
HAL Id: hal-00533562
https://hal.science/hal-00533562v1

Submitted on 9 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Progressive Lossless Mesh Compression Via Incremental
Parametric Refinement

Sébastien Valette, Raphaëlle Chaine, Rémy Prost

To cite this version:
Sébastien Valette, Raphaëlle Chaine, Rémy Prost. Progressive Lossless Mesh Compression Via
Incremental Parametric Refinement. Computer Graphics Forum, 2009, 8 (5), pp.1301-1310.
�10.1111/j.1467-8659.2009.01507.x�. �hal-00533562�

https://hal.science/hal-00533562v1
https://hal.archives-ouvertes.fr


Eurographics Symposium on Geometry Processing 2009
Marc Alexa and Michael Kazhdan
(Guest Editors)

Volume 28 (2009), Number 5

Progressive Lossless Mesh Compression Via Incremental

Parametric Refinement

Sébastien Valette1, Raphaëlle Chaine2 and Rémy Prost1

Université de Lyon, CNRS
1CREATIS-LRMN; UMR5220; Inserm U630; INSA-Lyon; Université Lyon 1, France

2Université Lyon 1, LIRIS, UMR5205, F-69622, France

Abstract

In this paper, we propose a novel progressive lossless mesh compression algorithm based on Incremental Para-

metric Refinement, where the connectivity is uncontrolled in a first step, yielding visually pleasing meshes at each

resolution level while saving connectivity information compared to previous approaches. The algorithm starts with

a coarse version of the original mesh, which is further refined by means of a novel refinement scheme. The mesh

refinement is driven by a geometric criterion, in spirit with surface reconstruction algorithms, aiming at generat-

ing uniform meshes. The vertices coordinates are also quantized and transmitted in a progressive way, following a

geometric criterion, efficiently allocating the bit budget. With this assumption, the generated intermediate meshes

tend to exhibit a uniform sampling. The potential discrepancy between the resulting connectivity and the orig-

inal one is corrected at the end of the algorithm. We provide a proof-of-concept implementation, yielding very

competitive results compared to previous works in terms of rate/distortion trade-off.

1. Introduction

Technological advances have pushed 3D graphics to higher
levels of realism, and improvements are still emerging at a
steady pace. The range of applications using 3D meshes for
shape representation stretches from the visualization of to-
pographic data on supercomputers to video games on cellu-
lar phones. With the eventual bandwidth limitations on such
applications, 3D mesh compression has gained a lot of in-
terest in the last 20 years. In this paper, we propose a novel
3D progressive lossless mesh compression paradigm, from
which we derive an initial implementation (not suited for all
the mesh classes) with the following characteristics:

• atomic granularity : starting from the coarse resolution
mesh, new vertices are inserted in the triangulation one
at a time, until the original mesh is completely recon-
structed.

• the intermediate resolution meshes have their vertices
well distributed over the surface.

• the mesh triangles exhibit good aspect ratio, as the mesh
conforms to a local Delaunay criterion.

2. Background on mesh compression

The triangular mesh representation can be split in two dif-
ferent informations : geometry i.e. a 3D set of point coordi-
nates, and connectivity i.e. a list of triangles connecting the
points. Following Tutte’s work [Tut62], the amount of in-
formation needed to encode the connectivity of a triangular
mesh is bounded by the Tutte entropy ETutte = 3.245 bpv.
The first works on mesh compression were done by Deer-
ing [Dee95], followed by the algorithm of Touma and Gots-
man [TG98], where a canonical walk on the triangle mesh
allows to encode the mesh connectivity by storing the ver-
tices valences and non-frequent incidents codes. It has been
shown to be very close to optimality [Got03]. Rossignac
[Ros99] proposed an approach with a worst-case bound on
its coding cost : Edgebreaker, which codes the mesh connec-
tivity on 2 bits per triangle. Finally, Poulalhon and Schaef-
fer [PS06] have provided an approach based on Schneider
tree decomposition, with a coding cost equal to the Tutte
entropy. Single-resolution approaches usually combine one
of the previously cited approaches or their derivatives for
the mesh connectivity, and use the connectivity to improve
geometry coding by means of prediction, the most widely

submitted to Eurographics Symposium on Geometry Processing (2009)



2 S. Valette, R. Chaine & R. Prost / Progressive Lossless Mesh Compression Via Incremental Parametric Refinement

(a) base mesh (100v) (b) 0.1 bpv (1090v) (c) 0.5 bpv (8565v) (d) 1 bpv (17646v) (e) 13.9 bpv (241607v)

Figure 1: IPR-based Progressive transmission of the Fertility model (241k vertices). Note the uniform sampling and visual

quality of the intermediate meshes (b), (c) and (d).

known being the parallelogram prediction. The vertices co-
ordinates are usually quantized to 10 or 12 bits per coordi-
nate, can be losslessly encoded, such as proposed by Isen-
burg et al. [ILS05], and can be used to predict the connectiv-
ity, thus improving compression rates [LCL∗06].

Progressive compression approaches start with the cod-
ing of a coarse approximation of the original mesh and
add information allowing to progressively reconstruct the
original mesh by means of refinements. First approaches
have focused on connectivity refinement : Cohen-or et al.
[COLR99] start from the original mesh and iteratively re-
move its vertices in carefully selected batches until the low-
est resolution is obtained. The reconstruction is guaranteed
by a 4-colour coding scheme. Taubin et al. [TGHL98] pro-
posed a tree-based refinement scheme called progressive for-
est split. The vertex-split based progressive meshes scheme
proposed by Hoppe [Hop96] has been used in [PR00] and
[KBG02] to encode vertex splits in batches. When one only
wants to store the shape of the object represented by the
mesh, the connectivity can be changed to a much simpler
one, a structured connectivity, whose coding cost is neg-
ligible compared to an irregular connectivity and is a per-
fect fit for geometry compression via transform coding. Effi-
cient progressive geometry compression using uniform sub-
division was first proposed by Khodakovsky et al. [KSS00]
and Guskov et al. [GVSS00]. Payan and Antonini [PA05]
proposed an optimized bit-allocation algorithm within this
framework. Gu et al. [GGH02] proposed to resample the
original mesh to a regular connectivity mesh, a geometry
image. This work was further improved by Peyre and Mal-
lat [PM05] by taking into account local anisotropy in the
shape to be encoded. An other approach using transform
coding is the spectral compression introduced by Karni and
Gotsman [KG00]. When the original mesh connectivity mat-
ters, using transform coding algorithms for geometry com-
pression is not straightforward, as these methods are based
on regular mesh subdivision. To solve the problem faced
when compressing irregular connectivity, Alliez and Des-
brun [AD01] try to reverse

