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A short proof that adding some permutation rules to β preserves SN

I show that, if a term is SN for β, it remains SN when some permutation rules are added.

Introduction

Strong normalization (abbreviated as SN ) is a property of rewriting systems that is often desired. Since about 10 years many researchers have considered the following question : If a λ-term is SN for the β-reduction, does it remain SN if some other reduction rules are added ? They are mainly interested with permutation rules they introduce to be able to delay some β-reductions in, for example, let x = ... in ... constructions or in calculi with explicit substitutions. Here are some papers considering such permutations rules: L. Regnier [START_REF] Regnier | Une équivalence sur les lambda-termes[END_REF], F. Kamareddine [START_REF] Kamareddine | Postponement, Conservation and Preservation of Strong Normalisation for Generalised Reduction[END_REF], E. Moggi [START_REF] Moggi | Computational lambda-calculus and monads[END_REF], R. Dyckhoff and S. Lengrand [START_REF] Dyckhoff | Call-by-value λ-calculus and LJQ[END_REF], A. J. Kfoury and J. B. Wells [START_REF] Kfoury | New notions of reduction and non-semantic proofs of beta -strong normalization in typed lambda -calculi[END_REF], Y. Ohta and M. Hasegawa [START_REF] Ohta | A terminating and confluent linear lambda calculus[END_REF], J. Espírito Santo [START_REF] Santo | Delayed substitutions[END_REF], [START_REF] Santo | Addenda to Delayed Substitutions[END_REF], and [START_REF] Santo | A note on the preservation of strong normalisation in the λ-calculus[END_REF].

Some of these papers show that SN is preserved by the addition of the permutation rules they introduce but, most often, authors do not consider the whole set of rules or add restrictions to some rules. For example the rule (M (λx.N P )) (λx.(M N ) P ) is often restricted to the case when M is an abstraction (in this case it is usually called assoc).

I give here a simple and short proof that the permutations rules preserve SN when they are added all together and with no restriction. It is done as follows. I show that every term which is typable in the system (often called system D) of types built with → and ∧ is strongly normalizing for all the rules (β and the permutation rules). Since it is well known that a term is SN for the β-rule iff it is typable in this system, the result follows. The proof is an extension of my proof of SN for the simply typed λ-calculus where the main result is a substitution theorem (here Theorem 3.3): if t and a are in SN , then so is t[x := a].

To my knowledge, only one other paper ( [START_REF] Santo | Addenda to Delayed Substitutions[END_REF] and its recent version [START_REF] Santo | A note on the preservation of strong normalisation in the λ-calculus[END_REF]) considers all the rules with no restriction. The technic used there is completely different from the one used in this paper.

Definitions and notations

Definition 2.1

• The set of λ-terms is defined by the following grammar

M := x | λx.M | (M M)
1. To avoid too many brackets in the lambda terms I will adopt the following conventions. An application (or a sequence of applications) is always surrounded by brackets (i.e. the application of M to N is written (M N ) with a blank between M and N ) and, as usual, application associates to the left i.e. (M N P ) means ((M N ) P ). An abstraction is always written as λx.M (i.e. there is a dot after the variable but no blank between the dot and M ) where either M is a letter or an application (and thus between brackets) or another abstraction.

For example λy.(M N ) represents an abstraction and (λy.M N ) a redex.

2. Note that in the usual definition of the types with intersection → and ∧ can be used with no restriction. Here we forbid to have an ∧ at the right of an →. For example A → (B ∧ C) is forbidden and must be replaced by (A → B) ∧ (A → C). It is well known that both systems are equivalent since it is easily proved that any type derivation in the unrestricted system can be transformed into a type derivation in the restricted one. Actually note that, in fact, the type derivation given by Theorem 3.2 already satisfies this restriction.

We have used this restricted version to make simpler the analysis of type derivations in the proof of Theorem 3.3

3. Also note (this is well known and easy to prove) that any type derivation can be transformed into a normal derivation i.e. a derivation in which the introduction of an ∧ is never immediately followed by its elimination.

4. The lemmas and theorems using types will be indicated by the mention "typed". If a type derivation is given to M , type(M ) will denote the size (i.e the number of symbols) of the type of M .

Definition 2.2

The reduction rules are the following.

• β : (λx.M N ) M [x := N ] • δ : (λy.λx.M N ) λx.(λy.M N ) • γ : (λx.M N P ) (λx.(M P ) N )
• assoc : (M (λx.N P )) (λx.(M N ) P ) Using Barendregt's convention for the names of variables, we assume that, in γ (resp. δ, assoc), x is not free in P (resp. in N , in M ).

