

Paleolakes, paleofloods, and depressions in Aurorae and Ophir plana, Mars: Connectivity of surface and subsurface hydrological systems

Goro Komatsu, Gaetano Di Achille, Ciprian Popa, Stefano Di Lorenzo,

Angelo Pio Rossi, Jose Alexis Palmero Rodriguez

▶ To cite this version:

Goro Komatsu, Gaetano Di Achille, Ciprian Popa, Stefano Di Lorenzo, Angelo Pio Rossi, et al.. Paleolakes, paleofloods, and depressions in Aurorae and Ophir plana, Mars: Connectivity of surface and subsurface hydrological systems. Icarus, 2009, 201 (2), pp.474. 10.1016/j.icarus.2009.01.010 . hal-00533498

HAL Id: hal-00533498 https://hal.science/hal-00533498

Submitted on 7 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Paleolakes, paleofloods, and depressions in Aurorae and Ophir plana, Mars: Connectivity of surface and subsurface hydrological systems

Goro Komatsu, Gaetano Di Achille, Ciprian Popa, Stefano Di Lorenzo, Angelo Pio Rossi, Jose Alexis Palmero Rodriguez

PII:S0019-1035(09)00032-3DOI:10.1016/j.icarus.2009.01.010Reference:YICAR 8892

To appear in: Icarus

Received date:1 October 2008Revised date:23 January 2009Accepted date:23 January 2009

Please cite this article as: G. Komatsu, G. Di Achille, C. Popa, S. Di Lorenzo, A.P. Rossi, J.A.P. Rodriguez, Paleolakes, paleofloods, and depressions in Aurorae and Ophir plana, Mars: Connectivity of surface and subsurface hydrological systems, *Icarus* (2009), doi: 10.1016/j.icarus.2009.01.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Paleolakes, paleofloods, and depressions
2	in Aurorae and Ophir plana, Mars:
3	Connectivity of surface and subsurface hydrological systems
4	
5	Goro Komatsu ¹ , Gaetano Di Achille ^{1, 2} , Ciprian Popa ^{3, 4} ,
6	Stefano Di Lorenzo ¹ , Angelo Pio Rossi ⁵ , Jose Alexis Palmero Rodriguez ⁶
7	
8	
9	¹ International Research School of Planetary Sciences
10	Università d'Annunzio, Viale Pindaro 42, 65127 Pescara
11	Italy
12	
13	² Now at: Laboratory for Atmospheric and Space Physics
14	University of Colorado, Boulder, Colorado 80309
15	USA
16	
17	³ Osservatorio Astronomico di Capodimonte
18	Salita Moiariello 16, 80131 Napoli
19	Italy
20	
21	⁴ Department of Geology
22	University "Al. I. Cuza"
23	Iasi, Bulevardul Carol I, Nr.11, 700506
24	Romania
25	
26	³ International Space Science Institute
27	Hallerstrasse 6, CH-3012 Bern, CH
28	Switzerland
29	
30	⁶ Planetary Science Institute
31	Tucson, Arizona 85719
32	USA
33	
34	48 pages of text, 1 table, and figure captions
35	16 figures
36	

37	Proposed running head:
38	Paleolakes and paleofloods in Aurorae and Ophir plana
39	
40	
41	
42	
43	
44	
45	
46	
47	Corresponding author: Goro Komatsu
48	
49	International Research School of Planetary Sciences
50	Università d'Annunzio, Viale Pindaro 42
51	65127 Pescara
52	Italy
53	
54	Tel.: +39-085-453-7507; fax: +39-085-453-7545.
55	E-mail address: goro@irsps.unich.it (G. Komatsu).

 $\mathbf{2}$

56

Abstract

57

The plains of Aurorae and Ophir in the equatorial region of Mars display extensive 58geomorphic evidence indicative of paleo-hydrological processes linking surface and 59subsurface. Elaver Vallis in Aurorae Planum south of Ganges Chasma is an outflow 60 channel system >180 km long, and here inferred to have formed by cataclysmic 61 spillover flooding from a paleolake(s) contained within the Morella crater basin. 62 Ganges Cavus is an enormous 5-km-deep depression of probable collapse origin located 63 The fluid responsible for the infilling of the Morella basin within the Morella basin. 64 may have emerged at least partially through Ganges Cavus or its incipient depression. 65The fluid may have been supplied also from small-scale springs within the basin. It is 66 67 reasonable to assume that water, sometimes sediment-laden and/or mixed with gases, 68 was the responsible fluid for these phenomena. Similar paleo-hydrological processes are inferred also in Ophir Planum. 69 Water emergence may have occurred as consequences of ground ice melting or breaching of cryosphere to release water from 7071the underlying hydrosphere. Dike intrusion is considered to be an important cause of 72formation for the cavi and smaller depressions in Aurorae and Ophir plana, explaining also melting of ground ice or breaching of cryosphere. Alternatively, the depressions 73

74	and crater basins may have been filled by regional groundwater table rising during the
75	period(s) when cryosphere was absent or considerably thin. In both cases, the large
76	quantities of water necessary for explaining the paleo-hydrological processes in Aurorae
77	and Ophir plana may have been derived through crustal migration from the crust of
78	higher plains in western Ophir Planum where water existed in confined aquifers or was
79	produced by melting of ground ice due to magmatic heating or climatic shift, or from a
80	paleolake in Candor Chasma further west.
81	

Keywords: Mars, Surface; Geological Processes; Mineralogy

83 1. Introduction

84
85 Water on Mars is a subject of paramount importance. Among various water-related
86 processes on the planet, there are long histories of studies on paleo-crater lakes (e.g.,
Cabrol and Grin, 1999; Ori et al., 2000; Malin and Edgett, 2003; Pondrelli et al., 2005;
Di Achille et al., 2006) and cataclysmic flood channels (e.g., Baker and Milton, 1974;
89 Baker, 1978; Komatsu and Baker, 1997; Burr et al., 2002). The Valles
90 Marineris-chaotic terrain transition zone on Mars (Fig. 1) is characterized by
91 morphologic and morphometric characteristics that are commonly interpreted to be
92 indicative of interactions between hydrologic and tectonomagmatic activities (e.g.,
93 Rotto and Tanaka, 1995; Mège and Masson, 1996c; Dohm et al., 2002; Chapman and
Tanaka, 2002; Greeley et al., 2003; Komatsu et al., 2004; Rodriguez et al., 2006).
95 Excellent examples of paleo-crater lakes, outflow channels, and their associated
96 collapse features are present in this zone, providing an opportunity for assessing their
97 inter-relationships in detail. We use the term "depression" for the collapse features in
98 this paper in order to distinguish them from impact crater basins. And the data sets
99 acquired by the Mars Global Surveyor and Mars Odyssey missions have already shed
100 new light on the lacustrine-fluvial history and possible recharging mechanisms (e.g.,

101	Coleman et al., 2003; Harrison and Grimm, 2004; Russell and Head, 2007; Coleman et
102	al., 2007; Coleman and Dinwiddie, 2007).
103	Coleman et al. (2007) conducted the first comprehensive study of Aurorae and Ophir
104	plana, the plains near Ganges Chasma (Figs. 1, 2) in the Valles Marineris-chaotic terrain
105	transition zone, described an outflow channel called Allegheny Vallis, and concluded
106	that the floodwater emerged from the subsurface through a depression called Ophir
107	Cavus. They also concluded that an ice-covered paleolake in Candor Chasma to the
108	west of Aurorae and Ophir plana may have been the original source of the water that
109	eventually emerged in Ophir Cavus.
110	In this paper, we present results of a combined morphological, topographical and
111	spectroscopic analysis of Aurorae and Ophir plana utilizing newly available
112	remote-sensing data from the Mars Express and Mars Reconnaissance Orbiter missions.
113	In particular, we investigated evidence of various paleolakes formed by groundwater
114	emergence and their relationship with outflow events. We also discuss about possible
115	mechanisms of subsurface water migration and its emergence in the region.
116	