√
3 subdivision on the input mesh

[Kob00], while the Wavemesh coder proposed by Valette
and Prost [VP04] tries to reverse face quadrisection. For both

approaches, when the regular subdivision is not applicable,
incident codes need to be transmitted and generate coding
overhead. As a consequence, compression efficiency of these
approaches is highly dependent on the regularity of the in-
put mesh. Note that these approaches try to keep the mesh
connectivity as regular as possible during the simplification
step, but finding the optimal simplification rules is still an
open problem. Finally, the most recent progressive coders
are not only driven by connectivity refinement, but also by
geometric measures on the reconstructed mesh. Gandoin and
Devillers [GD02] propose to encode the vertices coordinates
with a Kd-tree coder, with the side-effect of efficient con-
nectivity compression by means of generalized vertex splits.
This approach allows complex connectivity operations and
is therefore able to handle meshes with complex topology
such as polygon soups. Peng and Kuo [PK05] further im-
proved this approach by replacing the Kd-tree with an octree
data structure. The octree cells are refined in a prioritized or-
der, where the cells subdivisions offering the best distortion
improvement are performed first. These approaches provide
good results for lossless compression, but they are based on
structured volume hierarchies which induce anisotropy and
blocking artifacts, thus reducing rate-distortion performance
at low bitrates (figure 2.(c)).

3. Outline of our approach

We propose to redefine the problem of progressive mesh
transmission into a mesh generation problem. Figure 2
shows a comparison between our Incremental Parametric
Refinement (IPR) approach, Wavemesh [VP04] and the Oc-
tree Compression method [PK05]. At 1bpv, our approach
generates a visually pleasing mesh, while the reconstruction
with Wavemesh at 1.42 bpv exhibits stretched triangles and
a higher approximation error (0.6% of the model Bounding
Box Diagonal Length). At 1bpv, the Octree Compression
approach outputs a mesh with the worse visually pleasing
properties and higher approximation error (0.8%). The prob-
lem of surface meshing has been widely studied in the last
years [AUGA07]. We use a refinement scheme driven by a
Delaunay mesh generation approach, which produces uni-

submitted to Eurographics Symposium on Geometry Processing (2009)



S. Valette, R. Chaine & R. Prost / Progressive Lossless Mesh Compression Via Incremental Parametric Refinement 3

(a) IPR: 0.3% (b) Wavemesh: 0.6% (c) OC: 0.8%

Figure 2: the rabbit model compressed down to 1 bit per

original vertex with our approach (a) and the Octree Com-

pression (c), and at 1.42 bpv with Wavemesh (b). The

percentages represent the approximation error in terms of

Hausdorff distance, with regard to the mesh bounding box

diagonal length.

form triangulations during progressive transmission at low
coding cost, as most of the connectivity is implicitly defined
by the reconstruction algorithm. Note that an alternate ap-
proach using reconstruction algorithms has been proposed
by Chaine et al. [CGR07] to predict the mesh topology,
but it is limited to connectivity encoding, assuming that the
vertices coordinates are already available. Our approach si-
multaneously encodes the vertices coordinates and the mesh
connectivity and avoids the use of any volumic data struc-
ture. Subsequently, we note the input mesh as M and n its
number of vertices. We assume in this paper that the final
reconstructed mesh will have the same connectivity as the
original mesh, and each vertex coordinate will be quantized
to a given number Nq of bits. The coding will consist in start-
ing from a base mesh Mb where b is its number of vertices
(b << n). The set of vertices of Mb is a subset of the ver-
tices of M, and their coordinates are quantized on Nb bits
(Nb < Nq). Afterwards, Mb is iteratively refined by insert-
ing the missing vertices in order to construct a sequence of
meshes Mb,Mb+1,Mb+2, ...,Mn−2,Mn−1,Mn

Finally, when all the vertices ofM have been transmitted,
we need to ensure that the connectivity of the reconstructed
mesh is the same as the original. This is done by iteratively
flipping some edges of Mn until it matches M.

Our scheme takes into account the following assumptions:

• A fine to coarse approach for connectivity encoding de-
creases coding efficiency, as only the final mesh connec-
tivity has to conform to the input mesh connectivity. In-

stead, a coarse to fine approach can improve compression
at low bitrates, as when the current mesh Mi has rela-
tively few vertices (i≪ n), every operation should create
a new vertex (and never require incident codes), similarly
to uniform subdivision schemes.

• In spirit with the octree-based coder [PK05], the effi-
ciency of progressive transmission can be improved with
a careful prioritization of refinement sites.

• For each resolution level Mi where b ≤ i ≤ n, we need
to provide a good trade-off between the level of quantiza-
tion of the vertices coordinates and the number of vertices
in the mesh, as pointed by King and Rossignac [KR99].
Hence, if the final vertices are coded on Nq bits, we can
encode the vertices of coarser resolution levels with a
lower number of bits. The remaining bits with low signif-
icance are transmitted latter in the refinement sequence,
similarly to the SPIHT coder [SP96].

For this aim, we propose a decoder-centric template In-
cremental Parametric Refinement (IPR) algorithm which is
instantiated with output writing operations for the compres-
sion step, and input operations for the decompression. This
algorithm performs a good balance between vertices quan-
tization and connectivity evolution at each resolution level
Mi with two independent measures:

• An estimate of the adequate number of bits needed to rep-
resent the coordinates of a given vertex. This number is
computed by IPR and grows during refinement until full
precision is reached.

• A prediction of the refinement sites. At each resolution
level i, the algorithm can predict which region is a good
candidate for refinement i.e. the location where increasing
the sampling density is likely to lower the approximation
error.

