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Abstract  

Curve fitting techniques are a widespread approach to spectral modeling in the 

VNIR range (Burns, 1970; Singer, 1981; Roush and Singer, 1986; Sunshine et al. 1990). 

They have been successfully used to model reflectance spectra of powdered minerals and 

mixtures, natural rock samples and meteorites, and unknown remote spectra of the Moon, 

Mars and asteroids. Here, we test a new decomposition algorithm to model VNIR 

reflectance spectra and call it Exponential Gaussian Optimization (EGO). The EGO 

algorithm is derived from and complementary to the MGM of Sunshine et al. (1990). The 

general EGO equation has been especially designed to account for absorption bands 

affected by saturation and asymmetry. Here we present a special case of EGO and 

address it to model saturated electronic transition bands.  

Our main goals are: 1) to recognize and model band saturation in reflectance 

spectra; 2) to develop a basic approach for decomposition of rock spectra, where effects 

due to saturation are most prevalent; 3) to reduce the uncertainty related to quantitative 

estimation when band saturation is occurring. 

In order to accomplish these objectives, we simulate flat bands starting from pure 

Gaussians and test the EGO algorithm on those simulated spectra first. Then we test the 

EGO algorithm on a number of measurements acquired on powdered pyroxenes having 

different compositions and average grain size and binary mixtures of orthopyroxenes 

with barium sulfate. The main results arising from this study are: 1) EGO model is able 

to numerically account for the occurrence of saturation effects on reflectance spectra of 

powdered minerals and mixtures; 2) the systematic dilution of a strong absorber using a 

bright neutral material is not responsible for band deformation.  
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Further work is still required in order to analyze the behavior of the EGO 

algorithm with respect to the saturation phenomena using more complex band shapes 

than pyroxene bands.  
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1. Introduction 

Curve fitting is a widespread approach to model reflectance measurements and 

infer absorption components within complex bands. Electronic absorption features in 

reflectance spectra of minerals have usually been considered to be Gaussian-like (Burns, 

1970; Singer, 1981; Roush and Singer, 1986), or modified Gaussians (Sunshine et al. 

1990), when analyzed as log reflectance versus photon energy. Modified Gaussians 

describe random distribution of average bond lengths (r) which is related to the energy 

via 1/r (Sunshine and Pieters, 1993). However, it is recognized that vibronic coupling, as 

well as saturation phenomena and the signatures of amorphous materials and impurities 

may modify absorption band shapes and contribute to flat features in the minimum 

region and asymmetric profiles in crystal field spectra (Runciman et al. 1974; Nolet et al. 

1979; Burns, 1993; Pieters and Tompkins, 2005; Nicholis et al. 2006). To isolate the 

spectral features from other effects, such as interactions with other absorbing materials, a 

continuum is used (Singer, 1981; Clark and Roush, 1984; Roush and Singer, 1986; Clark, 

2003; Parente and Bishop, 2006). Nevertheless, the physical meaning of the continuum is 

not completely understood and as a result, its mathematical representation is the subject 

of active research. 

So far, curve fitting techniques have been extensively used in order to decompose 

complex reflectance spectra of minerals and mixtures. The Modified Gaussian Model 

(MGM, Sunshine et al. 1990) has been successfully applied to model crystal field 

transitions due to transition elements in various crystal sites (Sunshine and Pieters, 1990; 

Sunshine and Pieters, 1991; Sunshine and Pieters, 1993; Sunshine et al. 1993; Pieters, 

1996; Sunshine and Pieters, 1998; Klima et al. 2007), as well as both oxygen-metal and 

intervalence charge transfer bands (e.g., McFadden and Cline 2005). It has been used to 
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decompose overlapping absorptions in mafic minerals and mixtures (Mustard, 1992; 

Sunshine and Pieters, 1993), solid solution series (olivines and pyroxenes, Sunshine and 

Pieters, 1998), natural rock samples and meteorites (Sunshine et al. 1993; Schade and 

Wäsch, 1999; Sugihara et al. 2003; McFadden and Cline, 2005), and unknown remote 

spectra of the Moon and asteroids (Hiroi et al. 1995; Hiroi et al. 1996; Hiroi and Pieters, 

1998; Hiroi et al. 2000; Binzel et al. 2001; Mayne et al. 2006). Recently, it has been 

implemented in the processing pipeline of OMEGA and CRISM data, for classification 

purposes (Pinet et al. 2007; Baratoux et al. 2007; Murchie et al., 2007). 

The bulk of samples so far modeled have been natural mixtures of particulate 

minerals, obtained via crushing the rock samples and sieving the particulate to select a 

specific grain size range. Few spectroscopic experiments applying the MGM have been 

performed on rock chips or slices (Schade and Wäsch, 1999; McFadden and Cline, 

2005). In addition, the effects due to grain size variations (affecting both band saturation 

and asymmetry) of particulate mixtures have not been accurately modeled yet. Starting 

from the work of Craig et al. (2007), which showed the effects of the grain size on 

reflectance spectra, using powdered olivine, orthopyroxene and basalt, we performed a 

number of experiments using both real and simulated spectra.  

In particular, Craig et al. (2007) have pointed out that the preferred orientation of 

non-equidimensional grains, band saturation and contamination due to other phases can 

affect the overall band shape (and in turn, depth) of the measured spectra. The preferred 

orientation of grains generally affects tabular or linear crystals, and is not significant for 

powdered pyroxene. Spectral contributions by accessory and minor phases of the host 

rock can sometimes be significant, especially for opaque minerals associated with weakly 

absorbing minerals. Contaminant phases can sometimes strongly modify reflectance 
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spectra, especially in the case of finely-dispersed Fe and/or Ti oxides which are typically 

associated with pyroxenes in mafic and ultramafic assemblages. Contamination can be 

significantly reduced during sample preparation of monominerallic samples. However, 

contamination will generally be more significant for coarser grain sizes, where the 

accessory and minor phases cannot be completely separated from the coarse grains. 

Band saturation (Clark, 1999) is still an intriguing issue in spectroscopy and it 

deserves further exploration. The process (or processes) causing band saturation is 

related to both the amount of the absorbing species within a crystal and the crystal 

dimensions. When saturation takes place in the VNIR range, the absorption band is 

reduced in depth and becomes flatter near the minimum. This phenomenon increases the 

uncertainty in measuring the minimum and makes the band depth a non reliable 

parameter for quantitative measurements. In addition, the decomposition techniques so 

far used for spectral modeling purposes could fail to correctly discriminate between 

saturated absorption bands versus overlapping (Gaussian) absorption bands. 