2. Method

119	An integrated analysis utilizing a multi-spatial-resolution, multi-spectral planetary
120	data set allows simultaneous interpretations of landforms in regional to local contexts.
121	In this study, we investigated areas in Aurorae and Ophir plana using Viking imagery,
122	Mars Orbiter Laser Altimeter (MOLA) Digital Elevation Models (DEMs), wide and
123	narrow angle Mars Orbiter Camera (MOC) images, Thermal Emission Imaging System
124	(THEMIS) visible (VIS) and infrared (IR, both daytime and nighttime) images, High
125	Resolution Stereo Camera (HRSC) images, and High Resolution Imaging Science
126	Experiment (HiRISE) images. The remote sensing images were radiometrically and
127	geometrically calibrated with the United States Geological Survey - Integrated Software
128	for Imagers and Spectrometers (ISIS) software system.
128 129	for Imagers and Spectrometers (ISIS) software system. Topography and image data were projected using the IAU 2000 reference ellipsoid
128 129 130	for Imagers and Spectrometers (ISIS) software system. Topography and image data were projected using the IAU 2000 reference ellipsoid for Mars (Seidelmann et al, 2002). Topographic and imagery data were map-projected
128 129 130 131	for Imagers and Spectrometers (ISIS) software system. Topography and image data were projected using the IAU 2000 reference ellipsoid for Mars (Seidelmann et al, 2002). Topographic and imagery data were map-projected and integrated into a GIS system. The projection used for geological and
128 129 130 131 132	for Imagers and Spectrometers (ISIS) software system. Topography and image data were projected using the IAU 2000 reference ellipsoid for Mars (Seidelmann et al, 2002). Topographic and imagery data were map-projected and integrated into a GIS system. The projection used for geological and geomorphological mapping is Mercator, with both latitude and longitude centered at
128 129 130 131 132 133	for Imagers and Spectrometers (ISIS) software system. Topography and image data were projected using the IAU 2000 reference ellipsoid for Mars (Seidelmann et al, 2002). Topographic and imagery data were map-projected and integrated into a GIS system. The projection used for geological and geomorphological mapping is Mercator, with both latitude and longitude centered at zero. Area or length measurements were performed with equal-area and equi-distant
128 129 130 131 132 133 134	for Imagers and Spectrometers (ISIS) software system. Topography and image data were projected using the IAU 2000 reference ellipsoid for Mars (Seidelmann et al, 2002). Topographic and imagery data were map-projected and integrated into a GIS system. The projection used for geological and geomorphological mapping is Mercator, with both latitude and longitude centered at zero. Area or length measurements were performed with equal-area and equi-distant projections respectively. MOLA PEDR profiles (Smith et al., 1999) were interpolated
 128 129 130 131 132 133 134 135 	for Imagers and Spectrometers (ISIS) software system. Topography and image data were projected using the IAU 2000 reference ellipsoid for Mars (Seidelmann et al, 2002). Topographic and imagery data were map-projected and integrated into a GIS system. The projection used for geological and geomorphological mapping is Mercator, with both latitude and longitude centered at zero. Area or length measurements were performed with equal-area and equi-distant projections respectively. MOLA PEDR profiles (Smith et al., 1999) were interpolated with the Generic Mapping Tools (Wessel and Smith, 1998) at a spatial resolution of

137	Impact crater counting was conducted on THEMIS daytime and nighttime infrared
138	images (at 100 m/pixel). The minimum crater diameter taken into account for the
139	crater counting is 1 km. Calibration to absolute age was based on Hartmann (1999),
140	Hartmann and Neukum (2001), and Ivanov (2001). The time-stratigraphic assignment
141	was based on Tanaka et al. (1992).
142	The Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité (OMEGA) is a
143	visible - near infrared (VIS-NIR) image spectrometer that covers the spectral range of
144	0.38–5.1 μ m, subdivided into three channels. The data along with the processing
145	software are available online at the ESA Planetary Science Archive. The OMEGA
146	data were processed using the "readomega" software version 4 released through the
147	PDS node, and a custom IDL procedure was written to remove the atmosphere using a
148	scaled ratio spectrum of Olympus Mons base and top (summit), considering a constant
149	IR response (the same composition) over the flanks of Olympus Mons. Assuming this
150	as the average atmosphere contribution, each spectrum in OMEGA images is divided by
151	the "Olympus Mons" spectrum scaled for the main CO_2 absorption at 2.0 μ m. The
152	OMEGA analysis was conducted in the region of Aurorae Planum where the data
153	coverage of public release is reasonable. Several OMEGA orbits cover the area of
154	interest and were analyzed in order to derive maps from spectral signatures detectable in

155	the spectral range of OMEGA C (court) channel: pyroxene, olivine and hydrated
156	minerals: 0394_2, 0894_2, 0905_6, 0916_6, 0938_6, 0971_5, 1004_6, 1015_6, 1264_1,
157	1297_1, 1341_2, 1513_5, 1590_5. The above orbits either cover the area of interest,
158	either overlap orbits of interest in order to compare a certain spectral feature observed
159	on the ground to isolate it from possible interferences due to water ice clouds or
160	atmospheric residuals from the atmospheric correction itself.
161	The OMEGA C channel data corrected with the method described above were
162	successfully used to unambiguously map mafic mineral contents of Martian surface in
163	terms of high and low calcium pyroxenes as well as Mg and Fe end members of olivine
164	solid solution (forsterite and fayalite) (Mustard et al., 2005; Poulet et al., 2007). Maps
165	for the minerals of interest are derived using the spectral parameters defined by Poulet
166	et al. (2007). These spectral parameters represent the band depths at 1 μ m for Mg-rich
167	olivine (forsterite), and Fe-rich olivine (fayalite) with grain size >1 mm, 2 μ m band for
168	pyroxenes (low and high calcium pyroxene). See Poulet et al. (2007) for a detailed
169	description on spectral parameters. In order to avoid "false positive" detection of
170	minerals, we chose thresholds for detection limits (lower limits) as follows: pyroxene
171	0.01, forsterite 1.04, fayalite 1.02 (Poulet et al., 2007).

172 The detailed OMEGA analysis result is presented for the orbit 0394_2 that covers

173	western two-third of the Morella basin. The orbit was chosen because it has a
174	relatively high spatial resolution (~1.1 km), and the detected spectral units in this data
175	set are well correlated with albedo features or geomorphologically distinctive units on
176	the surface, and most importantly it has low 2.0 μ m water ice clouds absorption band.
177	
178	3. Geomorphological units
179	
180	Ganges, Eos-Capri chasmata and their surroundings (Fig. 1) are characterized by
181	major geomorphological units including canyons, chaotic terrains, plains, interior
182	layered deposits, craters, and channels. Many north-south-trending wrinkle ridges
183	(~10 km in width) cross the plains. We measured the cumulative crater population
184	density of the plains unit around Ganges Chasma (Fig. 3). Assuming that the counted
185	craters are of impact origin, the result indicates that the overall plains surfaces range
186	from Late Noachian to Early Hesperian in age. This is consistent with the Noachian to
187	Hesperian ages derived by Scott and Tanaka (1986).
188	Aurorae and Ophir plana are covered with many circular basins that are probably
189	impact craters of various sizes and degradation states (Fig. 2). An outflow channel
190	system called Elaver Vallis is observed in Aurorae Planum south of Ganges Chasma,

and it is connected with the Morella basin and terminates at the southern edge of