The rules δ and γ have been introduced by Regnier in [START_REF] Regnier | Une équivalence sur les lambda-termes[END_REF] and are called there the σ-reduction. It seems that the first formulation of assoc appears in Moggi [START_REF] Moggi | Computational lambda-calculus and monads[END_REF] in the restricted case where M is an abstraction and in a "let ... in ..." formulation.

Note that γ (resp. δ, assoc) are called θ 1 (resp. γ, θ 3 ) in [START_REF] Kfoury | New notions of reduction and non-semantic proofs of beta -strong normalization in typed lambda -calculi[END_REF] and

π 1 or σ 1 (resp. σ 2 , π 2 ) in [10]. Notation 2.1
• If t is a term, size(t) denotes its size.

• If t ∈ SN (i.e. every sequence of reductions starting from t is finite), η(t) denotes the length of the longest reduction of t. Since various notions of reductions are considered in this paper, by default these concepts are relative to the union of all four reduction rules. When this is not the case (e.g. SN wrt to β), then the reduction rule intended is indicated explicitly.

• Let σ be a substitution. We say that σ is fair if the σ(x) for x ∈ dom(σ) all have the same type (that will be denoted as type(σ)). We say that σ ∈ SN if, for each x ∈ dom(σ), σ(x) ∈ SN .

• Let σ ∈ SN be a substitution and t be a term. We denote by size(σ, t) (resp. η(σ, t)) the sum, over x ∈ dom(σ), of nb(t, x).size(σ(x)) (resp. nb(t, x).η(σ(x))) where nb(t, x) is the number of free occurrences of x in t.

• If -→ M is a sequence of terms, lg( -→ M ) denotes its length, M (i) denotes the i-th element of the sequence and tail( -→ M ) denotes -→ M from which the first element has been deleted.

• Assume t = (H -→ M )
where H is an abstraction or a variable and lg(

-→ M ) ≥ 1.
-If H is an abstraction (in this case we say that t is β-head reducible), then M (1) will be denoted as Arg[t] and (R tail( -→ M )) will be denoted by B[t] where R is the reduct of the β-redex (H Arg[t]).

-If H = λx.N and lg( -→ M ) ≥ 2 (in this case we say that t is γ-head reducible), then

(λx.(N M (2)) M (1) M (3) ... M (lg( -→ M ))) will be denoted by C[t].
-If H = λx.λy.N (in this case we say that t is δ-head reducible), then

(λy.(λx.N M (1)) M (2) ... M (lg( -→ M ))) will be denoted by D[t]. -If M (i) = (λx.N P ), then the term (λx.(H M (1) ... M (i-1) N ) P M (i+ 1) ... M (lg( -→ M ))
) will be denoted by A[t, i] and we say that M (i) is the β-redex put in head position.

• Finally, in a proof by induction, IH will denote the induction hypothesis.

3 The theorem Theorem 3.1 Let t be a term. Assume t is strongly normalizing for β. Then t is strongly normalizing for β, δ, γ and assoc. Proof This follows immediately from Theorem 3.2 and corollary 3.1 below. Theorem 3.2 A term is SN for the β-rule iff it is typable in system D.

Proof

This is a classical result. For the sake of completeness I recall here the proof of the only if direction given in [START_REF] David | Normalization without reducibility[END_REF]. Note that it is the only direction that is used in this paper and that corollary 3.1 below actually gives the other direction. The proof is by induction on η(t), size(t) .

-If t = λx u. This follows immediately from the IH.

-If t = (x v 1 ... v n ). By the IH, for every j, let x : A j , Γ j v j : B j . Then x : A j ∧ (B 1 , ..., B n → C), Γ j t : C where C is any type, for example any atomic type.

- From now on, denotes the reduction by one of the rules β, δ, γ and assoc.

Lemma 3.1 1. The system satisfies subject reduction i.e. if Γ t : A and t t then Γ t : A.

If t t then t[x

:= u] t [x := u]. 3. If t = t[x := u] ∈ SN then t ∈ SN and η(t) ≤ η(t ). Proof Immediate. Lemma 3.2 Let t = (H -→ M ) be such that H is an abstraction or a variable and lg( -→ M ) ≥ 1. Assume H, -→ M ∈ SN and that 1. If t is δ-head reducible (resp. γ-head reducible, β-head reducible), then D[t] ∈ SN (resp. C[t] ∈ SN , Arg[t], B[t] ∈ SN ). 2. For each i such that M (i) is a β-redex, A[t, i] ∈ SN , Then t ∈ SN .
Proof By induction on η(H) + η(M (i)). Show that each reduct of t is in SN . Note that the assumption H, -→ M ∈ SN is implied by the others if at least one of them is not "empty" i.e. if t is head reducible for at least one rule.