In the present investigation, we test a new decomposition algorithm for VNIR 

reflectance spectra, designed to model saturated electronic transition bands and the 

occurrence of neutral substances mixed with the mineral of interest. We call this new 

algorithm Exponential Gaussian Optimization (EGO) and we test its performances using 

real measurements on both actual particulate samples and simulations. The main 

objectives of our efforts are: 1) to test and validate a fitting technique for reflectance 

spectra which can recognize and model band saturation; 2) to develop a basic approach to 

decompose complex spectra of rocks, where saturation is most effective; 3) to reduce the 

uncertainty related to quantitative estimation when band saturation is occurring.  
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Since pyroxenes are among the most widespread rock-forming minerals within 

the Solar System, and their spectroscopic behavior is very well known, we used this 

mineral in attempting to model its spectral features. The strong absorptions of pyroxenes 

in the VNIR range are diagnostic of their major cation abundances (Cloutis & Gaffey, 

1991; Burns, 1993). Pyroxene composition, especially the Fe/Mg ratio, and Ca 

abundance, as well as the crystallographic structure, can be quite easily estimated using 

the parameters both directly measured and mathematically derived from the spectral 

signatures. In addition, spectral decomposition techniques have been successfully used to 

determine the relative abundance of high- and low-Ca pyroxene in two-pyroxene 

mixtures (Sunshine et al. 1993; Sunshine & Pieters, 1993). 

 

2. Modeling strategy 

2.1 Overview 

In the current practice of fitting techniques, band saturation is recognized by the 

symmetric distribution of residuals with respect to the central wavelength of the modeled 

band (Sunshine and Pieters, 1993). This criterion prevents introduction of additional 

Gaussians to the model, although it does not provide any numerical evaluation of the 

saturation phenomenon, nor does it provide a quantitative evaluation of when the residual 

distribution indicates that saturation occurs.  

In the present investigation we use a multi-target and multi-technique approach 

aimed at testing the performances of the EGO algorithm as a spectral decomposition 

technique to be applied in the VNIR range for modeling band saturation. First, we 

simulate flat absorption bands using the superposition of two modified Gaussians of 

Sunshine et al. (1990) and then fit the resulting spectra with a single EGO profile. This 
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mathematical analysis aims to evaluate the reliability of the EGO algorithm to model the 

simulated effects due to band saturation. In addition, an estimate of the model accuracy is 

provided. Then, we apply the EGO modeling to spectral measurements of pure 

particulate pyroxenes affected by saturation and mixtures of pyroxenes with barium 

sulfate, for which the chemical composition and the relative abundances are known. This 

mathematical analysis aims to establish tolerance limits and variation trends for the 

different determined parameters. We also qualify the occurrence of saturation by using 

the results returned from the EGO modeling.  

Model results are statistically evaluated and compared to assess the best fit 

models, using: (1) the standard error of the estimate; (2) coefficient of determination R
2

; 

(3) adjusted coefficient of determination R
2

adj; (4) Akaike’s Information Criterion (AIC); 

(5) correlation matrices; and, (6) analysis of residuals. All the statistics that were used are 

described in Appendix A. In addition, we evaluate the results according to reliability of 

the returned parameters.  

2.2 Exponential Gaussian Optimization (EGO) algorithm 

The EGO profile accounts for non-Gaussian behavior of absorption features that 

can result from nested bands or from the occurrence of saturation effects. Therefore, it is 

able to model band asymmetry and flattening, respectively. When flattening and 

asymmetry are negligible, the absorption band is commonly fitted as a single Gaussian or 

a sum of Gaussians, superimposed on some kind of background. The Gaussian shape is 

therefore the base function for this mathematical model.  

Nested bands are weak absorptions which cannot be resolved neither at the 

temperature of the spectral measurement nor due to the low chemical abundance of the 

weaker absorber. When nested bands occur in spectra, they impart slight asymmetry to 
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the spectral shape. Similarly, when saturation effects become relevant, the band shape is 

no longer a Gaussian and the fitting process becomes more complex. In the absence of a 

theoretical model capable of providing an appropriate shape function in order to account 

for these phenomena, the temptation is to model those changes in shape with additional 

Gaussians. The higher the number of Gaussians the better is the fit, because more 

parameters are available to fit the data. Eventually, by using this strategy, we could 

achieve a very “accurate” fit (mathematically) but questions still remain regarding the 

physical significance of the additional Gaussians. 

Before looking at complicated functions or a distribution of functions, we rely 

upon a slight modification of the basic Gaussian function by changing the Gaussian 

profile and symmetry while preserving some relevant parameters (i.e., center). The EGO 

profile is based on this approach and is summarized in equation 1: 

(Eq. 1) 

where s is the band intensity, μ the center and σ is the width of the EGO profile. The t 

parameter is used to model band flattening, and the k coefficient models asymmetry. The 

FWHM can be easily calculated via FWHM=2.35482(σ). In equation 1, the wavelength λ 

is expressed as micrometers, which is a common physical unit for spectral measurements 

within the visible and near infrared ranges. The multiplicative term to the right of the 

equal sign is a normalization coefficient, to keep the EGO onto the baseline. The EGO 

defined in this way has the advantage of keeping the same values of intensity, center, and 

width of the corresponding Gaussian: G (s, μ, σ) = s*exp( - 0.5 * [(λ - μ)/σ]
2

 ), which is 

included in (Eq. 1). It can be demonstrated that the Exponential Gaussian profile 

becomes a Gaussian in wavelength for k = 0 and t approaching 0 (see Appendix B). 
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In the following, we will refer to a special case of the general Eq. 1, where k = 0. 

Therefore, we will limit our discussion to the band saturation modeling and postpone the 

analysis of the symmetry of electronic bands to a separate paper. An example of the 

special EGO behavior is shown in figure 1 where t varies, while the other parameters are 

kept constant. Starting from an original Gaussian (where t is negligible), we 

progressively increase the effect of band flattening (Fig. 1), by increasing t. The resulting 

EGOs retain same center, width and depth as the original Gaussian, while their shapes 

are changing.    

 [Figure 1] 

Starting from the MGM approach and its variants (Sunshine et al. 1991; Ueda et

al. 2002; Parente and Bishop, 2006) and the recommendations on the continuum problem 

by Clark and Roush (1984), we used a number of EGOs in log reflectance versus 

wavelength space superimposed onto a continuum linear in wavenumber (Eq. 2).  

                                      (Eq. 2) 

Each EGO is intended to model a single absorption feature affected by saturation. 

Each EGO is described using four parameters (position, intensity, width and flattening 

coefficient) and the model algorithm is written as follows: 

(Eq. 3) 

where (R) is the reflectance spectrum as a function of the wavelength and C indicates the 

continuum as a function of wavelength.  

In order to achieve high stability of the algorithm, increase speed of computation 

and to provide solid statistics for improving the level of significance of the fit (Appendix 

A), the analytical EGO routine has been implemented within the R-environment (R 

Development Core Team, 2005). R is an open source system for statistical computation 
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and graphics; it provides a very powerful and freely accessible programming language. 