192	Ganges Chasma. Another outflow channel system called Allegheny Vallis occurs in
193	Ophir Planum west of Ganges Chasma, and it terminates at the western edge of Ganges
194	Chasma.
195	
196	4. Elaver Vallis and Morella paleolake
197	
198	4.1. Elaver Vallis, an outflow channel system
199	
200	Observations: Elaver Vallis is a >180-km-long, 70-km-wide channel system emanating
201	from Morella, a crater basin 70-80 km in diameter (Figs. 2, 4, 5, 7, 8). It is
202	characterized by an anastomosing pattern in its middle reach, and its floors are
203	longitudinally grooved. The lowermost reach of the channel system is a deep
204	V-shaped canyon with a theater-like head, which is distinctively different from the
205	anastomosing middle reach. Sediments accumulated on the bottom of Ganges Chasma
206	below the mouth of the V-shaped canyon, forming a large fan complex (Fig. 4). This
207	large Elaver fan complex is adjacent to a series of smaller fans to both east and west
208	directions along the canyon walls. All these fans have cone shapes typical of alluvial

209	fans, and their coalescence classifies them as bajadas. The Elaver fan complex has an
210	erosional margin that cuts an adjacent smaller fan to the west, indicating its later
211	formation at least at its last stage of development (Fig. 4).
212	A cross-cutting relationship of grooves is observed (Fig. 6a), implying progressive
213	incision in the topographically lower reach during a single event or multiple events. A
214	portion of plains to the east of the Elaver Vallis mouth is grooved in a manner similar to
215	the floors of Elaver Vallis (Fig. 6b). The east-west orientation of the grooves and their
216	elevations similar to those of the grooved lower reach of Elaver Vallis (Fig. 5) imply a
217	genetic link between the two grooved areas. Patches of chaotic terrain are distributed
218	on channel floors in the anastomosing middle reach (Figs. 4, 6c).
218 219	on channel floors in the anastomosing middle reach (Figs. 4, 6c). Interpretations: The large dimensions, the anastomosing pattern and longitudinal
218 219 220	on channel floors in the anastomosing middle reach (Figs. 4, 6c). <i>Interpretations:</i> The large dimensions, the anastomosing pattern and longitudinal grooves of probable erosional origin are consistent with the formation of Elaver Vallis
218 219 220 221	on channel floors in the anastomosing middle reach (Figs. 4, 6c). <i>Interpretations:</i> The large dimensions, the anastomosing pattern and longitudinal grooves of probable erosional origin are consistent with the formation of Elaver Vallis by flooding of a cataclysmic nature, similar to the floods that are considered to have
 218 219 220 221 222 	on channel floors in the anastomosing middle reach (Figs. 4, 6c). <i>Interpretations:</i> The large dimensions, the anastomosing pattern and longitudinal grooves of probable erosional origin are consistent with the formation of Elaver Vallis by flooding of a cataclysmic nature, similar to the floods that are considered to have formed outflow channels in the circum-Chryse region and elsewhere (e.g., Baker and
 218 219 220 221 222 223 	on channel floors in the anastomosing middle reach (Figs. 4, 6c). <i>Interpretations:</i> The large dimensions, the anastomosing pattern and longitudinal grooves of probable erosional origin are consistent with the formation of Elaver Vallis by flooding of a cataclysmic nature, similar to the floods that are considered to have formed outflow channels in the circum-Chryse region and elsewhere (e.g., Baker and Milton, 1974; Baker, 1978, 1982; Komatsu and Baker, 1997). Elaver Vallis is
 218 219 220 221 222 223 224 	on channel floors in the anastomosing middle reach (Figs. 4, 6c). <i>Interpretations:</i> The large dimensions, the anastomosing pattern and longitudinal grooves of probable erosional origin are consistent with the formation of Elaver Vallis by flooding of a cataclysmic nature, similar to the floods that are considered to have formed outflow channels in the circum-Chryse region and elsewhere (e.g., Baker and Milton, 1974; Baker, 1978, 1982; Komatsu and Baker, 1997). Elaver Vallis is interpreted to be an outflow channel system formed by spillover from the Morella basin:
 218 219 220 221 222 223 224 225 	on channel floors in the anastomosing middle reach (Figs. 4 , 6c). <i>Interpretations:</i> The large dimensions, the anastomosing pattern and longitudinal grooves of probable erosional origin are consistent with the formation of Elaver Vallis by flooding of a cataclysmic nature, similar to the floods that are considered to have formed outflow channels in the circum-Chryse region and elsewhere (e.g., Baker and Milton, 1974; Baker, 1978, 1982; Komatsu and Baker, 1997). Elaver Vallis is interpreted to be an outflow channel system formed by spillover from the Morella basin: a paleolake formed within the Morella basin and eventually reached the spillover level,

227	Vallis. This type of spillover flooding has been hypothesized for terrestrial
228	cataclysmic floods including the Bonneville flooding in western U.S.A. (O'Connor,
229	1993) and the Manych flooding from paleo-Caspian Sea (Komatsu and Baker, 2007),
230	and for the Ma'adim Vallis flooding from the Eridania basin on Mars (Irwin et al., 2002).
231	Although non-aqueous, for example, CO2 outburst hypotheses (e.g., Hoffman, 2000)
232	may not be totally ruled out, it is generally believed that CO ₂ flow, liquid and/or gas,
233	lacks the capacity for producing the diverse range of morphology observed at Elaver
234	Vallis (e.g., Coleman, 2003). The volcanic hypothesis proposed by Leverington
235	(2004) for outflow channels is not totally ruled out, but no clear lava flow morphology
236	(e.g., rough lava surfaces, flow margins) is observed along the Elaver Vallis reaches
237	even with high-resolution images.

It is difficult to clearly determine the frequency and magnitude of the Elaver Vallis flooding from the available information alone. Almost the entire plains east of the Morella basin is below an elevation level of 1800 m, and the majority of channel floors are below 1600 m (**Fig. 5b**). For the single-flood hypothesis, a wide sheet flood is expected to occur at the early phase of cataclysmic flooding. And the flood flow may have expanded beyond the northern bank of Elaver Vallis. However, we do not see clear erosional flood morphologies such as grooves on the plains materials north of

245	Elaver Vallis. This indicates that the sheet flood neither passed over nor left erosional
246	features on these materials perhaps because it effectively and rapidly excavated an
247	incipient channel. As the flooding progressed, deep incision took place and the flood
248	flow was more confined. Alternatively, the high degree of floodwater dissipation led
249	to extensive sedimentary deposition during the early stages of outflow channel activity.
250	The central channel of Elaver Vallis is below 1500 m (Fig. 5b). Thus the observation
251	of the cross-cutting relationship of grooves in Fig. 6a is consistent with the deep
252	incision in the central channel.
253	For the multiple-flood hypothesis, earlier floods may have eroded the
254	topographically higher reaches, then later floods incised lower reaches. As discussed
255	later, the spillway of the Morella basin rim appears to have been progressively cut low
256	by the flood action. If this was the case, earlier floods could have taken advantage of
257	higher potential energy from higher elevations and also larger volumes of the lakes, thus
258	discharges for earlier floods should have been larger than those of later floods. A more
259	precise assessment of flood discharge and inundation would require usage of numerical
260	computer simulation programs such as the one employed by Miyamoto et al. (2006,
261	2007).