4. Description of the IPR algorithm

In this section, we develop the idea behind our paper : For
each resolution level, IPR carefully chooses the location of
the next refinement, and transmits the coordinates of the ver-
tex used for the refinement, using differential coding. We
exploit the statistical fact that a way to reduce the approx-
imation error for a given sampling is to refine the regions
having the lowest sampling density. Also, at any time, the
algorithm can request some data to refine the coordinates
of a given vertex. Again, compression and decompression
are performed using the same algorithm, except that com-
pression writes data and decompression reads the data. As
a consequence, the data requests do not need explicit com-
munication between the decoder and the encoder, only the
requested data needs to be transmitted in the bitstream.

4.1. A new surface-aware refinement scheme

We propose an incremental refinement scheme which aims
at constructing uniform triangulations by means of simple

submitted to Eurographics Symposium on Geometry Processing (2009)



4 S. Valette, R. Chaine & R. Prost / Progressive Lossless Mesh Compression Via Incremental Parametric Refinement

Algorithm 1: IPR base algorithm.

begin
SetMi =Mb;
Fill the priority queue Queue1 with the edges of
Mi and their respective length as priority value ;
repeat

Pop a candidate edge e from Queue1;
if e needs to be split (read/write one bit) then

Add a new vertex at the edge midpoint
(read/write delta coordinates) and two new
triangles;
Restore Delaunay property of Mi;
Update the priority of flipped edges in
Queue1;
Mi becomes Mi+1;

end

if Queue1 is empty then
Fill Queue1 with the edges of Mi and their
respective length as priority value ;

end

until i= n ;
end

atomic operations. Each operation consists in an edge split
followed by an automatic local Delaunay enforcement step,
as shown by figure 3. At a given resolution level i, we pick
the longest edge e of Mi, in order to increase the sampling
density of the surface (figure 3.(b)) while preserving unifor-
mity. This operation requires the insertion of a new vertex vi
into the triangulation. The position of e does not need to be
transmitted, as it is computed by both the decoder and en-
coder. At the encoder end, vi is chosen among the vertices of
M with the goal of getting the best approximation improve-
ment.

Then, after each vertex insertion, the quality of the trian-
gulation is increased, using a local Delaunay criterion, such
as proposed by Dyer et al. [DZM07]. This consists in per-
forming local checks on all modified edges and their neigh-
boring edges: for each edge e to check, we measure the De-
launay criterion De = α + β − π, where α and β are the
values of the opposite angles of e. A positive value for De

means that e is not a local Delaunay edge and therefore has
to be flipped. Note that flipping an edge can also change its
neighboring edges Delaunay criterion value. Consequently,
we also have to check that the Delaunay criterion is also re-
spected for this neighborhood and repeat these operations
until all the edges satisfy the criterion. The whole scheme
is easy to implement using a priority queue, and its conver-
gence is guaranteed [DZM07]. An efficient way of keeping
track of the longest edge in Mi is to use an other priority
queue whose average construction and update complexity is
in n logn.

Moreover, we prevent the edge flips that would cause the

(a) (b) (c)

Figure 3: the proposed refinement scheme : (a) an edge e

(in bold red) is selected for refinement. (b) It is split in two,

resulting in the creation of a new vertex and two new trian-

gles. (c) The resulting triangulation is modified in order to

satisfy a local Delaunay Property, by means of edge flips. In

this example, two edges have been flipped.

underlying geometry to change significantly. For each edge
e to be flipped, we measure the volume ve and area ae of
the tetrahedron formed by the two vertices of e and the two
vertices opposite to e, and compute the flip criterion Fe =
3√ve√
ae
. Whenever Fe is above a given threshold Ft , we forbid

the flip. In our experiments, we set Ft = 0.3.

Finally, the cost of one refinement operation is reduced to
the localization of the edge to split and the additional geo-
metric information needed to create the new vertex. Connec-
tivity evolves automatically, without any overhead data.

Our refinement algorithm takes into account the geomet-
ric properties of the evolving reconstructed mesh, but the
operations and criteria used here are only performed in the
mesh parametric domain, in contrast with volumetric subdi-
vision approaches such as [GD02, PK05], hence the name
Incremental Parametric Refinement. This scheme allows for
faithful progressive approximation of the original model,
even at low bitrates.

4.2. Predicted splits for connectivity encoding

The proposed scheme can encode the mesh connectivity in
a very efficient way. The challenge here is to decide for a
resolution level i whether the longest edge e needs to be split
or not at the decoder end. This implies a mapping between
the original mesh vertices and the reconstructed mesh edges.
Each edge e j of Mi will be associated with a set V j of ver-
tices in M not present in Mi but which are candidates for
insertion by splitting e j in Mi. As the resolution level in-
creases, the set V j contains less and less vertices, and will
eventually become empty. As a result, when the set is empty,
we need to prevent the edge split. Note that at a given res-
olution level, it can happen that the set of candidates V j for
e j is empty, but it can later be given new candidate vertices
after edge flips occur in its neighborhood.

Therefore, for each selected edge e, we need to trans-
mit one bit (1 for yes, 0 for no), so that the decoder knows

submitted to Eurographics Symposium on Geometry Processing (2009)



S. Valette, R. Chaine & R. Prost / Progressive Lossless Mesh Compression Via Incremental Parametric Refinement 5

Figure 4: Values of midpoint codes when compressing the

Fertility model : the moving average value is very close to 1

at the beginning of the transmission and gradually vanishes

as the resolution increases.

whether e must be split or not. Subsequently, we will call
these informations midpoint codes. If the picked edge is not
split, the same test is performed with the next longest edge
in the queue, until a to-be-split edge is encountered. After
each split, the resolution level is incremented. At low reso-
lution levels, the midpoint codes will most frequently have
the value 1, and will most often be 0 at high resolution lev-
els. This is illustrated by figure 4 which shows the mid-
point codes average values, by order of appearance, com-
puted for groups of 1000 successive values when compress-
ing the Fertility model. We can then improve the compres-
sion efficiency using adaptive arithmetic coding with a rel-
atively short statistics update interval (the so-called rescale
interval). In our experiments, we have set the rescale inter-
val to 15. As an example, when compressing the fertility
model, 987141 midpoint codes are needed. The entropy of
this bitstream is 0.89 bits per midpoint code, but using adap-
tive coding reduces the coding cost to 0.36 bits per midpoint
code. This translates to a relative coding cost of 1.45 bits per
vertex.