In addition, the R code has been found to be very stable and easy to use. In accordance 

with the open source policy, it is available upon demand. 

The initial approximation to the parameters is iterated a number of times via 

simultaneously optimizing all the parameters of the model function and minimizing the 

residual function using a Levenberg-Marquardt approach (Moré, 1978; Garbow et al. 

1980 MINPACK Gnu GSL routines; Press et al. 1992 and references therein). We have 

performed our calculations using various methods other than the Levenberg-Marquardt, 

such as: BFGS (Broyden, Fletcher, Goldfarb, Shanno), L-BFGS-B [box-constrained, 

Byrd et al. (1994)], stochastic methods [Simulated Annealing (SA) and Genetic 

Algorithms (GA)] and a combination of stochastic and gradient methods (Rgenoud, R-

package, http://sekhon.berkeley.edu/rgenoud/). All these methods, if properly used, find 

nearly identical solutions. In addition, all these methods, as well as the non-linear least 

squares inversion based on the stochastic technique of Tarantola and Valette (1982) 

implemented in the MGM original formulation (Sunshine et al. 1990) allow a number of 

constraints to be applied to the parameters. By using the more familiar statistical 

approach of the Levenberg-Marquardt routine, we do not substantially affect the 

philosophy of the process but noticeably increase the stability and speed of the 

computation. 

Optimization using the Levenberg-Marquardt algorithm allows the iteration 

process to terminate when the standard deviation of the estimate is no longer improved 

beyond an established value, analogous to the original MGM routine. This is 

accomplished when three convergence parameters are simultaneously satisfied, as 

discussed in Moré (1978). To prevent the occurrence of a false minimum, we have run 
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each nonlinear regression several times, each time providing a different set of initial 

parameters and selecting among the set of regression parameters generated by different 

fits. 

 

3. Spectral Analyses 

3.1 Synthetic simulations 

The effects of band saturation have been simulated by superimposing two 

modified Gaussians of Sunshine et al. (1990) on a straight horizontal continuum, thereby 

avoiding the influence of background effects and poorly fitted continua. A Gaussian 

noise in the order of 1% of band intensity has been added to the resulting band, thus 

increasing reliability. The initial parameters of the component modified Gaussians have 

been modified in each simulation. A subset of the resulting spectra is shown in figure 2.  

We start the simulations with the Gaussian at shorter wavelengths having invariant 

parameters. We progressively vary the position of the longer wavelength Gaussian 

relative to the former. We fit the whole dataset using a single EGO (Eq. 1) superimposed 

onto a straight continuum. All the parameters except the continua coefficients were free 

to change during the optimization. The statistics attained with the various fitting models 

are very good. Correlation matrixes reveal poor correlation coefficients between 

parameters. The occurrence of poor correlation coefficients between couples of 

parameters retrieved by a fitting routine is the most favorable condition. When 

parameters display high correlation coefficients, the model is affected by collinearity. 

Collinearity has two main effects: a) we are no longer able to separate the contribution 

that each correlated parameter gives to our model. Thus, we cannot reliably establish 

whether the effects we are intended to model are attributed to a certain parameter or to 
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the correlated one; b) since the statistical uncertainty related to each parameter in the 

model mainly depends on those correlation coefficients, the higher the correlation, the 

stronger is the uncertainty.  

Simulations allow assessing the band separation threshold at which band 

flattening can be recognized and modeled using the t parameter of Eq. 1. The calibration 

of t as a function of band separation returns a description of the flattening in spectra and 

the maximum and minimum thresholds, which allow the band flattening to be qualified. 

Since band flattening is diagnostic of saturation effects occurring in spectra, the 

saturation effect could be inferred from the t values of the EGO profiles and in turn the 

occurrence of additional absorptions rejected. In order to relate the band separation, and 

in turn the t parameter, to saturation phenomena, we must assess the threshold of 

distances between component bands which is modeled using a single EGO. That model 

will return the maximum t value which signifies band saturation.  

As a strategy, we generated three separate datasets resulting from the 

superposition of two modified Gaussians having constant and equal depths (s1 = s2 = 0.1) 

and variable centers and widths (Fig. 2a, b, c). The Gaussian components have the 

following constant parameters for each simulation: (s1 = s2 = 0.1; μ1 = 0.95 μm; σ1 = σ2 = 

0.05 μm; σ1’ = σ2’ = 0.07 μm; σ1” = σ2” = 0.08 μm). The longer wavelength Gaussian 

retains the same depths and widths as the shorter wavelength Gaussian, but is centered 

7.5 nm away from the other and progressively moves up to a maximum separation of 150 

nm, by steps of 7.5 nm. Depending on the band width used in each simulation, the 

separation threshold changes accordingly. Narrower Gaussians give rise to an additional 

detectable absorption in the resulting composite spectra well below the highest threshold 
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(Fig. 2a). Those occurrences have not been included in the computation. Besides centers, 

the two Gaussians are identical, thus preventing band asymmetry.  

[Figure 2] 

[Figure 3] 

The fitting results show that as the separation between the two Gaussians 

increases, the band width of the composite absorption increases up to 12 nm more than 

the starting value per each simulation, centers shift toward longer wavelengths, 

regardless the initial width of the components, and intensities decrease (Fig. 3). 

The deformation of band shape due to the presence of the second absorption band 

is mainly due to flattening around the minimum and thus it is modeled by increasing t. 

According to band widths, t increases following an exponential-like trend as the 

absorption components move away from one another (Fig. 3). In the simulation with σ1 = 

σ2 = 0.05 μm (Fig. 2a), t starts to increase when the separation of the two components is 

around 37 nm and reaches a maximum value of 7.0 when band separation reaches 105 

nm. Distances up to 40 nm are not uniquely resolved by the t parameter. Separations 

larger than 105 nm require an additional band to be included in the model, as shown in 

figure 2a. As we introduce broader Gaussians in the simulation (Fig. 2b, c), t starts to 

increase for higher ranges of band separation (around 70 nm). These results indicate that 

the composite band used for fitting the spectral simulations is progressively flatter at the 

bottom.  

[Figure 4] 

If we accept this kind of simulation as representative of saturation effects, where 

the saturation could be the result of the superposition of several approximately equal 

Gaussians centered very close to each other, then we would have found a way to 
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parameterize the effects of saturation on spectra. Within the range of inferred saturation, 

the width of the composite band varies up to 12 nm and it tends to become higher for 

larger component Gaussians. This result points out that the saturation does not affect the 

width of the composite band appreciably, but becomes detectable using the t parameter of 

the EGO model. However, composite bands generated with these simulations show a 

slight increase of width as a function of t, up to a plateau level (Fig. 5a). t correlates non-

linearly with band width up to 1.5 and 2.0. After that, band width becomes constant 

while t increases. Therefore, the plateau level can be used to retrieve the t values which 

are diagnostic of saturation effects. All the values above this threshold are highly 

diagnostic of saturation. The residual distribution can help us understand when the use of 

additional bands is required. As the distance between the component Gaussians 

approaches the band separation threshold, the EGO profile is no longer able to resolve 

separate bands, as shown in figure 4. A distribution of residuals scattered randomly about 

0 (see models 1 to 16 in figure 4), suggest that no additional bands are required to fit the 

data. The residuals here are simply due to the random noise of simulated spectra. Where 

the residuals display fluctuations larger than the noise (as models 17 to 20 in figure 4), 

there is evidence of inadequate number of bands in the fit. 