262 The MOLA-derived longitudinal profiles and cross-sectional profiles (Fig. 7)

263	provide additional information on the origins of Elaver Vallis and its source area. We
264	calculated a discharge rate range for the Elaver Vallis flooding using Manning's
265	equation modified for Mars (e.g., Komar, 1979). We assumed that post-flood
266	degradation and sedimentation of the channel are negligible although later flow events
267	from patches of chaotic terrain may have contributed to further incision of the channel
268	floors. In the lower middle reach of Elaver Vallis, the average slope is about 0.003,
269	which we used to approximate the energy slope. We use the average flow depth in
270	place of the hydraulic radius on the assumption that the flow width was significantly
271	wider than the depth. The average flow depth range used in the calculation is 30–400
272	m. The 30-m floodwater depth is a realistic lower limit for Martian outflow channels
273	based on expected rates of evaporation and freezing (Wilson et al., 2004). For the
274	upper flow depth, a value of 400 m was derived from the deepest depth of the lower
275	middle reach. This is based on a bankfull discharge assumption for simplicity,
276	although this assumption may not be applicable for outflow channels on Mars as
277	suggested by others (e.g., Williams et al., 2000; Wilson et al., 2004; Coleman, 2005).
278	We note that highwater marks that can be used to constrain the maximum possible
279	discharge rate are difficult to be determined in Elaver Vallis, and the bankfull discharge
280	assumption is helpful in the comparison with previous estimates that were often

281	conducted with the same assumption. The Manning coefficient (friction factor) was
282	assumed to be 0.04–0.06, bracketing the number 0.0545 recommended by Wilson et al.
283	(2004). The calculated discharge rate is in the range of 10^6 – 10^8 m ³ s ⁻¹ .
284	These values are at least an order of magnitude smaller than the values estimated for
285	the largest circum-Chryse outflow channels (e.g., Robinson and Tanaka, 1990).
286	Nevertheless, the discharge rates could have been equivalent or exceeded those
287	estimated for the greatest terrestrial cataclysmic flood events $(10^6-10^7 \text{ m}^3 \text{ s}^{-1})$ such as
288	the Glacial Lake Missoula flooding in the northwestern United States, or the Altai and
289	Yenisei flooding in Central Asia, which resulted from ice-dam failure(s) (e.g., O'Connor
290	and Baker, 1992; Baker et al. 1993; Komatsu et al., 2099). Therefore it is an indication
291	of cataclysmic nature of the spillover from the Morella basin. The discharge rate range
292	of 10^6 – 10^8 m ³ s ⁻¹ is also consistent with the maximum volume of water available for
293	flooding in the hypothesized Morella paleolake (2396 km ³ ; see section 4.2.).
294	The lowermost reach of Elaver Vallis is characterized by a much steeper gradient
295	(~0.13) but the flows during the presumed headward recession probably remained at
296	relatively low discharge rates if the flows ever existed as surface runoff. We
297	hypothesize the deep V-shaped canyon with a theater-like head to have formed after the
298	major flooding by headward scarp recession along a pre-existing channel floor by

299	processes such as groundwater sapping or debris flows. The V-shaped canyon and the
300	Elaver fan complex may have formed during the late-stage epoch of intense fluvial
301	activity (latest Noachian to early to mid-Hesperian), which was discussed by Howard et
302	al. (2005).
303	Grooves are observed on a portion of plains not directly connected with Elaver Vallis
304	(Fig. 6b). The responsible flood for the grooves was likely the same as the one from
305	the Morella basin, implying that the canyon geometry in this area during the flooding
306	was not exactly the same as today. Backwasting or downfaulting of canyon walls
307	probably continued after the flooding, and these are likely the causes of the canyon wall
308	modification.
309	The type of chaotic terrains identified in the middle reach of Elaver Vallis (Figs. 4,
310	6c) is also known in other areas including at Ravi Vallis (Coleman, 2005) and at a
311	tributary of Ares Vallis (Rodriguez et al., 2005b). Their formation may have been
312	related to flood excavation down to the cryosphere/hydrosphere contact (Coleman,
313	2005) or destabilized icy deposits along the channel (Rodriguez et al., 2005b).
314	
315	4.2. Morella paleolake

317	Observations: The Morella basin exhibits diverse features that indicate its complex
318	history (Fig. 8). The basin rim in the east is open as a spillway for Elaver Vallis, and
319	grooves are observed nearby (Fig. 9a). A discontinuous chain of degraded terraces is
320	observed along the inner rim of the Morella basin. Dark-toned plains are distributed
321	adjacent north of a large depression called Ganges Cavus located at the southern part of
322	the basin and also in the areas close to the spillway (Fig. 8). High-resolution images
323	of the plains reveal dark-toned materials that are relatively flat-lying and are
324	characterized, at least locally, by their margins raised above the adjacent basin floor
325	(positive relief) (Fig. 9b). Moderately dark-toned (or moderately light-toned) plains
326	with varying shades are distributed in the central part of the basin. Some of the plains
327	are as dark as the plains adjacent north of Ganges Cavus. THEMIS infrared data
328	indicate that the dark-toned plains adjacent north of Ganges Cavus and in the areas
329	close to the spillway are lighter in the daytime image but darker in the nighttime image
330	in comparison to their surrounding Morella floors (Fig. 10). Thus these dark-toned
331	plains are probably filled or covered with materials that have relatively low thermal
332	inertia values compared with the materials of the surrounding floors. In comparison,
333	the light-toned unit exposed in the northwestern and also northeastern parts of the basin
334	seems to have materials with relatively high thermal inertia values. The moderately

dark-toned central basin plains probably have materials with intermediate thermalinertia values.

There are dark-toned materials observed in shallow, relatively narrow (<500 m) 337 channels that are carved in the light-toned unit in both the northeastern and 338 northwestern parts of the basin (Figs. 8, 9c). These channels originate from the rim 339 area or from the terraces. In the moderately dark-toned plains in the central part of the 340 basin, there are dark-toned materials that appear to be emplaced in shallow, relatively 341wide (up to several kilometers) channels (Fig. 8). These channels do not exhibit 342 clearly-defined banks but are characterized by quasi-dendritic patterns following 343 topographic lows. The dark-toned materials in both the narrow and wide channels are 344dark in visible images (both HRSC and THEMIS VIS), light in THEMIS infrared 345daytime images and dark in infrared nighttime images (Figs. 8, 9c, 10), similar in their 346 visible and infrared (albedo and thermal inertia) properties to the materials occurring in 347the plains adjacent north of Ganges Cavus and in the areas close to the spillway. Some 348dark-toned materials of the channels appear to show their margins as positive relieves 349 instead of simply filling in low topographies edge to edge. The lower terminations of 350the narrow and wide channels are delineated at two near-uniform elevation levels at 3513521200 m and 1120 m respectively (Fig. 11a), elevations chosen to maximize the fitting of

353 channel terminations.

Ganges Cavus is \sim 5 km deep (Fig. 7), which is equivalent to the depths of nearby 354Ganges Chasma. Layering is exposed in the top most inner walls of the cavus, but 355talus materials cover lower walls (Fig. 8). The bottom of the cavus is relatively flat, 356357 accumulating slope-derived deposits and dark dunes. We note that the dark dunes have characteristics similar in albedo and thermal inertia to those of the dark-toned materials 358 in the Morella basin plains and in the channels (Figs. 8, 10). In addition, the wind 359direction inferred from slip faces of the dark dunes is from NNW, implying that at least 360 part of the dune materials was derived from the dark-toned materials on the Morella 361 basin floor. The sediment-transporting wind initiates flow separation (Bourke et al., 362 2004) at the upwind wall of Ganges Cavus and probably deposits the sediments on the 363 cavus floor. A group of elongated, low-profile hills are observed in the southeastern 364part of the Morella basin floor between Ganges Cavus and the spillway (Figs. 8, 10). 365A crater named Johnstown characterized by its irregular rim is located to the north of 366 We identified a small channel originating from a shallow depression 367 these hills. outside of the Morella basin southwest rim (Fig. 9d). 368