4.3. Quantization/connectivity trade off

The quantization of vertices coordinates plays a key role for
efficient mesh compression. Indeed, it is well known that
the size of the geometric information is much bigger than
the size of connectivity information. As explained in sec-
tion 2, connectivity-driven compression approaches such as
Wavemesh usually encode and transmit vertices coordinates
in a constant-quantization way, whereas recent compression
schemes such as the Octree Compression approach refine the
vertices coordinates as the resolution increases. But Octree
and Kd-tree approaches still do not provide the good bal-
ance between the number of vertices in the mesh and the
level of quantization of vertices coordinates. This is clearly
illustrated by figure 2.(c) : at 1bpv, the Octree Compression
delivers a mesh made of 12959 vertices, but the vertices co-
ordinates quantization is too coarse to provide a good ap-

Figure 5: comparison of rate-distortion performance when

compressing the balljoint model, for various values of qt

proximation of the rabbit model. Instead, in figure 2.(a) our
approach reconstructs a more accurate mesh with only 4833
vertices, but with a higher number of bits transmitted for the
vertices coordinates. At this resolution level, 78% of the ver-
tices coordinates are coded with 11 bits precision, and the re-
maining are coded with 12 bits. More generally, each vertex
vi is given a specific quantization level Qi with 0<Qi <Qm

whereQm is the maximal quantization level (usually 12 bits).
The quantized coordinates c̃i of a given vertex vi are com-
puted as:

c̃i =
⌊
2Qi−Qmci

⌋
(1)

We propose to first transmit the coordinates of the base mesh
vertices with a low number of bits (Nb = 4 in our experi-
ments), and let the IPR algorithm choose whether the quan-
tization level Qi is sufficient or not for a given vertex vi. This
is done by measuring the squared distance Di (in its quan-
tized version) between vi and its closest neighbor vertex v j:

Di =
∥∥c̃i− c̃ j

∥∥2 (2)

Where ci are the coordinates of the vertex vi. Whenever
Di is lower than a threshold qt , the quantization precision is
increased by one bit (if full precision has not already been
reached). This results in transmitting one bit of refinement
for each coordinate of vi. When a new vertex vi is inserted in
Mi by splitting the edge e, its quantization level is set to the
average between the quantization levels of the vertices of e,
and only the difference between the edge midpoint and the
actual coordinates of vi is transmitted, thus reducing the en-
tropy of the data to transmit. The resulting delta-coordinates
are entropy coded by means of arithmetic coding. Eventu-
ally, when a new vertex is inserted in the mesh, the quan-
tization criterion will not be satisfied, and the coordinates
of surrounding vertices will be refined. When all the mesh
vertices are inserted i.e. when Mn is reconstructed, we re-
fine the vertices coordinates which have not been transmitted
with the desired final precision.

As a simple example, let us assume a 1D case were we as-

submitted to Eurographics Symposium on Geometry Processing (2009)



6 S. Valette, R. Chaine & R. Prost / Progressive Lossless Mesh Compression Via Incremental Parametric Refinement

sume that the coordinates to encode are between 0 and 127,
with qt = 600: two vertices v1 and v2 with coordinates 80
(1010000 in binary) and 30 (0011110 in binary) are currently
coded with a precision of 4 bits, which results in quantized
values of 10 (1010 in binary) and 3 (0011 in binary), the 4
most significant bits for both coordinates. The squared dif-
ference between this numbers is 49, which is less than qt .
Increasing the precision to 6 bits will make the coordinates
become 40 (101000 in binary) and 15 (001111 in binary)
which satisfy the quantization criterion, as (40−15)2 = 625.

Figure 5 shows the rate-distortion compression curves ob-
tained with our approach when compressing the balljoint
model, for various values of qt . This parameter improves
the efficiency of our approach by about 20% at intermedi-
ate level, but also increases the amount of data needed for
the final lossless compression. In our experiments, we have
set qt to the conservative value of 600, which still offers a
gradually increasing precision with no significant overhead
for lossless compression.

Finally, on figure 1.(b), the reconstruction of the fertil-
ity model at a bitrate of 0.1bpv has 1090 vertices. 54% of
the coordinates are encoded with 10 bits, 43% with 11 bits,
and the remaining 2% with more precision. This results in
an RMS error of 1.96 while constant quantization (when
Nb = Qm = 12) results in an error of 3.45 for the same bi-
trate. For the rabbit model at 1 bpv, adaptive quantization
results in an error of 4.4 while constant quantization leads
to an error of 5. Moreover, figure 9 (right) shows that for bi-
trates below 2bpv, adaptive quantization improves compres-
sion compared to constant quantization.

4.4. Getting the original connectivity back

When the highest-resolution mesh Mn is reconstructed, we
still need to modify its connectivity Tn so that it matches the
triangulation ofM, noted T . The problem of finding a finite
sequence of edge flips to change a genus-0 triangulation into
an other genus-0 triangulation has been solved for the unla-
beled case by Wagner [Wag36] and by Gao et al. [GUW01]
for the labeled case (our case) but finding the flip sequence
with minimal size is still an open problem. Currently avail-
able solutions use a canonical triangulation as a mandatory
intermediate connectivity on the path between Tn and T and
therefore perform a high number of flips. As we want the
smallest number of flips as possible for compression effi-
ciency reasons, instead of using an of-the-shelf algorithm,
we propose to use an heuristic approach, taking into account
the fact that in our case, Tn and T should be very similar.
We define an asymmetric measure of similarity S between
two triangulations T1 and T2 as:

S(T1 →T2) = ∑
ei∈E2

dT1(ei,1,ei,2) (3)

where E2 is the set of edges of T2. ei,1 and ei,2 are the ver-
tices of the edge ei. dT1(ei,1,ei,2) is the flip distance between

T1

T2 (S = 4)
(a)

T1,1

T2 (S = 2)
(b)