 [Figure 5] 

Non linear correlations exist also between t and the band depth (Fig. 5b). As the 

two components move away from each other, and in turn t increases, the composite band 

becomes weaker. This behavior depicts mathematically what is recognizable by looking 

at the spectral measurements affected by saturation effects (Fig. 6).  

In the following sections, we apply the results of the simulations to laboratory 

spectra of powdered minerals and mixtures with different grain sizes and end member 
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proportions. We use natural minerals having different particle size ranges in order to 

establish the link between the range of t values indicating band saturation and grain size. 

The ultimate goal is to estimate the grain sizes from spectra of powdered samples. In 

order to yield as high as possible accuracy, we need to expand the range of measurements 

using a closer sampling of grain size splits and model the whole set of measurements. We 

need further work to accomplish this task. 

 

3.2 Laboratory Analyses 

3.2.1 Data 

The data we used for testing the EGO fitting model start with a natural mineral 

characterized by a simple absorption band in a definite wavelength region, i.e. 

orthopyroxene. In this specimen, absorption of energy is due largely to Fe
2+

 located in 

the M2 crystallographic site (Burns, 1993). Contributions from Fe
2+

 in the M1 site 

(which causes absorption bands near 0.9 and 1.15 μm) are approximately an order of 

magnitude weaker than the M2 absorptions for a given Fe
2+

 content (Klima et al. 2007). 

To determine the effect of saturation on spectral data we used 5 powdered splits having 

different grain size ranges, varying between < 45 and 500-1000 μm. We also used two 

compositionally different orthopyroxenes to assess the role of differences in the 

abundance of the absorbing species (Fe
2+

 in the M2 site). We then increased the 

complexity by using binary mixtures made up of one pyroxene and a neutral bright 

material (BaSO4), in order to test the behavior of saturation with respect to dilution. 

Spectra were modeled using a single EGO and up to two modified Gaussians. The 

dataset and the experimental strategy are described in detail below. 
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The reflectance spectra used in this investigation have been acquired relative to 

Spectralon® with an Analytical Spectral Device (ASD) FieldSpec Pro HR field portable 

spectrophotometer at the University of Winnipeg. The spectral range investigated is 

between 0.35 and 2.50 μm; light source is a 50W quartz-tungsten halogen lamp; FOV is 

~5mm; incidence and emission angles are 30° and 0°, respectively, which produce an 

oblong illuminated spot ~7x10 mm across axes; achieved spectral resolution is 2-7 nm 

with a 1 nm spectral sampling interval; high SNR was achieved by averaging 1000 

individual spectra. In the standard operative mode, the FieldSpec calibration software 

automatically corrects the individual spectra for the dark current. 

In order to test the spectral modeling of saturated and unsaturated bands, we used 

the following laboratory measurements. 

Spectra acquired on two different series of powdered splits obtained via crushing 

and dry sieving of essentially monominerallic pyroxenes (Fig. 6). Pyroxene chemistry is 

listed in Table 1. Sample PYX023 is enstatite from Mirabel Springs, Mount St. Helens 

(Lake County, California); sample PYX032 is hypersthene from Egersund (Norway). 

The grain size splits for both series are <45, 45-90, 90-250, 250-500 and 500-1000 μm.  

The spectra of powdered orthopyroxenes show prominent absorptions near 0.9 and 1.9 

µm attributable to Fe
2+

 in the M2 sites (Burns, 1993). Slight amounts of impurities 

mainly due to water and/or alteration products are present and account for the narrow 

absorptions near 1.4, 1.9 and 2.3 for the enstatite. The effects of progressive band 

broadening and flattening in the minimum region are evident in spectra (Fig. 6) and 

diagnostic of band saturation (Craig et al. 2007). 

[Figure 6] 
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The spectral series of mixtures obtained by adding powdered BaSO4 to the 45-90 

μm splits of the same two pyroxenes, using same incidence and emission angles as above 

is shown in figure 7. The barium sulfate is very fine (on the order of 10 – 15 μm), and 

was slightly dried before measurements. Mixtures were prepared with the following 

relative abundances of barium sulfate and pyroxene: 30%/70%, 50%/50%, 70%/30%, 

and 90%/10%; endmember spectra were also acquired. Barium sulfate provides a 

powerful diluent of strong absorbers due to its strong scattering and low absorption, and 

reduces absorption band depths that may arise due to saturation. No additional bands in 

the 0.90 µm region are introduced by the barium sulfate. Pyroxene band I shows constant 

width while its depth is progressively reduced as the amount of BaSO4 in the mixture 

increases. Band flattening in the minimum region still occurs, arising from the high Fe
2+

 

content of the endmember pyroxene (see Tab. 1 and Fig. 7b). 

[Table 1] 

Since the long wavelength wing of pyroxene band II (centered near 2.0 μm) is not 

always included within the spectral range of the measurements (0.35-2.5 μm), we use 

only pyroxene band I (centered near 1.0 μm) for testing the EGO fitting technique. In 

order to better constrain the spectroscopic processes causing the absorption of VNIR 

light, we fit each spectral band individually, isolated by using a straight line continuum 

tangent to the local reflectance maxima located on either side of the absorption feature of 

interest, using:  1) One EGO with all the parameters free to change; 2) A single EGO 

with one or more parameters locked; and 3) MGM modeling, with one or two modified 

Gaussians and free parameters.  
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3.2.2 Pure particulate pyroxene 

We have modeled the spectra acquired on powdered pyroxenes with a single 

EGO. First, we fit all the parameters. Then we alternatively set t = 10
^-8

; and both c0 and 

c1 as to keep the continuum tangent to the spectrum. Finally, we use alternatively one and 

two modified Gaussians of Sunshine et al. (1990) to model the spectra. 

Statistically, the best fit results were achieved by modeling with two modified 

Gaussians and alternatively a single EGO, with all the parameters free to change during 

the optimization process. It is not surprising because those models compute the largest 

number of parameters to fit the data. However, few correlations result between 

parameters, especially in the case of hypersthene and in the case of the EGO models, 

continua cut the spectra at longer wavelengths. Although not desirable, the occurrence of 

high correlation coefficients between couples of parameters retrieved by a fitting routine 

is sometimes difficult to avoid. In particular, the coefficients of continua always 

correlate. Generally, high correlations among the parameters indicate an overestimation 

of the model results. One of the best ways to deal with multicollinearity is to reduce the 

number of variables in the model. Since our main goal is to model the absorption 

behavior other than the continuum, at first glance we fix the continuum to a straight line 

tangent to the spectra. If correlations do persist, then we fix some additional parameter 

(e.g., band center, strength…) to some constant value retrieved by previous iterations. 