369 The OMEGA analysis reveals interesting results for the Morella basin (Fig. 11b, 11c, 370 11d). Our detailed co-registration work of the OMEGA maps (derived from orbit

371	0394_2) covering the western two-third of the basin and the HRSC image found good
372	correlations between some mineral occurrences and geological units. Pyroxene is
373	concentrated in the dark-toned plains adjacent north of Ganges Cavus and in moderately
374	dark-toned north-central basin plains. Although the spatial resolution of the OMEGA
375	data we used does not permit to study the composition of the dark-toned materials
376	observed in the wide channels of the central basin area, a recently released Compact
377	High Resolution Imaging Spectrometer (CRISM) data set (image number
378	FRT000083F4) confirms that they are enriched in pyroxene. In addition, areas with
379	enhanced pyroxene concentrations are apparent on the bottom of Ganges Cavus (Fig.
380	11b), and one of the areas corresponds to dark dunes. Pyroxene is distributed also
381	outside of the Morella basin. The floor of the Morella basin is enriched in olivine
382	minerals, both forsterite and fayalite, and their presence outside of the basin is not
383	confirmed either because they do not exist or their presence is under the instrumental
384	detection limits (Fig. 11c, d). Their distribution patterns in the basin are broadly
385	consistent with that of olivine mapped by the OMEGA team (Mustard et al., 2005).
386	Olivine minerals appear to be highly enriched in the light-toned basin unit distributed in
387	the northwest part of the basin and moderately enriched in moderately dark-toned
388	west-central basin plains. Their distributions in the central basin area do not coincide

389 well with that of pyroxene. The olivine minerals are not detected in the dark-toned plains adjacent north of Ganges Cavus. Hydrated mineral absorptions centered at 390 around 1.9 µm are not detected in the Morella basin. 391 Interpretations: The highest elevation indicative of spillover is ~1780 m according to 392Coleman et al. (2007) based on a small cross-over channel (Fig. 8). At the 1780-m 393 level, the topographic contour line does not close within the Morella basin on the east 394 Degradation of the rim during the flooding or after disappearance of a paleolake 395 side. 396 at 1780 m may explain this situation. The MOLA grid data indicate that the range of 1460–1480 m is the elevation at the spillover gap that was most likely resulted from 397 However, this elevation may be a false artifact overestimated by 398 flood incision. smoothing effect of interpolation in an area without MOLA tracks as pointed by 399 400 Coleman et al. (2007). They instead measured elevations of the Morella floor west of 401 the gap (1230 m) and of the Elaver Vallis floor east of the gap (1250 m) respectively, and consider that the 1250-m level represents the final outflow elevation. We adopted 402 this spillway elevation and estimated the volume of the paleolake (Table 1). The 403 404volume of Ganges Cavus, which may or may not have been part of the paleolake, was estimated separately. The paleolake volume for 1780 m was also estimated assuming 405406 that the topographic contour closes at this level (**Table 1**). The lake draining from the

407	Morella basin must have been a powerful event. Indeed, the grooved morphology
408	observed inside the Morella basin near the spillway testifies for the high-energy nature
409	of the spillover event (Figs. 8, 9a). The probable maximum volume of the paleolake
410	above the final spillway elevation (1250 m) assuming the elevation level of 1780 m was
411	estimated, and it is \sim 2396 km ³ . This value is nearly equivalent to the volume of the
412	Glacial Lake Missoula (2184 km ³ ; Clark et al., 1984), but much lower than the volume
413	of water available for the Ma'adim flooding from the Eridania basin (100,000 km ³ ;
414	Irwin et al., 2002). Thus, the maximum volume of water available for the Elaver Vallis
415	flooding was likely similar to that of the Glacial Lake Missoula flooding. But the
416	exact process of the spillway downcutting in the Morella basin rim could have been
417	considerably different from that of ice-dam failure associated with the Glacial Lake
418	Missoula flooding.
419	We note that no convincing observations, such as deltaic bodies and wave-cut
420	terraces, indicative of a long-lasting stable paleolake exist in the Morella basin. The
421	discontinuous chain of degraded terraces may mark a shoreline formed by modification
422	of these features due to construction and erosion of wave action, but alternative
423	interpretations are that they represent either slumped inner rim materials or
424	impact-excavated lower strata of a multi-layered crust. However, the Morella basin

425	may record other lines of evidence for a paleolake of at least temporal presence as
426	indicated by the lower terminations of channels, which are interpreted to be shorelines
427	separating incoming fluid and a standing body of water. We estimated volumes of the
428	purported paleolake reconstructed from the elevations of the possible shorelines at 1200
429	m and 1120 m (Fig. 11a) assuming that the topography of the Morella basin has not
430	changed drastically since the paleolake formation (Table 1).
431	The dark-toned plains adjacent north of Ganges Cavus are encompassed by the
432	possible 1120-m shoreline level and are enriched in pyroxene with no olivine minerals
433	detected. The light-toned unit exposed in the northwestern part of the basin has high
434	concentrations of olivine minerals but pyroxene is not detected, and its lower elevation
435	boundary coincides fairly well with the possible 1200-m shoreline level. In the
436	moderately dark-toned plains of the central basin area, both pyroxene and olivine are
437	detected but their distributions do not overlap well. The dark-toned materials observed
438	in the channels with their terminations at two elevation levels (1200 m, 1120 m) are
439	similar in albedo and thermal inertia to the pyroxene-rich dark-toned materials on the
440	Morella basin floor. Some of them are also enriched in pyroxene as the CRISM data
441	set indicates.

442 Multiple interpretations are plausible for explaining the above-mentioned

443	observations. 1) The pyroxene-rich dark-toned materials stratigraphically underlie the
444	olivine-rich materials, and the former were exposed on the surface by fluid and wind
445	erosion. We cannot totally rule out this hypothesis, but it is difficult to explain why the
446	pyroxene-rich dark-toned materials occur in channels and topographic lows at variable
447	elevations. 2) The pyroxene-rich dark-toned materials were likely emplaced over the
448	olivine-rich materials by fluvial and lacustrine processes, represented by the dark-toned
449	channels and the dark-toned plains respectively. In the central part of the basin, the
450	emplacement was likely partial, leaving some olivine-rich materials exposed. In this
451	scenario, the distributions of the pyroxene-rich dark-toned materials could reflect that
452	either they are leftover sediments, consisting of relatively fine-grained particles, of the
453	Elaver flooding and/or of the receding paleolake, or influx of materials occurred from
454	the surrounding crater rim, for example by springs, into the paleolake. The
455	positive-relief property of the dark-toned materials may be due to erosional processes
456	that modified their margins. However, layering, typical of fluvial and lacustrine
457	sediments, is not observed in the examined high-resolution images (e.g., Fig. 9b). 3)
458	The pyroxene-rich dark-toned materials are eolian or volcanic deposits that filled in
459	channels and topographic lows, or are superficial eolian or volcanic deposits that
460	constitute the topmost part of sediments filling in channels and topographic lows. The

461	eolian interpretation of 3) may be consistent with the fact that the dark-toned materials
462	on the Morella basin floor are similar to the dark dunes on the bottom of Ganges Cavus
463	in albedo and thermal inertia (Figs. 8, 10) and also the observation of pyroxene
464	detection in the area of the dark dunes (Fig. 8, 11b). However, no well-developed
465	eolian bedform (equivalent of the dark dunes on the bottom of Ganges Cavus) occurs in
466	the dark-toned materials on the Morella basin floor, and their eolian interpretation
467	remains unconfirmed. The positive-relief property of the dark-toned materials may be
468	a primary depositional form resulted from high-yield strength materials such as lava
469	flows. However, it is also difficult to confirm the volcanic interpretation of 3) since
470	there are no clear indications of volcanic processes such as volcanic edifice, lava
471	morphology, and layering of pyroclastic flow deposits on the Morella basin floor.
472	The current olivine mineral distributions on the floor of the Morella basin raise two
473	questions: 1) how they formed; 2) if alteration of the olivine minerals due to the
474	hypothesized extensive hydrological activities, represented by the paleolake formation,
475	occurred. Olivine is rich in magmatic rocks of mafic and ultramafic varieties. It is
476	possible that the purported Morella impact event excavated the Martian crust and
477	exposed olivine-rich layers. Alternatively, the basin was filled by olivine-rich volcanic
478	materials after the formation of the basin but before the paleolake formation. Other

