functional:

Ei =

∫

x∈Vi

χ(x) · d(x,pi)
2 dx (5)

where d(x,pi) is the geodesic distance between x and pi, Vi is

the geodesic Voronoi cell on S.

Unfortunately, since the surface is implicitly defined, compu-

tation of the geodesic distance requires assumptions on the sur-

face curvature, and explicit knowledge of the geometry. In prac-

tice, the computation of geodesic distance can be performed via

finely meshing the implicit surface. But this method is obvi-

ously related to the size of the mesh and may be time and mem-

ory intensive. For this reason, we will not consider a dense

mesh, but only the dual of the geodesic Voronoi diagram, i.e. a

Delaunay triangulation, and consider an approximation of the

the previous functional.

Approximation of geodesic Voronoi cell. The geodesic

Voronoi cell Vi is theoretically defined by Vi =

{x ∈ S : ∀ q ∈ P − {p}, d(x,p) 6 d(x,q)} with d(·, ·) is the

geodesic distance on S.

Let us consider a meshM which satisfies the Delaunay crite-

rion. Then, we approximate the geodesic Voronoi cell by piece-

wise linear approximations Vi (see Figure 5(a-b)). For a given

vertex p, its Voronoi cell is approximated by a set of triangles

around this vertex. If the vertex has n neighboring vertices, the

approximation will consist of 2n triangles. The boundary of this

approximation is a polygon with vertices being alternatively p’s

neighbour triangle circumcenters and p’s neighbour edge mid-

points. Note that in cases where a given triangle t contains ob-

tuse angles, the circumcenter ct of t will be outside t. In this

case, we constrain ct to lie within the boundary of t to maintain

consistency between neighboring Voronoi cells, and as a conse-

quence the considered Voronoi cell approximation may contain

less than 2n triangles.
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Figure 6: Top : Close-up view of a vertex ring and its approximated Voronoi

cell (left), and the normals used in the weight χ computation of the two greyed

triangles (right). Bottom : an edge e is non local Delaunay if the sum of the

angles opposite to e on the adjacent faces to e is above π (α + β > π). In such

case e should then be flipped.

Functional Reformulation. The previous assumption, i.e. that

the geodesic Voronoi cell is approximated by piecewise linear

cells, naturally leads to simplification of the expression of the

geodesic distance. Indeed in such a case, the geodesic distance

becomes the Euclidean distance in each linear approximation

cell. Finally, we can rewrite the functional in Equation 5 by:

Ei =

∫

x∈Vi

χ(x) ·
∥

∥

∥x − pi

∥

∥

∥

2
dx (6)

Vertex relaxation. During the relaxation of a vertex, the first

step is to change its position in order to minimize the functional

in Equation 6. This improves the local sampling quality with

respect to sampling adaptivity and triangle shape aspect ratio.

This is simply done by moving the vertex to its Voronoi cell

barycenter. Moreover, we constraint each displacement to stay

inside the local tangent plane, as moving the vertex in the nor-

mal direction is done with an approximation-aware relocation

scheme (see next section). The following equation gives the

new vertex position pt+1
i

according to the vertex previous posi-

tion pt
i
and the corresponding Voronoi cell barycenter p

t
i:

pt+1i = p
t
i − 〈p

t
i − p

t
i,n

t
i〉 · n

t
i (7)

where 〈·, ·〉 denotes the usual dot product. The computation of

the Voronoi cell barycenter is easily computed by splitting it

into several triangles.

Curvature-adaptivity is easily achieved by associating indi-

vidual weights to each triangle element inside the Voronoi cell.

The bottom of Figure 6(top) shows two triangles adjacent to the

same mesh edge. For the Voronoi cell barycenter computation,

these two triangles will be given the weight χ defined as:

χ =

(

9 −
∥

∥

∥np + n1 + n2
∥

∥

∥

2
)γ

+ ǫ (8)

where np = −
∇ f (p)

‖∇ f (p)‖
is the estimated normal at p on the implicit

surface, n1 and n2 are the estimated normals on the adjacent tri-

angles barycenter projected on the surface (by means of New-

ton’s algorithm); ǫ and γ have already defined in Equation 4.