T1,2

T2 (S = 1)
(c)

T1,3

T2 (S = 0)
(d)

Figure 6: Measuring the flip distance between two vertices:

the triangulations T1 (top) and T2 (bottom) have the same

set of vertices, but different connectivity. We measure the flip

distance for each edge of T2. As an example, when measur-

ing the flip distance dT1(v1,v2) the shortest path between v1
and v2 crosses two edges (a, top). There are only three edges

in T2 with a non-null flip distance, and S(T1 → T2) = 4.
Afterwards, we perform three edge flips in T1 (b)(c)(d) to

change T1 into T1,3 = T2 (S(T1 →T2) = 0)

ei,1 and ei,2 in T1 i.e. the number of flips needed to change T1
into a triangulation where the edge ei exists. We compute this
number with an algorithm similar to Dijkstra’s shortest path
algorithm, where the path does not follow the mesh edges,
but crosses them by walking on the dual graph. The flip dis-
tance is then the number of crossed edges, which all have to
be flipped when one wants to create the edge ei, as shown in
figure 6.(a). Note that there can exist several minimal paths
between two vertices, but this is not an issue, as with our
similarity measure, we only consider the lengths of the paths
and not the edges they come across. Then, we perform edge
flips on Tn with the objective to decrease S(Tn → T ). This
translates to reducing the flip distances of the edges in T by
flipping the edges in Tn.

For each edge of Mn, the algorithm transmits a single
bit informing whether the edge should be flipped or not. On
the encoder end, the decision is taken based on the effect
of the edge flip on S(Tn → T ). If this value decreases, the
edge ei is flipped (coded 1). If it increases, ei is not flipped
(coded 0). If the value is the same for both cases, the en-
coder performs a supplementary test : it computes the value
dT (ei,1,ei,2))− dT (e′i,1,e

′
i,2)) where e′i is the edge created

when flipping ei i.e. it checks whether flipping ei will de-
crease its flip distance (measured this time by walking on
T ). If the flip distance is decreased, ei is flipped. Note that
for practical reasons, we actually do not compute all the flip
distances in the mesh when computing S(Tn →T ), but only
the flip distances of the edges incident to the four vertices
involved in the edge flip.

After all the edges have been visited, the encoder checks
whether the two meshes are identical, by simply verifying

submitted to Eurographics Symposium on Geometry Processing (2009)



S. Valette, R. Chaine & R. Prost / Progressive Lossless Mesh Compression Via Incremental Parametric Refinement 7

that S(T1 →T2) = 0. If they are identical, the encoder puts a
1 in the bitstream, otherwise a 0 and the decoder will repeat
the traversal on all the edges. This procedure is repeated until
the two meshes are identical. In our experiments, the number
of loops on the edges is usually between 2 and 5. The num-
ber of loops directly influences the bitstream entropy of our
algorithm. As an example, for the Fertility model, 3 loops
were required to reconstruct the original connectivity, with a
relative coding cost of 2.82 bpv using arithmetic coding. In
figure 6, (a), (b) (c) and (d) show the complete set of flips
needed to change T1 into T2. the bottom part show the flip
distances computed on T2 during this transformation, and
give the value of S = S(T1 →T2).

Unfortunately, there is no guaranteed convergence for this
algorithm and no proof of convexity for S. We experienced
non-convergence only when the chosen order for vertices
insertion was clearly wrong, resulting in a reconstructed
mesh with normal flips and possibly degenerated connec-
tivity. Therefore, stress has to be put on keeping the meshes
Mi as close as possible to the original mesh M during the
selection of transmitted vertices and on avoiding connectiv-
ity drifts that can be induced with the current choice of the
vertices.

4.5. Picking the right vertices order of insertion

For each resolution level i, the new vertex to insert in Mi is
chosen by the encoder, so as to decrease the approximation
error as much as possible. This requires a mapping between
M and Mi, such as MAPS [LSS∗98] or the approach of
Schreiner et al. [SAPH04]. However, the dynamic edge flips
performed during the iterative reconstruction of Mi prevent
the use of such approaches in a computationally efficient
way. As a first approximation, we propose a fast approach
to compute the list of candidate vertices when an edge ei is
to be split. We first use a geodesic Voronoi diagram on M,
with the vertices of Mi as Voronoi sites. This provides a
good mapping between the vertices of M and the vertices
of Mi for each resolution level i (figure 7.(b)).

Each Voronoi Region V j is then a set of vertices of M
associated to a given vertex v j of Mi. Afterwards, we asso-
ciate each vertex vk inside a region V j to the edge e incident
to v j giving the maximal value for the following criterion :

C(e) =
~e

‖~e‖ •−−→v jvk (4)

i.e. we associate vk to its closest edge. The resulting map-
ping can be seen on figure 7.(c). When a vertex vk has been
associated to an edge e, it can be associated to one of the
two triangles incident to e according to its position with re-
gards to the plane bisecting the two triangles. The result of
such mapping can be seen in figure 7.(d). Finally, the list of
candidate vertices for splitting an edge e is taken from the
union of the vertices in M associated with the two trian-
gles incident to e. When this set is empty, the edge is not

(a) (b) (c) (d)

Figure 7: Mapping between the original mesh M and the

reconstructed mesh Mi. Top row : before edge insertion.

Bottom row : after insertion. (a) the reconstructed meshMi,

with colored triangles. (b) geodesic Voronoi Diagram onM,

with the vertices of Mi as Voronoi Sites. (c) mapping be-

tween the vertices of M and the edges of Mi. (b) mapping

between the vertices of M and the triangles of Mi.

split. When the set is not empty, we pick the vertex which
is the closest to the optimal representative vertex, computed
using Quadric Error Metrics, such as proposed by Garland
and Heckbert [GH97].

We conjecture that this algorithm guarantees a good ver-
tices selection for convex objects, and we expect its effi-
ciency to decrease when the difference between the orig-
inal mesh M and the base mesh increases, i.e. when the
cross-parametrization between M and Mb exhibits severe
distortions. A typical example is a protrusion or a concave
region not well represented in the base mesh. More precisely,
the way the encoder choses the new vertex for insertion in
the reconstructed mesh Mi depends mostly on the geodesic
Voronoi diagram constructed onM. However, the adjacency
of the created Voronoi regions and the connectivity of Mi

sometimes differ, and this can result in a bad choice for the
vertex insertion.