Despite the slightly worse statistics, models with continua forced to be tangent to the 

spectra display no correlations among the parameters and more consistent continua. 

Based on the assumptions for residuals behind classical regression analysis, one expects 

them to be roughly normal and approximately independently distributed with a mean of 0 

and some constant variance. Such a distribution of residuals as a function of the 
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wavelength is diagnostic of a good fit. Departures from the previous assumptions usually 

mean that the residuals contain structure that is not accounted for in the model. Based on 

statistics, the best fit models involve the superposition of a single EGO onto a tangent 

continuum (Fig. 8). Since our goal is to model the absorption band and not strictly the 

continuum, we can accept the use of a fixed tangent continuum for the modeling. 

[Figure 8] 

Modeling the spectra of each powdered split with EGOs and tangent continua 

returns centers between 939 and 973 nm, and between 918 and 930 nm for hypersthene 

(PYX032) and enstatite (PYX023), respectively (Tab. 2). This compares to the values of 

937 - 970 nm and 917 - 925 nm, based on fitting a polynomial to the center of the 

continuum removed spectra of all the different powdered splits hypersthene and enstatite, 

respectively (Cloutis and Gaffey, 1991).  

[Table 2] 

Band depths as a function of grain size increase up to a maximum (corresponding 

to the 45 – 90 μm and 90 – 250 μm splits, for the hypersthene and enstatite, respectively) 

and then decrease. Therefore, an optimum particle size does exist where band depth is at 

a maximum and band saturation is not yet occurring. Crown and Pieters (1987) attributed 

this phenomenon to the differences between the absorption coefficients in the band center 

and in the continuum and the competing effects of surface and volume scattering. The 

fact that the strongest bands are correlated with different grain sizes for the hypersthene 

versus the enstatite is related to their different compositions, specifically the abundance 

of Fe
2+

. The more Fe-rich hypersthene is a stronger absorber than the enstatite, thus band 

saturation in hypersthene would occur at a smaller average grain size. This evidence 
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supports the hypothesis that saturation occurs in Fe-rich pyroxenes at a smaller grain size 

than Fe-poor pyroxenes.     

Band width increases with increasing grain size in the hypersthene EGO results 

whereas it is quite constant in enstatite EGO results (between 77 and 112 nm and 

between 72 and 78 nm, respectively). By modeling the pyroxene band in the 1 μm region 

with a single modified Gaussian, between 10% and 40% broader absorption band width 

values are returned (between 83 and 138 nm and between 75 and 110 nm, respectively). 

This is expected because EGO can rely on the t parameter to model the shape and 

constrain the band to be narrower. t varies from 0.46 up to 2.46 for the hypersthene and 

from 0.06 to 3.71 for the enstatite (Tab. 2). Now the questions are: what is the meaning 

of the additional parameter; is it related to any spectral effect or simply a mathematical 

artifact?  

The statistical inadequacy of models with 2 modified Gaussians to interpret the 

measured spectra of powdered pyroxenes is due to the multicollinearity of parameters. 

Nevertheless, these models are also affected by an objective inadequacy because one 

absorption component is centered at wavelengths which cannot be attributed to pyroxene 

(around 850 nm), based on Cloutis and Gaffey (1991). Therefore, assuming that these 

absorptions in the 1 μm region are attributable to only one pyroxene and based on the 

results of simulations, we could infer that saturation effects are being detected. t values 

higher than 1.5 could be diagnostic of saturation. Therefore, hypersthene produces a 

saturated band in all the different average grain sizes except the finest (< 45 μm). The 

absorption band in the spectra of enstatite becomes saturated when the particle size is 

between 90 and 250 μm. The maximum band depth is achieved in those models where t 

becomes diagnostic of saturation. This result is in agreement with the evidence of the 
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optimal particle size which maximizes band depth before saturation affects spectra and 

reduces intensity. 

3.2.3 Bright diluent and pyroxene mixtures  

The 45 – 90 μm pyroxene splits were used in these mixtures. This size fraction 

produces the deepest absorption in hypersthene, but not in enstatite spectra, as discussed 

above. Since the pyroxene modeling described in the previous section revealed that even 

the 45 – 90 μm splits displayed t values larger than 0, we aimed to verify if the 

occurrence of a bright neutral material intimately mixed with the pyroxenes could alter 

the band shape and produce band broadening or flattening effects, similarly to saturation.  

At first glance, spectra do not show band broadening or flattening as the BaSO4 

amount increases in the mixtures (Fig. 7). The most noticeable effects are: the increase of 

total reflectance, the suppression of the charge transfer and OH-related bands, the 

appearance of an absorption feature near  1.9 μm (likely due to hygroscopic water in 

BaSO4), the transition from overall red to blue slope, and the decrease of pyroxene band I 

depth.      

The best fit results are achieved by a single EGO with free parameters, EGO with 

tangent continua, and two-modified Gaussians models. However, based on correlation 

matrices, we reject all the models but those including a single EGO and tangent continua.   

EGO models with tangent continua (Fig. 9) return band centers in the ranges 942- 

949 nm, and 917 - 922 nm, for hypersthene and enstatite, respectively, as listed in Table 

3, consistent with the band centers determined by polynomial fitting of continuum-

removed absorption bands  (937 - 949 nm and 914 - 921 nm, for hypersthene and 

enstatite mixed with barium sulfate, respectively). The band width results are between 79 

- 81 nm and 70 - 73 nm for hypersthene and enstatite, respectively (Tab. 3). The 
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constancy of band centers and widths indicates that the addition of a neutral bright 

material to pyroxene does not produce band broadening or shifting, thus confirming our 

visual observation.  

[Figure 9] 

[Table 3] 

In both cases, band depths systematically decrease as the amount of BaSO4 

increases in the mixture (Tab. 3). In the enstatite models, t varies between 1.52 and 2.33; 

in the hypersthene models t is in the range 1.56 – 2.42 (Tab. 3). These results mean that 

the pyroxene band I in both the mixtures retains the shape as the EGO profile diagnostic 

of pyroxene (section 3.2.2), with some fluctuation of t with respect to the model results 

relative to the 45 – 90 μm pyroxene splits (Table 2). Nevertheless, those slight variations 

are not significant, based on the magnitude of the corresponding values diagnostic of 

saturation effects (section 3.1) and on the reverse behavior they assume in each mixture. 