Lemma 3.3 (typed) If (t - → u ) ∈ SN then (λx.t x - → u ) ∈ SN .

Proof

Note that, if (λx.t x -→ u ) has a head redex for the δ-rule, its reduct has not the desirable shape and an induction hypothesis will not be applicable. We thus generalize a bit the statement with the notion of left context, i.e. a context with exactly one hole on the left branch. More precisely the set L of left contexts is defined by the following grammar: . The result follows from the IH applied to L and t 1 (since t 1 can be given a type less than the one of t).

L := [] | λx.L | (L M).
-

L = L [([] v)] and w γ L [(λx.(t v) x)].
The result follows from the IH applied to L and t 1 = (t v) (since t 1 can be given a type less than the one of t). Theorem 3.3 (typed) Let t ∈ SN and σ ∈ SN be a fair substitution. Then σ(t) ∈ SN .

Proof

Formally, what we prove is the following. Let U = {(t, σ, A) | t ∈ SN , σ ∈ SN and A is assignable to each σ(x)}. Then, for all (t, σ, A) ∈ U , σ(t) ∈ SN . Theorem follows since, if σ is fair, (t, σ, A) ∈ U for some A .

We assume all the derivations are normal (see the remark after definition 2.1). The proof is by induction on size(A), η(t), size(t), η(σ, t), size(σ, t) . We will have to use the induction hypothesis to some (t , σ , A ) for which we have to give type derivations and to show that the 5-uplet has decreased. For the types (since the verification is fastidious but easy) we give some details only for one example (the first time in case 1.c below) and, for the others, we simply say "type(t 1 ) < type(t 2 )" (resp. "type(t 1 ) = type(t 2 )") instead of saying something as "t 1 can be given a type less than (resp. equal to) type(t 2 )".

Note that this theorem will be only used with unary substitutions but its proof needs the general case because, starting with a unary substitution, it may happen that we have to use the induction hypothesis with a non unary substitution. It will be the case, for example, in 1.c below.

Let (t, σ, A) ∈ U . If t is an abstraction or a variable the result is trivial. Thus assume t = (H -→ M ) where H is an abstraction or a variable and n = lg(

-→ M ) ≥ 1. Let - → N = σ( -→ M ). Claim : Let - → P be a (strict) initial or a final sub-sequence of - → N . Then (z - → P ) ∈ SN . Proof : Let - → Q be the sub-sequence of -→ M corresponding to - → P . Then (z - → P ) = τ (t ) where t = (z - → Q )
and τ is the same as σ for the variables in -→ Q and z ∈ dom(τ ). The result follows from the IH since size(t ) < size(t).

We use Lemma 3.2 to show that σ(t) ∈ SN . 

(A 1 → B 1 → C 1 ) ∧ ... ∧ (A k → B k → C k ) and M (1) has type A 1 ∧ ... ∧ A k and thus P has type (B 1 → C 1 ) ∧ ... ∧ (B k → C k ). It follows that we can type Q by typing (λx.a M (1)) with type C 1 ∧ ... ∧ C k and thus Q with type (B 1 → C 1 ) ∧ ... ∧ (B k → C k ).
To prove (2) we remark that (λx.a N (1)) = (λx.z N (1))[z := a] and, since type(a) < size(A) it is enough, by the IH, to show that u = (λx.z N (1)) ∈ SN . This is done as follows: u = σ (t ) where t = (λx.z M (1)) (which is, up to the renaming of z into z a sub-term where we have given to the variable H the fresh name z and τ is the same as σ for the variables in dom(σ) and τ (z) = (R -→ M ). Note that that t ∈ SN and η(t ) ≤ η(t), by Lemma 3.1. We conclude by the IH since η(τ, t ) < η(σ, t).

4. We, finally, have to show that, for each i, A[σ(t), i] ∈ SN . There are again 3 cases to consider. (c) If, finally, H is a variable, σ(H) = (H -→ M ) and the β-redex put in head position is some M (j). Then, A[σ(t), j] = τ (A[t , j]) where t is the same as t but where we have given to the variable H the fresh variable z and τ is the same as σ for the variables in dom(σ) and τ (z) = A[σ(H), j]. Note that that t ∈ SN and η(t ) ≤ η(t), by Lemma 3.1. We conclude by the IH since η(τ, t ) < η(σ, t). 

  If t = (λx.a b -→ c ). By the IH, (a[x := b] -→ c ) is typable. If x occurs in a, let A 1 ... A n be the types of the occurrences of b in the typing of (a[x := b] -→ c ). Then t is typable by giving to x and b the type A 1 ∧ ... ∧ A n . Otherwise, by the induction hypothesis b is typable of type B and then t is typable by giving to x the type B.