4.6. Fixing connectivity drifts

With the increase in resolution, the difference in connectiv-
ity between M and Mi can also increase, which can cause
normal flips on the reconstructed surface, and a mesh whose
connectivity differs a lot from the original mesh connectiv-
ity, thus reducing the efficiency of our approach.

To correct these potential connectivity drifts, before each
edge split, we perform additional comparisons between the
connectivity of Mi and the connectivity of the underlying
geodesic Voronoi diagram. Let us assume that e is the edge
to split, with v1 and v2 as its vertices, v3 and v4 as its op-
posite vertices, as shown in figure 8.(c). The vertex chosen
for insertion is noted v5, and it results in the creation of a
new Voronoi region V5 in the geodesic Voronoi diagram. As
a rule of thumb, we flip an edge between a parent vertex (v1
or v2) and an opposite vertex (v3 or v4) when the opposite

submitted to Eurographics Symposium on Geometry Processing (2009)



8 S. Valette, R. Chaine & R. Prost / Progressive Lossless Mesh Compression Via Incremental Parametric Refinement

(a) (b) (c)

Figure 8: The reconstructed mesh connectivityMi ((a), top)

does not conform the connectivity of the geodesic Voronoi di-

agram onM ((b), top, one region for each vertex ofMi). We

aim at keeping this difference small. In this case, the edge e

is the split location. However, the edge v2v4 is flipped be-

fore splitting the edge e, as the Voronoi region V4 is neither

adjacent to V2 nor to the Voronoi region V5 resulting from

the insertion of the vertex v5. This flip reduces the difference

between the connectivity of Mi ((a), bottom) and the adja-

cency graph of the Voronoi diagram when v5 is inserted ((b),

bottom). (c) the edge split mask

vertex Voronoi region (V3 or V4) is connected to none of the
Voronoi regions V5 and the parent vertex region (V1 or V2).
An example is shown in figure 8. This operation also has to
be performed by the decoder, and therefore represents over-
head data to be transmitted. As a consequence, each mid-
point code can have the value 0, 1 or 2, where 2 means that
additional edge flips are to be performed before the edge
split. In case of a ’2’ value, 4 bits need to be transmitted
in order to know which edges have to be flipped. In our ex-
periments, the amount of information needed for these inci-
dent flips never exceeds 0.2 bpv. Note that the introduction
of a more robust vertices picking algorithm will alleviate the
need for such a workaround.

4.7. Base mesh construction and encoding

In order to create the base meshMb from the original mesh
M, we use an algorithm similar to Garland and Heckbert’s
approach [GH97], where the edge collapse order is deter-
mined by measuring the respective geometric degradation
generated by each collapse. As we want the base mesh ver-
tices to be a subset of the original mesh vertices, when col-
lapsing an edge ewith vertices v1 and v2, we do not compute
an optimal vertex position for the representative vertex, but
choose the best position between v1 and v2. Moreover, we
prevent edge collapses that cause normal flips on the surface
or which change the topology of the mesh. For each model,
the number of base mesh vertices b is arbitrarily chosen, with

Compression Dec.
Model #v I II III total total
Fandisk 6475 0.1 0.4 0.3 0.8 0.2
Horse 19851 0.7 1.4 1.7 3.8 0.5
Torus 36450 0.8 3.1 1.2 5.1 1.1
Rabbit 67039 2 7 5 14 2
Fertility 241607 8 25 27 60 9

Table 1: Timings for compression and decompression (in

seconds), where the compression is split into three parts :

Base Mesh construction (I), mesh refinement (II) and Post-

processing edge flips (III)

the objective of constructing a base mesh sufficiently close
to the original mesh, with as few vertices as possible. When
the vertices selection fails to choose the good order of ver-
tices insertion, one can increase b, so as to reduce the differ-
ence betweenMb andM. Currently, our algorithm encodes
the base mesh vertices by simply storing the vertices coor-
dinates with a fixed resolution of 4 bits per vertex, which
is automatically refined using the quantization criterion de-
fined in section 4.3. The base mesh connectivity is also sim-
ply encoded by storing for each triangle the indexes of its
three vertices. Note that a better compression efficiency will
be reached using a coder such as the approach of Touma and
Gotsman [TG98].

5. Experimental results

In this section, we compare our approach with Wavemesh
[VP04], the approach of Alliez & Desbrun [AD01], the Oc-
tree Compression approach [PK05] and the single-resolution
coder from Touma & Gotsman [TG98]. Table 1 shows tim-
ings for our approach on a workstation with a quad-core
Intel CPU running at 2.66GHz. For the compression, we
have split the timing into three parts : program initializa-
tion and base mesh construction (I), mesh refinement (II) and
post-processing edge flips (III). Note the asymmetric behav-
ior of our approach, as decompression is performed much
faster than compression. In terms of memory footprint, our
implementation exhibits a peak virtual memory occupation
of 282MB for the compression of the Fertility model and
119MB for its decompression.

Table 2 shows lossless compression results for different
reference models. All the models were quantized to 12 bits
per coordinates, except for the fandisk model (quantized to
10 bits). Note that the different approaches do not have ex-
actly equivalent quantization strategies. This results in small
differences between the vertices coordinates of the recon-
structed meshes with the three different approaches. Hence,
the accuracy of this comparison is not maximal, albeit good
enough to exhibit differences. For our coder, the connectivity
bitstream consists in the set of midpoint codes, the incident
flip codes used to decrease the connectivity drift and the edge
flips codes used to reconstruct the exact input connectiv-

submitted to Eurographics Symposium on Geometry Processing (2009)



S. Valette, R. Chaine & R. Prost / Progressive Lossless Mesh Compression Via Incremental Parametric Refinement 9

Approach Fandisk (6475v, 10bits/c) Horse (19851v, 12bits/c) Torus (36450v, 12bits/c) Rabbit (67039v, 12bits/c) Fertility (241607v, 12bits/c)
C G Total C G Total C G Total C G Total C G Total