Therefore, the absorption band I in the pyroxene – BaSO4 mixtures roughly coincides 

with the EGO used to model the corresponding pyroxene endmembers. Band intensity 

varies as a function of the relative proportions of the endmembers in the mixtures, as 

expected.  

This implies that the systematic dilution of pyroxene using a bright neutral 

material imparts a negligible deformation of the pyroxene absorption band, in terms of 

flattening, while preserving the parameters μ (center) and σ (width) throughout the whole 

set of models. The t parameter is not dramatically influenced by the dilution with barium 

sulfate and the pyroxene band I is still diagnostic of saturation (and in turn grain size), as 

the pyroxene band of the endmembers used in the mixture. The advantage of EGO 

modeling versus the Modified Gaussian Model is that the returned set of parameters 
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strongly suggests the influence of some additional effect other than the electronic 

transition in Fe
2+

. Nevertheless, we still are uncertain as to whether these deviations were 

due to a single pyroxene or a mixture with a bright neutral material. 

 

4. Conclusions 

In the present investigation, we tested a new decomposition approach which is 

derived from and alternative to the MGM. It has been named Exponential Gaussian 

Optimization (EGO) and focuses on the use of a sort of exponential Gaussian (Eq. 1) to 

fit the electronic absorption bands in pyroxenes. The EGO algorithm has been especially 

designed to account for those absorption bands which are not Gaussian in shape, due to 

the occurrence of saturation and asymmetry effects. However, here we present the results 

achieved from modeling band saturation only. After a number of simulations aimed at 

reproducing flat bands starting from pure Gaussians, the EGO algorithm has been tested 

on a number of measurements acquired on powdered pyroxenes having different 

compositions and average grain size and binary mixtures of pyroxenes with barium 

sulfate. 

Our study has yielded the following results: 

The t parameter of equation 1 allows for the occurrence of saturation effects in 

spectra to be recognized and accounted for numerically. The threshold of ~1.5 

established for very Fe-rich pyroxenes appears to be diagnostic of saturation; 

Saturation indeed occurs in Fe-rich pyroxenes at a smaller grain size than Fe-poor 

pyroxenes, as expected; 

The systematic dilution of a strong absorber using a bright neutral material is not 

responsible for band deformation. Therefore, flattening of the band at the bottom 
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imparted by some saturation effects on the spectrum remains detectable and almost 

invariant, no matter the amount of bright neutral incorporated in the mixture; 

The returned set of EGO parameters can suggest the influence of some additional 

effect other than a single electronic transition responsible for the absorption feature here 

investigated. In particular, we show here that saturation effects can be found out and 

parameterized. 

Further work is still required in order to analyze the behavior of the EGO 

algorithm using more complex band shapes (e.g., the complex bands of olivines and 

glasses and two pyroxene mixtures; vibrational absorptions…) and with respect to the 

saturation phenomena, which likely affect absorption bands in spectra acquired on rock 

slabs.  
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Appendix A – Statistical analysis 

The following is a brief description of the statistics implemented in the R-code for 

spectral modeling evaluation. 

To compare regression models, we calculate the standard error of the estimate 

(SEE) using the following equation: 

                   (Eq. A1) 

where SSres is the residual sum of squares and df the degrees of freedom of the nonlinear 

regression, mod and data indicate each single value of the model and the spectral 

measurement, respectively, n is the total number of data points, and p is the number of 

the regression parameters (Glantz and Slinker, 1990).  

The coefficient of determination (R
2

) for multiple regressions is the fraction of 

the total variance of data that is explained by the model (Glantz and Slinker, 1990). 

                           (Eq. A2) 

where SSreg and SStot are the sum of squared distances of data points from the regression 

curve and a horizontal line through the mean of all the data values, respectively.  

The adjusted coefficient of determination (R
2

adj) derives its definition directly 

from R
2

. Nevertheless, since the R
2

 always increases as more variables are added to the 

model, even if these new variables add little new independent information, the R
2

adj 

compromises between adding additional variables and losing degrees of freedom. It is 

defined as follows: 

(Eq. A3) 
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The model with the highest R
2

adj will have the smallest prediction errors. 

Although being valid, the R
2

adj values close to 1.0 do not guarantee that the model will 

not be overspecified and contains serious correlations among parameters. 

The computation of the Hessian matrix represents a key point for evaluating the 

goodness of fit. It is used to improve the approximation of the parameters during the 

iterative optimization process, as much as to estimate the standard errors of the 

regression coefficients (sp) by taking the square roots of the diagonal elements of the 

inverse of the Hessian matrix (Glantz and Slinker, 1990) 

                             (Eq. A4) 

where D is the matrix of partial derivatives of the regression function, (D
T

D) is the 

Hessian matrix, and SEE is the standard error of the estimate (Eq. A1). These standard 

errors have been used to compute the 95% confidence intervals for the regression 

coefficients p, as follows: 

                   (Eq. A5) 

where t
α
 is the two-tail critical value for the t-distribution with (n-p) degrees of freedom. 

The Hessian matrix also allows the correlation matrix of the regression parameter 

estimates to be calculated, which in turn allows the multicollinearity among regression 

parameters to be diagnosed (Motulsky and Christopoulos, 2003).  

The Akaike’s Information Criterion (AIC) has been also implemented within the 

code for comparing nested models. Under the assumption that deviations of points from 

the regression curve are randomly distributed, the AIC is computed as follows: 

                         (Eq. A6) 

where n is the number of data points; K is the number of parameters plus 1. The 

usefulness of the AIC is in comparing models, so it is the difference between AIC values 
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to be accounted for. The AIC makes a balance between the variations of goodness of fit 

as assessed by the residual sum of squares and the increased complexity of the model. 

The lower the AIC, the more likely is the model. 

Appendix B – Demonstration of coincidence between EGO and G under certain 

conditions 

Let’s define a Gaussian profile as 

(Eq. B1) 

and an EGO profile as 

(Eq. B2) 

Recall that  

                      (Eq. B3) 

if we take a Taylor series around t = 0 and assume k = 0, then we get: 

  (Eq. B4) 

So we demonstrate that for t ≅ 0 and k = 0, the EGO and G become coincident.  
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Table 1 

Pyroxene chemistry 

Wt. % oxides Samples 

 PYX023 PYX032

SiO
2
 56.86 50.21

Al
2
O

3
 0.76 1.24

FeO 6.36 23.65

Fe
2
O

3
 0.83 5.11

MgO 34.04 17.57

CaO 0.65 1.59

Na
2
O 0.00 0.00

TiO
2
 0.01 0.19

Cr
2
O

3
 0.45 0.04

V
2
O

5
   tr.   tr.

CoO 0.03 0.06

NiO 0.08 0.01

MnO 0.17 0.53

ZrO
2
* 0.00 0.00

ZnO* n.d. n.d.