479	olivine-rich units were discovered in eastern Ganges Chasma by THEMIS observation
480	(Christensen et al., 2003), and because olivine is unstable in aqueous conditions it was
481	argued that 1) significant subsurface weathering did not occur in this region, or 2)
482	significant surface weathering has not occurred since these units were exposed. The
483	most plausible explanation for its survival in the Morella basin floor is that the time
484	scale for the extensive hypothesized hydrological activities was too short to cause
485	appreciable alteration although it is difficult to quantify the length of the time. Such
486	scenario may also explain the absence of detected hydrated minerals in the area at least
487	with the OMEGA spatial resolution.
488	We point out a possibility that the olivine-rich materials were formed by magmatic
489	processes during the possible dry period lasting up until today after the last paleolake
490	event. This scenario explains the survival of olivine minerals. However,
491	non-aqueous processes of channel formation and emplacement of the dark-toned
492	materials during the dry period may need to be accounted for. The channel formation
493	could still be attributed to aqueous processes but of limited extent, such as localized

- 494 springs, in order to avoid alternation of the olivine minerals. In this scenario, the 495 pyroxene-rich dark-toned materials may have been brought in the Morella basin floor
- 496 by wind from the outside or produced locally by magmatic processes.

497	Finally, non-aqueous origins such as the CO ₂ outburst hypothesis (Hoffman, 2000)
498	for Elaver Vallis may explain the survival of olivine minerals in the Morella basin. As
499	mentioned earlier, the validity of such hypothesis has not been accepted. It remains to
500	be investigated if the olivine survival is related to its existence in a non-aqueous
501	environment.
502	
503	5. Allegheny Vallis, Walla Walla Vallis, and paleolake formation in a
504	40-km-diameter basin

505

506 5.1. Allegheny Vallis, an outflow channel system

507

508 *Observations:* In Ophir Planum, Allegheny Vallis originates from a 1800-m-deep 509 elongated depression called Ophir Cavus (**Fig. 12**) (Dinwiddie et al., 2004). Terraces 510 are observed at the upper reach of Allegheny Vallis (**Fig. 13a**), and layered outcrops 511 occur on the bottom of Ophir Cavus (**Fig. 13b**). The uppermost layer of these outcrops 512 in Ophir Cavus appears to be light toned. A northern tributary of Allegheny Vallis 513 originates from small depressions (**Figs. 12, 13c**). The Allegheny Vallis system is 514 slightly longer than Elaver Vallis but narrower in width. It is ~200 km long and the

515	maximum width is 15-25 km at its expanded reaches (Fig. 12). Allegheny Vallis'
516	middle reach is anastomosing and exhibits a complex pattern of scablands (Coleman et
517	al., 2007). Longitudinal grooves are developed on some parts of its floors. At its
518	middle reach, the channel cuts across a low north-south-trending ridge (Fig. 12) that is
519	interpreted to be part of a wrinkle ridge system concentric to the Tharsis bulge (e.g.,
520	Wise et al., 1979; Mège and Masson, 1996b). Expansion of the reach is observed after
521	the breaching of the wrinkle ridge (Fig. 12). A deep V-shaped canyon with theater-like
522	heads is observed in the expanded lowermost reach of Allegheny Vallis (Fig. 12).
523	Interpretations: The morphological characteristics, in addition to its large-scale
524	dimensions, make it possible to classify Allegheny Vallis as an outflow channel system
525	formed by cataclysmic flooding, probably of water. Either single or multiple flooding
526	is envisaged for its formation, and the terraces (Fig. 13a) could have resulted from
527	waning of single flood or from multiple floods. The discharge rate range for
528	Allegheny Vallis was estimated by Coleman et al. (2007) to be 0.7–3 x 10^6 m ³ s ⁻¹ with
529	an assumed water depth range of 30–60 m. This value range is in general significantly
530	lower than the estimated discharge rate range for Elaver Vallis $(10^6-10^8 \text{ m}^3 \text{ s}^{-1})$, but it is
531	explainable mainly because 1) Elaver Vallis is deeper and wider than Allegheny Vallis,
532	2) a bankfull discharge assumption was applied for estimating the upper limit of flow

533	depth in the Elaver Vallis calculation, but not for Allegheny Vallis. Other parameters
534	such as energy slope and Manning coefficient used in the two estimations are essentially
535	the same.
536	The cross-cutting relationship indicates that the channel formation postdates that of
537	the wrinkle ridge. The terminal deep V-shaped canyon is similar to the terminal
538	V-shaped canyon associated with Elaver Vallis, and groundwater sapping/debris flow
539	processes after the flooding were probably responsible for its formation.
540	
541	5.2. Walla Walla Vallis
542	
543	Observations: Wallula, a crater basin approximately 12 km in diameter is pierced by
544	Walla Walla Vallis. Walla Walla Vallis (~40 km long) (Figs. 12, 14) is connected with
545	a pit-crater chain to the south of the crater basin. Another channel originating from
546	Ophir Cavus and merging with Walla Walla Vallis was noted by Dinwiddie et al. (2004).
547	The floor of the Wallula basin is filled with a dark-toned deposit that seems to have its
548	eastern margin raised above the basin floor. This positive-relief property is similar to
549	that of the dark-toned materials on the Morella basin (Fig. 9b). A channel segment of
550	Walla Walla Vallis is carved on this deposit (Fig. 14).

551	Interpretations: The system of Walla Walla Vallis and the Wallula basin was first
552	studied by Dinwiddie et al. (2004), and they suggested it to have sourced water from the
553	pit-crater chain. The dark-toned deposit in the Wallula basin seems to have been
554	transported, at least partially through Walla Walla Vallis, from the pit-crater chain.
555	This is consistent also with the fact that similar dark-toned materials are observed also
556	in the vicinity of the pit-crater chain (Fig. 14). Two interpretations are possible for the
557	origin of the dark-toned deposit: 1) the fluid emerged from the pit-crater chain and
558	transported to the Wallula basin was a water-sediment mixture such as
559	hyperconcentrated flow or debris flow; 2) the dark-toned deposit consists of volcanic
560	materials derived from the pit-crater chain, which is a hypothesis similar to the one
561	proposed in western Memnonia (Leverington and Maxwell, 2004).

562

563 5.3. Paleolake in a 40-km-diameter basin

564

565 *Observations:* An unnamed crater basin 40 km in diameter east of Wallula exhibits a 566 fan-shaped deposit at the mouth of a short valley cutting into the rim on its northeastern 567 section (**Fig. 15a**). The lower larger fan's external geometry is characterized by a 568 broadly flat, low-gradient top portion and steep front slopes inclining towards the basin.