Ours 2.4 10 12.4 3.0 15.2 18.2 2.6 11.0 13.6 2.0 11.6 13.6 4.6 9.3 13.9
OC [PK05] 2.6 10.7 13.3 2.9 13.7 16.6 2.9 8.9 11.8 3.4 11.4 14.8 2.7 10 12.7

Wavemesh [VP04] 2.6 10.9 13.5 3.9 16.9 19.8 0.5 5.8 6.3 3.3 12.3 15.6 3.3 11.4 14.7
AD [AD01] 5 12.4 17.4 4.6 16.2 20.8 0.4

TG [TG98] 1 9.3 10.3 2.3 15.2 17.5 0.004 4.6 4.6 1.7 10.7 12.4 1.8 11.7 13.5

Table 2: Comparison of lossless compression efficiency between our approach and previous works. Numbers are in bits/vertex

ity. The geometry bitstream consists in the delta-coordinates
(decomposed into sign and amplitude codes) and the quanti-
zation refinement bits. The cases where our approach did not
outperform other coders are: (1) with the horse model, where
the base mesh has 200 vertices, which causes a relatively
high coding cost of about 0.9bpv for the base mesh, with our
naive approach. But the transmission of the remaining geom-
etry and topology is convincing, since its coding cost reduces
to 17.3bpv. (2) with the torus model, which has very regu-
lar connectivity and is then a very good fit for connectivity-
driven approaches such asWavemesh and the coder of Alliez
& Desbrun [AD01]. (3) with the fertility model, due to the
final edges flip sequence accounting for more than 50% of
the connectivity bitstream. Figure 9 shows the rate-distortion
curves obtained when performing progressive transmission
for the Fertility model (left), the horse (middle) and the rab-
bit (right), where the distortion is measured in terms of raw
RMS distance (forward+backward) with METRO [CRS98].
As Wavemesh only provides a limited number of resolution
levels, its distortion curve is represented by steps, where
each step denotes an increase in resolution. For the rabbit
and Fertility models, which are relatively simple models, our
approach outperforms both Wavemesh and the OC coder.
For the rabbit, we also provide the rate-distortion curve when
using constant quantization (Nb = Qm = 12). It can be no-
ticed that adaptive quantization is beneficial at bitrates lower
than 2bpv. The results on the horse model show that our ap-
proach still performs very well at low bitrates, but is gradu-
ally outperformed by the OC coder as the bitrate increases.

6. Discussion

In this paper, we have proposed a novel progressive lossless
compression scheme, based on Incremental Parametric Re-
finement, where the algorithm reconstructs visually pleasing
meshes at a low coding cost by predicting the refinement lo-
cations (i.e. the edge splits) and the required precision for
each vertex. The remaining changes in the mesh connectiv-
ity are performed automatically. Experimental results show
that the concept behind IPR is of great interest for efficient
progressive compression of 3D models, from small models
of a few thousand vertices to models with a high sampling
density. Our approach still leaves room for future improve-
ments such as more fine-grained criteria (for the refinement
location and for the balance between quantization and ver-
tices density) and efficient coding of the delta-coordinates
by introducing context-dependent coding schemes. Also,

studying non-inform refinement schemes seems an interest-
ing perspective. Finally, finding the always correct and op-
timal vertex insertion strategy is a challenging problem, in-
volving topology, geometry and information theory. Our ap-
proach is currently a constant-topology scheme, but using
non-constant-topology refinement operators such as gener-
alized vertex splits at specific times during reconstruction
could allow us to encode meshes with complex topology
starting from very simple base meshes.

Acknowledgements

We thank the anonymous reviewers for their valuable com-
ments which helped improving the quality of the paper. We
also thank Arnaud Gelas for fruitful discussions on Delau-
nay flips. The fertility model is courtesy of the Aim@Shape
shape repository. Our implementation is based on the Visu-
alization ToolKit (www.vtk.org).

References

[AD01] ALLIEZ P., DESBRUN M.: Progressive encoding for loss-
less transmission of 3d meshes. In ACM Siggraph Conference

Proceedings (2001), pp. 198–205. 2, 8, 9

[AUGA07] ALLIEZ P., UCELLI G., GOTSMAN C., ATTENE M.:
Recent advances in remeshing of surfaces. In Shape Analysis

and Structuring, de Floriani L., Spagnuolo M., (Eds.). Springer,
2007. 2

[CGR07] CHAINE R., GANDOIN P.-M., ROUDET C.: Mesh
Connectivity Compression Using Convection Reconstruction. In
ACM Symposium on Solid and Physical Modeling (ACM SPM)

(June 2007), Siggraph A., (Ed.), pp. 41–49. 3

[COLR99] COHEN-OR D., LEVIN D., REMEZ O.: Progressive
compression of arbitrary triangular meshes. In IEEE Visualiza-

tion 99 (1999), pp. 67–72. 2

[CRS98] CIGNONI P., ROCCHINI C., SCOPIGNO R.: Metro:
Measuring error on simplified surfaces. Computer Graphics Fo-
rum 17, 2 (1998), 167–174. 9

[Dee95] DEERING M.: Geometry compression. In SIGGRAPH

’95: Proceedings of the 22nd annual conference on Computer

graphics and interactive techniques (NewYork, NY, USA, 1995),
ACM, pp. 13–20. 1

[DZM07] DYER R., ZHANG H., MÖLLER T.: Delaunay mesh
construction. In SGP ’07 (July 2007), Eurographics Association,
pp. 273–282. 4

[GD02] GANDOIN P.-M., DEVILLERS O.: Progressive lossless
compression of arbitrary simplicial complexes. In SIGGRAPH

’02: Proceedings of the 29th annual conference on Computer

graphics and interactive techniques (NewYork, NY, USA, 2002),
ACM, pp. 372–379. 2, 4

submitted to Eurographics Symposium on Geometry Processing (2009)



10 S. Valette, R. Chaine & R. Prost / Progressive Lossless Mesh Compression Via Incremental Parametric Refinement

Figure 9: Comparison of rate-distortion efficiency on different models: fertility (left), horse (middle) and rabbit (right).