TOTAL 100.24 100.20

ATOMIC RATIOS 

Mg 89.3 54.9

Fe
2+

 9.4 41.5

Ca 1.3 3.6

NUMBER OF IONS ON THE BASIS OF 6 OXYGENS 

Si 1.965 1.920

Al 0.031 0.056

Al   --   --

V   tr.   tr.

Ti   tr. 0.005

Zr   --   --

Cr 0.012 0.001

Fe
3+

 0.022 0.147

Fe
2+

 0.184 0.756

Mg 1.753 1.002

Ca 0.025 0.065

Co 0.001 0.002

Ni 0.002   tr.

Mn 0.004 0.017

Na   --   --

Zn   --   --

TOTAL 4.000 3.972

Wo 1.21 3.28

En 88.21 50.40

Fs 10.58 46.32
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Table 2 

EGO fitting results for spectra of the two orthopyroxenes shown in Fig. 8 as a function of grain size.  

PYX032 - EGO model - Continuum fixed 

Grain size c0 uncert. c1 uncert. s uncert. μ uncert. σ uncert. t uncert.

<45 μm -0.790 -- -0.270 -- 0.547 1.68E-03 0.939 2.33E-04 0.077 7.50E-04 0.462 1.41E-01

95% confidence intervals low high low high low high low high low high low high

 -- -- -- -- 0.544 0.550 0.938 0.939 0.076 0.079 0.185 0.739

45-90 μm -0.734 -- -0.640 -- 0.773 2.51E-03 0.944 2.75E-04 0.080 6.32E-04 2.310 1.39E-01

95% confidence intervals low high low high low high low high low high low high

 -- -- -- -- 0.768 0.778 0.944 0.945 0.079 0.081 2.037 2.583

90-250 μm -1.180 -- -0.880 -- 0.725 2.36E-03 0.959 3.27E-04 0.094 7.51E-04 2.464 1.42E-01

95% confidence intervals low high low high low high low high low high low high

 -- -- -- -- 0.721 0.730 0.958 0.959 0.093 0.096 2.186 2.743

250-500 μm -1.765 -- -0.545 -- 0.480 1.64E-03 0.968 3.81E-04 0.108 1.06E-03 1.420 1.54E-01

95% confidence intervals low high low high low high low high low high low high

 -- -- -- -- 0.477 0.483 0.968 0.969 0.106 0.111 1.118 1.721

500-1000 μm -2.380 -- -0.340 -- 0.401 1.59E-03 0.973 4.55E-04 0.112 1.29E-03 1.302 1.78E-01

95% confidence intervals low high low high low high low high low high low high

 -- -- -- -- 0.398 0.404 0.972 0.974 0.110 0.115 0.953 1.652

               

PYX023 - EGO model - Continuum fixed 

Grain size c0 uncert. c1 uncert. s uncert. μ uncert. σ uncert. t uncert.

<45 μm -0.298 -- -0.140 -- 0.519 1.63E-03 0.918 2.19E-04 0.072 7.61E-04 0.062 1.48E-01

95% confidence intervals low high low high low high low high low high low high

 -- -- -- -- 0.516 0.522 0.918 0.918 0.071 0.074 -0.230 0.353

45-90 μm -0.440 -- -0.200 -- 0.847 2.42E-03 0.918 2.09E-04 0.073 5.83E-04 1.072 1.24E-01

95% confidence intervals low high low high low high low high low high low high

 -- -- -- -- 0.842 0.851 0.918 0.919 0.071 0.074 0.828 1.316

90-250 μm -0.720 -- -0.300 -- 1.061 2.98E-03 0.920 2.18E-04 0.073 4.89E-04 2.365 1.19E-01

95% confidence intervals low high low high low high low high low high low high

 -- -- -- -- 1.055 1.067 0.920 0.921 0.072 0.074 2.131 2.600

250-500 μm -1.020 -- -0.380 -- 0.932 2.74E-03 0.925 2.44E-04 0.075 4.74E-04 3.581 1.30E-01

95% confidence intervals low high low high low high low high low high low high

 -- -- -- -- 0.927 0.937 0.924 0.925 0.074 0.076 3.325 3.837

500-1000 μm -1.530 -- -0.350 -- 0.752 2.24E-03 0.930 2.58E-04 0.078 4.94E-04 3.706 1.33E-01

95% confidence intervals low high low high low high low high low high low high

  -- -- -- -- 0.748 0.757 0.930 0.931 0.077 0.079 3.446 3.967

See Eq. 1 for definition of symbols. k = 0 in all the trials.                                                                                                                                                                                                 

"Uncert." means uncertainty on the parameter.  
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Table 3 

EGO fitting results for the two BaSO
4
 + orthopyroxene mixtures shown in Fig. 9.  

PYX032 - BaSO
4
 mixture - EGO model - Continuum fixed 

PYX-BaSO
4
 ratio c0 uncert. c1 uncert. s uncert. μ uncert. σ uncert. t uncert.

0% - 100% -0.713 -- -0.721 -- 0.921 2.60E-03 0.942 2.36E-04 0.079 5.32E-04 2.422 1.21E-01

95% confidence intervals low high low high low high low high low high low high

 -- -- -- -- 0.916 0.926 0.942 0.943 0.078 0.080 2.185 2.659

30 - 70% -0.567 -- -0.295 -- 0.428 1.21E-03 0.946 2.46E-04 0.082 5.63E-04 2.289 1.21E-01

95% confidence intervals low high low high low high low high low high low high

 -- -- -- -- 0.426 0.431 0.946 0.947 0.081 0.083 2.052 2.526

50 - 50% -0.423 -- -0.080 -- 0.227 5.95E-04 0.945 2.23E-04 0.081 5.18E-04 2.155 1.11E-01

95% confidence intervals low high low high low high low high low high low high

 -- -- -- -- 0.226 0.229 0.944 0.9452 0.080 0.082 1.937 2.373

70 - 30% -0.257 -- -0.007 -- 0.122 3.06E-04 0.945 2.06E-04 0.077 4.56E-04 2.393 1.06E-01

95% confidence intervals low high low high low high low high low high low high

 -- -- -- -- 0.122 0.123 0.945 0.946 0.076 0.078 2.186 2.601

90 - 10% -0.146 -- 0.027 -- 0.040 1.13E-04 0.949 2.32E-04 0.080 5.87E-04 1.562 1.20E-01

95% confidence intervals low high low high low high low high low high low high

  -- -- -- -- 0.040 0.040 0.949 0.950 0.079 0.081 1.327 1.797

             

PYX023 - BaSO
4
 mixture - EGO model - Continuum fixed 

PYX-BaSO
4
 ratio c0 uncert. c1 uncert. s uncert. μ uncert. σ uncert. t uncert.