569	Layers are visible at the front slopes (Fig. 15b). A smaller, much thinner multi-leveled
570	fan complex is superposed on top of the lower fan (Fig. 15b). The valley behind the
571	fan-shaped deposit has somewhat unusual morphology for a fluvial valley: it consists of
572	two quasi-circular depressions along its long axis (Fig. 15a). An elongated depression
573	is carved in the southern rim of this basin, and a small valley is incised into a massif
574	east of the basin (Fig. 15a).
575	Interpretations: The external geometry of the fan-shaped deposit is similar to what is
576	often observed with a deltaic body called Gilbert-type delta, thus it is likely a fan delta
577	(Di Achille and Komatsu, 2008). Gilbert-type deltas commonly occur on Earth
578	(Gilbert, 1890), and possible Gilbert-type deltas have been found elsewhere on Mars
579	(e.g., Ori et al., 2000). The layers observed at the front slopes imply vertical stacking
580	of sediments or erosional exposure of sediments deposited by progradation. Two
581	interpretations are possible for the observation of the lower fan and the thinner
582	multi-leveled fan complex: 1) the lower fan formed first with a larger amount of
583	sediment supply, and the upper fan formed later with a smaller amount of sediment
584	supply; 2) the lower fan and the upper fan together formed a fan delta that was later
585	eroded to form multiple scarps, which is an interpretation similar to that of a multi-level
586	fan complex at the mouth of Tyras Vallis (Di Achille et al., 2006).

587	The presence of a fan delta indicates that this basin was inundated by fluid, most
588	likely water, sometime in the past. The elevation of the main delta front (~1300 m)
589	coincides with channel termini of the centripetal drainage system positioned inward of
590	the rim (Di Achille and Komatsu, 2008) (Fig. 15a). This level most likely represents a
591	paleolake surface.
592	
593	6. Discussion
594	
595	6.1. Emergence of water from Ganges and Ophir cavi, and other smaller depressions
596	
597	With the scarcity of observed impact craters within 5-km-deep Ganges Cavus
598	possibly due to slope failures of its steep walls and accumulations of mass-wasting
599	materials on the bottom, establishing the age relationship between this depression and
600	other geological units is a difficult task. The timing of the Ganges Cavus formation

601 could have been 1) before the formation of the purported paleolake, 2) concurrent with
602 the paleolake, or 3) after the disappearance of the paleolake. We argue that Ganges
603 Cavus, not necessarily at its present geometry, was possibly a source of water that filled

604 the Morella basin up to over 1700 m. Precipitation in the area may not be ruled out as

605	the source of water in the basin. In fact, the formation of dendritic valleys found near
606	Echus and Melas chasmata of the Valles Marineris system has been attributed to
607	precipitation (Mangold et al., 2004; Quantin et al., 2005). However, no clear
608	occurrence of similar fluvial valleys in the areas of Aurorae and Ophir plana has been
609	noted to date. This does not necessarily exclude the precipitation hypothesis, but it is
610	uncertain in these areas. This leaves groundwater rising through, but not restricted to,
611	Ganges Cavus as the probable mechanism of water supply within the Morella basin.
612	This view is consistent with Coleman et al. (2003, 2007) and Coleman and Dinwiddie
613	(2007), who interpreted Ganges Cavus as being undermined and excavated by the
614	eruption of confined groundwater. Emergence of groundwater is envisaged also in the
615	cases of chaos-originated outflow channels that are common in the circum-Chryse
616	region (Rotto and Tanaka, 1995) or of fracture-originated outflow channels (e.g., Burr et
617	al., 2002; Ghatan et al., 2005). The channels observed in the Morella basin floor (Fig.
618	8) indicate that water may have emerged not only from Ganges Cavus but also from
619	many other localized small-scale springs with in the basin.
620	The water emerging from Ganges Cavus may have rapidly or slowly filled the
621	Morella basin. After the paleolake reached the initial spillover elevation, a large

34

quantity of water was drained to Elaver Vallis through the spillway, and the peak
623	draining rate was high as indicated by the grooves near the spillway (Figs. 8, 9a). We
624	note that in the case of the multiple-flood hypothesis, the incision of the spillway gap
625	continued over multiple floods resulting from multiple infilling episodes of the Morella
626	basin. It is also possible that the cycle of the Morella paleolake formation and total
627	disappearance occurred more than once. The stabilization of the paleolake after the
628	Elaver flooding probably occurred at the elevation of the spillway (~1250 m) (Figs. 8,
629	11a). The lower terminations of channels at 1200 m and 1120 m may record paleolake
630	levels in the Morella basin during the receding phase (Figs. 8, 11a). The morphologies
631	of the elongated hills (Figs. 8, 10) observed in the area between Ganges Cavus and the
632	spillway, and Johnstown, a probable degraded impact crater, may be related to the
633	movement of water during the emergence from Ganges Cavus, the cataclysmic draining
634	to Elaver Vallis, or the receding phase of the remaining paleolake.
635	The cataclysmic nature of the spillover from a crater lake may be explained by rapid
636	incision/failure of the crater rim and consequent increase of discharge. Both of these
637	factors have a feedback on each other, further increasing the scale of flooding. We
638	note that possible rapid emergence of water from Ganges Cavus itself could have also
639	contributed to the high-discharge flood flows. In the case of Allegheny Vallis, the
640	source of the flooding was clearly Ophir Cavus. And the cataclysmic nature of the

641 flooding requires that water had to come out of the cavus rapidly.

642	In addition to Ganges and Ophir cavi, other smaller depressions exhibit evidence for
643	water emergence. For example, Walla Walla Vallis and the Wallula basin appear to
644	have received a water-sediment mixture from a pit-crater chain to the south, although
645	we cannot rule out volcanic origin for the observed features. Both the pit-crater chain
646	and Walla Walla Vallis are an order of magnitude smaller than Ophir Cavus and
647	Allegheny Vallis respectively, implying a much smaller scale of water emergence. The
648	small channel to the southwest of the Morella basin (Fig. 9d) and the branch of
649	Allegheny Vallis also originate from shallow depressions (Fig. 13c).
650	The evidence for water emergence from depressions to explain the hypothesized
651	ponding within the 40-km-diameter basin is less certain but it is a possibility (Fig. 15a).
652	The local elevation level of 2550 m (Fig. 16b) indicates that the floodwater of
653	Allegheny Vallis may have inundated and ponded in the plains near Ophir Cavus at least
654	temporarily before deep incision, consistent with the inference by Coleman et al. (2007).
655	The valley behind the possible fan delta or its ancestral valley was likely a conduit for
656	the water flowed from the plains. Thus, one possible scenario is that the Allegheny
657	Vallis floodwater flowed into the basin, forming a paleolake and the fan delta. Water
658	may have been provided also through the small valley incised into a massif east of the

659	basin from other unidentified source (Fig. 15a). Another possibility to be considered
660	is that the water originated within the valley behind the fan delta, where the two
661	quasi-circular depressions comprising the valley are morphologically similar to the
662	pit-crater chain from which water emerged and flowed into the Wallula basin (Fig. 14).
663	We point out that the elongated depression carved in the southern rim of this basin and
664	localized small-scale springs feeding the centripetal drainage system may have been
665	alternative or additional sources of water (Fig. 15a).
666	If the hypothesized hydrological activities occurred during the period(s) of no or
667	limited crysophere development, the water may have emerged in various depressions
668	and crater basins by regional groundwater table rising. Water may have also emerged
669	as springs or seepages from various locations in Aurorae and Ophir plana, filling in
670	depressions and crater basins. But this mechanism may not explain some observations
671	indicating rapid emergence of water from depressions (e.g., Ophir Cavus and possibly
672	Ganges Cavus).
673	Spring mechanism has been proposed to explain interior layered deposits (i.e.,
674	light-toned deposits) in Valles Marineris (Rossi et al., 2008), and emergence of water
675	may have been common also in Aurorae and Ophir plana. Recent detection of

676 silica-rich alteration products (SiOH-bearing phases) in finely-layered strata distributed

677	in the plains surrounding Valles Marin	neris chasmata (Le Deit et al., 2008; Milliken et al.,
678	2008) is generally consistent with o	our view that these plains experienced extensive
679	hydrological processes in the past.	However, the timings for all these hydrological
680	events are unknown.	