1 .

 1 Assume σ(t) is δ-head reducible. We have to show that D[σ(t)] ∈ SN . There are 3 cases to consider. (a) If t was already δ-head reducible, then D[σ(t)] = σ(D[t]) and the result follows from the IH. (b) If H is a variable and σ(H) = λx.λy.a, then D[σ(t)] = t [z := λy.(λx.a N (1))] where t = (z tail( -→ N )). By the claim, t ∈ SN and since type(z) < size(A) it is enough, by the IH, to check that λy.(λx.a N (1)) ∈ SN . But this is λy.(z N (1))[z := λx.a]. But, by the claim, (z N (1)) ∈ SN and we conclude by the IH since type(z ) < size(A).

  (c) If H = λx.z and σ(z) = λy.a, then D[σ(t)] = (λy.(λx.a N (1)) tail( -→ N )) = τ (t ) where t = (z tail( -→ M )) and τ is the same as σ on the variables of tail( -→ M ) and τ (z ) = λy.(λx.a N (1)). Note that, by Lemma 3.1, t is in SN and η(t ) ≤ η(t). Since size(t ) < size(t) to get the result by the IH we have to show that (1) (t , τ, A) ∈ U and (2) that (λx.a N (1)) ∈ SN . To prove (1) it is enough to show that we can give to Q = λy.(λx.a M (1)) the same type as P = (λx.λy.a M (1)). In the typing of P , λx.λy.a has type

( a )

 a If the β-redex put in head position is some N (j) and M (j) was already a redex. Then A[σ(t), j] = σ(A[t, j]) and the result follows from the IH. (b) If the β-redex put in head position is some N (j) and M (j) = (x a) and σ(x) = λy.b then A[σ(t), i] = λy.(σ(H) N (1) ... N (j -1) b) σ(a) N (j + 1) ... N (n)). Since type(σ(a)) < size(A) it is enough, by the IH, to show that λy.(σ(H) N (1) ... N (j -1) b) y N (j + 1) ... N (n)) and so, by Lemma 3.3, that (σ(H) N (1) ... N (j -1) b N (j + 1) ... N (n)) ∈ SN . Since type(b) < size(A) it is enough, by the IH, to show u = (σ(H) N (1) ... N (j -1) z N (j + 1) ... N (n)) ∈ SN . Let t = (H -→ M ) where -→ M is defined by M (k) = M (k), for k = j, M (j) = z. Since t = t [z := (x a)] and u = σ(t ) the result follows from Lemma 3.1 and the IH.

Corollary 3 . 1

 31 Let t be a typable term. Then t is strongly normalizing.ProofBy induction on size(t). If t is an abstraction or a variable the result is trivial. Otherwise t = (u v) and, by the IH, u, v ∈ SN . Thus, by Theorem 3.3, (u y) = (x y)[x := u] ∈ SN and, by applying again Theorem 3.3, (u v) = (u y)[y := v] ∈ SN .

  The result is thus a special case of the following claim. We show that every reduct of w is in SN . There are 4 possibilities for the reduced redex. If it is in L or in t, the result follows immediately from the IH. If it is the (λx.t x) substituted in the hole of L the result is clear. The last situation is when the redex is created by the substitution in the hole of L. These cases are given below. Note that the assoc and β rules can only be used either in t or in L.-t = λy.t 1 and w δ L[λy.(λx.t 1 x)] = L [(λx.t 1 x)] where L = L[λy.[]]

Claim : Let L be a left context and t be a term. If

L[t] is in SN then so is w = L[(λx.t x)].

Proof : By induction on type(t), η(L[t]) .

• The set T of types is defined (simultaneously with the set S of simple types) by the following grammars where A is a set of atomic constantsS ::= A | T → S T ::= S | S ∧ T• The typing rules are the following where Γ is a set of declarations as x : A where x is a variable and the mentioned types (A, B) are in T :Γ, x : A x : A Γ M : A → B Γ N : A Γ (M N ) : B Γ, x : A M : B Γ λx.M : A → B Γ M : A ∧ B Γ M : A

of t) and σ is as σ but where z is not in the domain of σ whereas the occurrence of z in H was in the domain of σ. Thus, size(σ , t ) < size(σ, t) and the result follows from the IH. (c) H is a variable and

where t 1 is the same as t but where we have given to the variable H the fresh name z, τ is the same as σ for the variables in dom(σ) and τ (z) = a[y := b] and thus we may conclude by the IH since η(τ, t) < η(σ, t). 

where t is the same as t but where we have given to the variable H the fresh name z and τ is the same as σ for the variables in dom(σ) and

The result follows then from the IH since η(τ, t ) < η(σ, t).