[GGH02] GU X., GORTLER S. J., HOPPE H.: Geometry im-
ages. ACM Trans. Graph. (proceedings of SIGGRAPH 2002) 21,
3 (2002), 355–361. 2

[GH97] GARLAND M., HECKBERT P. S.: Surface simplifi-
cation using quadric error metrics. In SIGGRAPH ’97: Pro-

ceedings of the 24th annual conference on Computer graphics

and interactive techniques (New York, NY, USA, 1997), ACM
Press/Addison-Wesley Publishing Co., pp. 209–216. 7, 8

[Got03] GOTSMAN C.: On the optimality of valence-based con-
nectivity coding. Computer Graphics Forum 22 (March 2003),
99–102(4). 1

[GUW01] GAO Z., URRUTIA J., WANG J.: Diagonal flips in
labelled planar triangulations. Graphs Combin 17 (2001), 647–
657. 6

[GVSS00] GUSKOV I., VIDIMČE K., SWELDENS W.,
SCHRÖDER P.: Normal meshes. In SIGGRAPH ’00: Pro-

ceedings of the 27th annual conference on Computer graphics

and interactive techniques (New York, NY, USA, 2000), ACM
Press/Addison-Wesley Publishing Co., pp. 95–102. 2

[Hop96] HOPPE H.: Progressive meshes. In ACM Siggraph 96

Conference Proceedings (1996), pp. 99–108. 2

[ILS05] ISENBURG M., LINDSTROM P., SNOEYINK J.: Loss-
less compression of predicted floating-point geometry. JCAD -

Journal for Computer-Aided Design 37 (2005), 2005. 2

[KBG02] KARNI Z., BOGOMJAKOV A., GOTSMAN C.: Efficient
compression and rendering of multi-resolution meshes. In VIS

’02: Proceedings of the conference on Visualization ’02 (Wash-
ington, DC, USA, 2002), IEEE Computer Society, pp. 347–354.
2

[KG00] KARNI Z., GOTSMAN C.: Spectral Compression of
Mesh Geometry. In ACM Siggraph 00 Conference Proceedings

(2000), pp. 279–286. 2

[Kob00] KOBBELT L.:
√

3-subdivision. In SIGGRAPH ’00: Pro-

ceedings of the 27th annual conference on Computer graphics

and interactive techniques (New York, NY, USA, 2000), ACM
Press/Addison-Wesley Publishing Co., pp. 103–112. 2

[KR99] KING D., ROSSIGNAC J.: Optimal Bit Allocation in 3D
Compression. Journal of Computational Geometry, Theory and

Applications 14 (1999), 91–118. 3

[KSS00] KHODAKOVSKY A., SCHRÖDER P., SWELDENS W.:
Progressive Geometry Compression. ACM Siggraph Conference

Proceedings (2000), 271–278. 2

[LCL∗06] LEWINER T., CRAIZER M., LOPES H., PESCO S.,
VELHO L., MEDEIROS E.: Gencode: geometry-driven compres-
sion for general meshes. Computer Graphics Forum 25, 4 (de-
cember 2006), 685–695. 2

[LSS∗98] LEE A. W. F., SWELDENS W., SCHRÖDER P.,
COWSAR L., DOBKIN D.: Maps: multiresolution adaptive pa-
rameterization of surfaces. In SIGGRAPH ’98: Proceedings of

the 25th annual conference on Computer graphics and interac-

tive techniques (New York, NY, USA, 1998), ACM, pp. 95–104.
7

[PA05] PAYAN F., ANTONINI M.: An efficient bit allocation for
compressing normal meshes with an error-driven quantization.
Comput. Aided Geom. Des. 22, 5 (2005), 466–486. 2

[PK05] PENG J., KUO C.-C. J.: Geometry-guided progressive
lossless 3d mesh coding with octree (ot) decomposition. ACM

Trans. Graph. 24, 3 (2005), 609–616. 2, 3, 4, 8, 9

[PM05] PEYRÉ G., MALLAT S.: Surface compression with ge-
ometric bandelets. In SIGGRAPH ’05: ACM SIGGRAPH 2005

Papers (New York, NY, USA, 2005), ACM, pp. 601–608. 2

[PR00] PAJAROLA R., ROSSIGNAC J.: Compressed Progres-
sive Meshes. IEEE Transactions on Visualization and Computer

Graphics 6(1) (2000), 79–93. 2

[PS06] POULALHON D., SCHAEFFER G.: Optimal coding and
sampling of triangulations. Algorithmica 46, 3 (2006), 505–527.
1

[Ros99] ROSSIGNAC J.: EdgeBreaker : Connectivity Compres-
sion for Triangle Meshes. IEEE Transactions on Visualization

and Computer Graphics (1999). 1

[SAPH04] SCHREINER J., ASIRVATHAM A., PRAUN E., HOPPE

H.: Inter-surface mapping. ACM Transactions on Graphics (pro-

ceedings of SIGGRAPH 2004) 23 (2004), 870–877. 7

[SP96] SAID A., PEARLMAN W.: A new, fast, and efficient im-
age codec based on set partitioning in hierarchical trees. IEEE

Transactions on Circuits and Systems for Video Technology 6, 3
(June 1996), 243–250. 3

[TG98] TOUMA C., GOTSMAN C.: Triangle Mesh Compression.
Graphics Interface 98 Conference Proceedings (1998), 26–34. 1,
8, 9

[TGHL98] TAUBIN G., GUÉZIEC A., HORN W., LAZARUS F.:
Progressive Forest Split Compression. In ACM Siggraph 98 Con-

ference Proceedings (1998), pp. 123–132. 2

[Tut62] TUTTE W.: A Census of Planar Triangulations. Canadian
Journal of Mathematics 14 (1962), 21–38. 1

[VP04] VALETTE S., PROST R.: A wavelet-based progressive
compression scheme for triangle meshes : Wavemesh. IEEE

Trans Visu Comp Grap 10, 2 (2004), 123–129. 2, 8, 9

[Wag36] WAGNER K.: Bemerkung zum vierfarbenproblem. Jber.
Deutsch. Math.-Verein. 46 (1936), 26âĂŞ32. 6

submitted to Eurographics Symposium on Geometry Processing (2009)