0% - 100% -0.495 -- -0.230 -- 1.074 2.78E-03 0.917 1.90E-04 0.071 4.87E-04 1.523 1.10E-01

95% confidence intervals low high low high low high low high low high low high

 -- -- -- -- 1.069 1.080 0.917 0.917 0.071 0.072 1.306 1.739

30 - 70% -0.485 -- -0.019 -- 0.433 1.33E-03 0.917 2.28E-04 0.072 5.74E-04 1.568 1.31E-01

95% confidence intervals low high low high low high low high low high low high

 -- -- -- -- 0.431 0.436 0.917 0.918 0.070 0.073 1.311 1.824

50 - 50% -0.391 -- 0.000 -- 0.334 1.11E-03 0.918 2.52E-04 0.073 6.15E-04 1.829 1.41E-01

95% confidence intervals low high low high low high low high low high low high

 -- -- -- -- 0.332 0.336 0.917 0.918 0.072 0.074 1.553 2.106

70 - 30% -0.217 -- 0.005 -- 0.221 6.13E-04 0.918 2.04E-04 0.070 4.90E-04 1.862 1.17E-01

95% confidence intervals low high low high low high low high low high low high

 -- -- -- -- 0.220 0.222 0.917 0.918 0.069 0.071 1.632 2.092

90 - 10% -0.114 -- 0.023 -- 0.055 1.36E-04 0.922 1.82E-04 0.070 4.06E-04 2.331 1.03E-01

95% confidence intervals low high low high low high low high low high low high

  -- -- -- -- 0.055 0.056 0.922 0.923 0.069 0.071 2.128 2.534

See Eq. 1 for definition of symbols. k = 0 in all the trials.                                                                                                                                                                                                 

"Uncert." means uncertainty on the parameter.  
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Figure captions 

Figure 1.  Mathematical behavior of the EGO profile (solid lines) starting from a pure 

Gaussian (gray dots) and varying the parameter t (saturation effect) Intensity, center and 

width (s, μ, and σ) of the initial Gaussian and EGOs are -1, 0, 0.7, respectively. From the 

inner to the outer curve, t varies as: 1, 5, 10, 30, 100. As t increases, the Gaussian 

becomes flat at the bottom, thus simulating the effect of saturation on absorption bands.  

 

Figure 2.  A spectral subset of the simulation dataset. The Gaussian components have the 

following constant parameters for each simulation: s
1
 = s

2
 = 0.1; μ

1
 = 0.95 μm. (a) σ

1
 = 

σ
2
 = 0.05 μm; (b) σ

1
 = σ

2
 = 0.07 μm; (c) σ

1
 = σ

2
 = 0.08 μm). The Gaussian noise has 

been removed for clarity. The longer wavelength Gaussian retains the same depths and 

widths as the shorter wavelength Gaussian, but is centered 7.5 nm away from the other 

and progressively moves up to a maximum separation of 150 nm, by steps of 7.5 nm.  

According to the width of the component Gaussians, in turn depending on the nature of 

the electronic transition absorption, as the maximum band separation approaches 60 nm, 

the resulting composite band shows the occurrence of separate bands (a), evidence of 

saturation (b), broadening of the absorption (c). The EGO profile is able to model all 

these occurrences. 

 

Figure 3. The plots show the results of modeling simulated absorption bands of figure 2 

using one single EGO superimposed onto a horizontal continuum. The symbols in the 

legend indicate the simulation runs and make use of the same letters as in figure 2. See 

the text for discussion. 



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

42 

 

 

Figure 4. Residual distributions as a function of the wavelength resulting from modeling 

a subset of the simulated spectra (i.e., the spectra shown in Fig. 2b), starting from 7.5 up 

to 150 nm band separation, by steps of 7.5 nm from Model 1 to Model 20. The residual 

distributions show the capability of the EGO model to accurately fit the simulated bands 

up to Model 16. Here the residuals are normally distributed around 0 and equal to the 

random noise added to the simulations (1% of band intensity). The residual distributions 

resulting from Models 17 to 20 show fluctuations larger than the random noise. These 

results indicate that the EGO model is no longer able to fit the data when band separation 

is larger than 120 nm and a further Gaussian is required. Therefore the t value retrieved 

by Model 16 is a limit for saturated bands having the set of parameters as the simulation 

shown in figure 2b. For band separations larger than 150 nm, the resulting composite 

bands show clear evidence of separate components.  

 

Figure 5. Plots of EGO band width and depth as a function of t (a and b, respectively), as 

results from modeling the simulations shown in figures 2a, b and c. The symbols are 

depicted with the same letters as in figure 2. Band width increases non-linearly with t up 

to a plateau level. Threshold t value is ~1.5. Band depth decays progressively as t 

increases. Therefore, t values higher than 1.5 are diagnostic of saturation, because band 

width remains constant while depth decreases progressively. 

 

Figure 6. Spectral series of powdered pyroxene splits. a) Enstatite (PYX023); b) 

Hypersthene (PYX032). From top to bottom in each plot, measurements relative to the 

following grain size ranges are shown: <45 μm (solid lines), 45-90 μm (dashed lines), 
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90-250 μm (dotted lines), 250-500 μm (short dashed lines), 0.5-1.0 mm (dash-dotted 

lines).  

 

Figure 7. Spectral series relative to the “dilution experiment”. BaSO
4
 has been added 

with definite proportions to (a) Enstatite (PYX023) and (b) Hypersthene (PYX032). 

From top to bottom in each plot, spectra of the BaSO
4
/pyroxene relative proportions are 

shown: 90/10 (solid lines); 70/30 (dashed lines); 50/50 (dotted lines); 30/70 (short dashed 

lines); 0/100 (dash-dotted lines). 

 

Figure 8. Fit results of pyroxenes modeling. Each plot shows the best fit results including 

the residual distribution (top curve in each plot), EGO curve used to model pyroxene 

band I (black solid lines) superimposed onto the continuum and thus coincident with the 

model fit, continuum tangent to the absorption to model (dashed lines), the data (gray 

lines), for the hypersthene PYX032 (a) and the enstatite PYX023 (b). From top to bottom 

the modeled spectra are displayed as follows: <45 μm, 45-90 μm, 90-250 μm, 250-500 

μm, 0.5-1.0 mm (see Fig. 6 for the reference spectra). 

 

Figure 9. Fit results of BaSO
4
/pyroxene mixtures modeling. Each plot shows the best fit 

results including the residual distribution (top curve in each plot), EGO curve used to 

model pyroxene band I (black solid lines) superimposed onto the continuum and thus 

coincident with the model fit, continuum tangent to the absorption to model (dashed 

lines), the data (gray lines), for the hypersthene PYX032 (a) and the enstatite PYX023 

(b). From top to bottom the modeled spectra are obtained by measuring the mixtures with 
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the following relative abundances: 0%/100%, 30%/70%, 50%/50%, 70%30%, and 

90%/10% (see Fig. 7 for the reference spectra). 
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