Figure 7: Simple projection onto the implicit surface (left) does not allow accu-

rate features representation, whereas QEM-based relocation (center) allows to

efficiently represent this twisted brick with few vertices with the approximation

of Voronoi cells painted in white for planar regions, blue for sharp edges and

red for corners (right). For the initialization step, we used λ = 0.1.

Note that here, considering the triangle circumcenters seems

more natural. But in case of degenerate triangles, their circum-

center would be restricted to stay on the mesh edges, where

sharp features are generally located. Normal estimation can

lead to inconsistent results in the presence of sharp features.

Then, Equation 8 would be inaccurate if it involved normal es-

timation on feature points. As a consequence, we use the trian-

gles centers of mass as estimation location, as they are generally

far from any sharp feature.

3.2.2. Approximation-effective relocation in the normal direc-

tion

While Lloyd relaxation is effective for relaxation in the pla-

nar case, it is much less efficient for our goal, since we operate

in 3D. Indeed, moving every vertex towards its Voronoi cell

barycenter will result in poor approximation quality. We pro-

pose to relocate the vertex position using Quadric Error Metrics

(QEM) [15]. We compute the QEMMatrix of each triangle sur-

rounding the considered vertex, and relocate the vertex accord-

ing to the sum of these matrices. Note that for the computation

of one QEM matrix, one needs the position and the normal di-

rection. For each considered triangle, the chosen position is the

triangle barycenter projected on the surface (using Newton’s al-

gorithm), and the chosen normal direction is the gradient of f

at this position. More importantly, QEM-based relocation al-

lows us to easily detect whether a vertex is located on a fea-

ture or not. Indeed, during relocation, as explained in [37], the

corresponding QEM matrix Mp is analyzed by means of Sin-

gular Value Decomposition (SVD). Its eigenvalues are sorted

by increasing order of magnitude, and only the most significant

values are considered. In this paper, we discarded any singular

value smaller than one twentieth of the largest singular value.

Intuitively, one can consider that when only one eigenvalue is

kept, the vertex is on a relatively planar region. Two signifi-

cant singular values indicate a sharp edge, and three significant

eigenvalues indicate a corner. Figure 7 clearly show the advan-

tages of QEM over a simple projection when meshing a twisted

brick. The model on the left was created using only projections

on the surface, while the model in the middle was created using

QEM-based relocation. The right figure shows the approxima-

tion of the Voronoi diagram on the mesh, with regions colored

in blue when two eigenvalues where used, and red when three

6



Figure 8: Uniform meshing with 27k vertices of the Stanford Bunny recon-

structed with MPU [2].

eigenvalues were used. Note that when two or three eigenva-

lues are used, the vertex is not only displaced along the normal

direction, but also along the tangent plane.

3.2.3. Triangulation update

The connectivity of the mesh resulting from the previous

relaxation is updated to locally satisfy the Delaunay criterion

by following [38], i.e. by removing all non local Delaunay

edges. An edge e is non local Delaunay if the sum of the an-

gles opposite to e on the adjacent faces to e is above π (see

Figure 6(bottom)). The non local Delaunay edges are removed

by flipping all edges according to a priority queue. The prior-

ity of an edge e is given by the sum of the angles opposite to

e minus π. The process is then repeated until all the edges are

Delaunay edges, and its convergence is guaranteed.

4. Results

We have tested our algorithm on a wide range of implicit

surfaces, i.e. on typical algebraic surfaces used in the liter-

ature (see Figure 4, 11, 10), on CSG models available (see

Figure 7, 9), and on some implicit surfaces generated from

point sample models by using the Multilevel Partition of Unity

(MPU) [2] (see Figure 1, 8).The user can control the meshing

via few parameters: the number of points of the output mesh N,

the coefficient λ in the initialization stage and the curvature

gradation via the parameter γ. In our experiments, we used

λ = 0.01 unless another value is clearly specified. The grada-

tion parameter γ controls the sampling of the resulting mesh

(see Figure 11). With γ = 0, the resulting mesh is uniformly

sampled (see Figure 8); whereas higher γ values increase the

samples density in high curvature region on the surface.

Figure 7 and 9 demonstrate the effectiveness of our method

to represent sharp edges for several CSG models. Note that for

the twisted octahedron (figure 9.(c)), we used γ = 2 to obtain a

curvature-adapted mesh. The vertex budget is well distributed

on the smooth parts, but the vertex distribution on sharp features

is approximately twice as dense than on smooth regions. This

artifact is caused by the ill-definition of the gradient for sharp

features. We expect such problems to be solved with a high-

level handling of the features, by locally evaluating the QEM

(a)

(b)

(c)

Figure 9: (a) the Earth surface, (b) 2Torus surface (with λ = 0.1) and (c) the

twisted octahedron (with γ = 2) meshed with our approach, with some parts

showing the underlying Voronoi diagram approximation
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Surface Method |v| emax eRMS ∠min ∠min,Av Initialization Optimization Total Time

(×10−2) (×10−3) (°) (°) (s) (s) (s)

Twisted O. [30] 24583 3.21 2.04 30 46 - - 15.1

Twisted O. [Ours] 24389 1.13 0.35 25 51 1.5 9 10.5

Fancy88 [30] 8861 2.64 3.04 30 46 - - 4.5

Fancy88 [Ours] 8000 1.19 2.00 15.8 45 2.1 3.3 5.4

Fancy88 [16] 56298 0.16 0.33 11.5 41 - - -

Fancy88 [Ours] 54872 0.25 0.32 23.6 49 6.2 12.1 18.3

Earth [Ours] 27000 3.15 2.6 4.5 51.8 2.9 19.9 22.8

Table 1: Objective measures : meshing errors (emax and eRMS ), minimal (∠min) and average minimal (∠min,Av) angles and computation times, for Boissonnat and

Oudot’s approach [30], Ohtake and Belyaev’s approach[16] and ours for the Twisted Octahedron (see Figure 13), the Fancy88 model model (see Figure 10 and 12),

and the earth model (figure 9.(a)). The last column shows the global computing times, split into Initialization and optimization steps for our approach.

(a) Boissonat & Oudot

(b) Ours

Figure 10: Visual and Objective quality comparison between the approach of

Boissonnat and Oudot [30] (top) and ours (bottom), for Fancy88.

projection relevance and by restricting edge flips for sharp fea-

tures. To measure the approximation quality of our meshing

method, we measured the approximation of the Euclidean dis-

tance e(p) between the output mesh p and the implicit surface

S [39] given by :

e(p) ≈
| f (p)|

‖∇ f (p)‖
(9)

To globally increase the accuracy of the error computation, we

subdivide each triangle three times, which increases the number

of error sampling points. Table 1 shows numerical values of the

maximum error emax, RMS error eRMS , the output meshes min-

imal and average minimal angles, and the computing times (for

both the initialization step and the relaxation step), measured on

a 4-core CPU running at 2.6 Ghz, compared with [16] and [30].

In these examples, 50 relaxation iterations were performed.

In Figure 13-10, we compare our method with [30] for sur-

faces with sharp edges and smooth surfaces, for an equivalent

number of vertices. Our method provides much better approxi-

mation in high curvature regions and efficiently represents sharp

edges. For the twisted octahedron (figure 13), the maximal er-

ror for our approach is in a region where a vanishing feature is

present and was not detected by the QEM scheme (like the case

shown in figure 9.(c)).

In Figure 12, we visually compare our method with [16]. As

both approaches use quadrics to enhance approximation quality,

they yield similar approximation errors, but the mesh created

with our approach clearly exhibits a better isotropy.

5. Discussion & Conclusion

Our approach aims at creating high quality meshes and re-

sults indicate that our approach outperforms recent algorithm

in terms of approximation quality and is of a greater interest for

offline meshing applications.

An advantage of our approach is its very low memory foot-

print, as no specific data is stored during the mesh optimization,

the processing operates directly on the output mesh. More-

over, this algorithm is easy to implement in a parallel fashion,

to efficiently exploit workstations running with multi-core pro-

cessors. In the future, we plan to extend this work to varia-

tional anisotropic meshing, to further enhance the approxima-

tion quality of the produced models.
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(a) γ = 0 (b) γ = 1 (c) γ = 2

Figure 11: Orthocircle model with 5K points for various gradation values γ.
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