681

682 6.2. Water releasing mechanisms

683

Water may have been stored as both groundwater or ground ice within the crust if a 684 cryospshere existed. However, we currently lack information on the actual depths of 685cryosphere on Mars, let alone in the geological past. Clifford (1993) and Clifford and 686 Parker (2001) theoretically derived depth to the base of the equatorial cryosphere on 687 Mars as 2.3-11 km, 2.3-4.7 km, respectively. In comparison, depths of the cavi 688 identified in our study area as water sources are: Ganges Cavus, ~5 km; Ophir Cavus, 689 1800 m. If emergence of water from Martian crust requires melting of ground ice or 690 breaching of cryosphere to release water from the underlying hydrosphere, the great 691 depths of the cavi and their isolated nature indicate that melting of cryopshere was 692 693 intensive but nonetheless localized.

694	Pit-crater chains on Mars were extensively studied by Wyrick et al. (2004). They
695	concluded that dilational normal faulting and sub-vertical fissuring provide a simple and
696	comprehensive mechanism for their development. They pointed out that pit-crater
697	chains and the underlying dilational faults or fissures, may provide pathways for magma,
698	although dikes and magma chambers are not necessarrily required for formation of the
699	pit-crater chains. The pit-crater chains in Ophir Planum are hypothesized to have
700	formed over intruding dikes (Schultz, 1989; Okubo and Schultz, 2005). This
701	hypothesis is consistent with the emergence of water from these pit craters since the
702	magmatic heat in the Valles Marineris region (e.g., McKenzie and Nimmo, 1999) could
703	have melted ground ice or, as a consequence of the melting, released groundwater
704	stored underneath the cryosphere in the crust. Similarly, interaction of rising dikes and
705	the Martian hydrosphere and its consequent pit or chaos formation were discussed
706	previously (e.g., Mège and Masson, 1996c; Meresse et al., 2008). Thus we consider
707	dike intrusion to be an importatn cause of formation for the cavi and smaller
708	depressions in Aurorae and Ophir plana, explaining also melting of ground ice or
709	breaching of cryosphere. Wrinkle ridges and underlying faults have been proposed as
710	local sources of water in southwestern Chryse Planitia (Rodriguez et al., 2007).

Wrinkle ridges occur widely in Ophir Planum but there is no clear evidence of water
emergence from these features at least within our observation.

The emergence of water from cavi or smaller depressions may be complicated if the 713 volatiles in the curst are not only water but also CO₂. The system of H₂O-CO₂ 714715produces clathrate hydrate at certain ranges of pressure and temperature in Martian crust. 716 Under the inferred Martian crustal conditions, clathrate hydrate may coexist with water ice, dry ice, liquid water, liquid CO₂, depending on the ratio between H₂O and CO₂ (e.g., 717Rodriguez et al. 2006). Below the depths of clathrate dissociation, two liquids (H₂O 718 719 and CO_2) could coexist immiscibly. The north-trending alcove-shaped depression called Ganges chaos (Figs. 1, 16a), located ~250 km east of the Morella basin, was 720 proposed by Rodriguez et al. (2006) to have evolved by clustering of chaotic terrains 721formed by depressurization-induced or thermally-triggered dissociation of buried gas 722clathrate hydrates and explosive eruption of gas-saturated groundwater. Furthermore, 723 the cataclysmic emergence of water by this mechanism for both CO₂ and CH₄ hydrates 724was proposed for the genesis of chaotic terrains and outflow channels (e.g., Komatsu et 725726 al., 2000; Max and Clifford, 2000) east of Ganges Chasma (Fig. 1). A similar process 727 involving clathrate hydrate may have operated also at Ganges and Ophir cavi, and other 728 smaller depressions.

729	Recent spectral identification of hydrous sulfates in nearby Gangis Chasma
730	(Quantin et al., 2006) may indicate another mode of water release in the region.
731	Montgomery and Gillespie (2005) proposed that in Tharsis increased temperatures
732	adequate to dehydrate hydrous evaporites would trigger significant volumetric
733	expansion and cataclysmically release tremendous amounts of overpressured water.
734	This process produces a water-dehydrated salt mixture that expands volumetrically over
735	the original hydrous salt (as much as over 50%). This mechanism possibly explains
736	the emergence of water from the cavi and other smaller depressions. We note that the
737	hypothesis of a "mega-slide" driven by constinental-scale salt tectonics to explain
738	Valles Marineris chasmata (Montgomery et al., 2009) provides a mechianism for
739	discharging at the margin of the deforming area, including Aurorae and Ophir plana.
740	Although the examined OMEGA data do not present evidence for hydrous sulfates
741	in Aurorae and Ophir plana at their spatial resolutions, the bright layered materials at
742	the bottom of Ophir Cavus could contain such minerals or dehydrated salts. The spatial
743	resolution of spectral instrument is important in determining the detection potential of
744	salt minerals (e.g., Komatsu et al., 2007), thus it needs to be investigated with higher
745	spatial-resoultion spectral data such as those acquired by CRISM.

K

747 6.3. Groundwater migration through fractures and/or caverns

749	A mechanism for explaining the emergence of large quantities of water and
750	consequent hydrological activities in Aurorae and Ophir plana (Fig. 16b) probably
751	involves crustal migration of the water. It is possible that the water stored in the
752	terrain >2500 m above the Martian datum may have emerged from depressions in Ophir
753	Planum as proposed by Coleman et al. (2007). Locations of Ophir and Ganges cavi,
754	and also other smaller depressions are approximately in line with subsidence features
755	such as Ophir Catenae and large canyons of Candor Chasma (Fig. 16a). All the
756	depressions also have approximate east-west orientations, being concordant with
757	orientations of fractures radial to the Tharsis bulge (e.g., Wise et al., 1979).
758	Furthermore, these depressions have en echelon alignment (Fig. 2). This en echelon
759	alignment noted also in earlier works (e.g., Schultz, 1989; Mège and Masson, 1996a;
760	Coleman et al., 2007) indicates that these depressions are related to each other and there
761	is clearly a structural control over these features. Such structural control may have
762	been provided by dike swarms (e.g., Schultz, 1998), and the pit-crater chains may be a
763	surface expression of laterally propagating subsurface dikes or hydrofractures (Schultz,
764	1989). Therefore one cause of water emergence from Ophir and Ganges cavi, and

765	other smaller depressions is related to long-range (hundreds of kilometers)
766	structurally-controlled groundwater migration. Past groundwater activities at some
767	sites of Mars, particularly in the region stretching from Arabia Terra to Valles Marineris,
768	are hypothesized based on mineralogy (e.g., Geissler et al., 1993; Chan et al., 2004;
769	McLennan et al., 2005), morphology (e.g., Ormö et al., 2004; Treiman, 2008; Rossi et
770	al., 2008), or halos along fractures (Okubo and McEwen, 2007; Okubo et al., in press).
771	Thus groundwater activities on Mars may have been wide spread.
772	We hypothesize that a large volume of groundwater originated in higher plains areas
773	in western Ophir Planum migrated through a system of subsurface fractures and/or
774	caverns (Fig. 16). The water eventually emerged in Ophir and Ganges cavi, and other
775	smaller depressions, and even in crater basins. The western plains areas were
776	proposed to have been where water originated, and an ice-covered paleolake in Candor
777	Chasma further west may have been another source of water (Coleman et al. 2003,
778	2007). Groundwater may have been stored in confined aquifers, or water ice may
779	have melted owing to magmatic heating or climatic change. The groundwater can also
780	migrate through a permeable crustal medium, but a presence of fractures and/or caverns
781	enhances and focuses water mobility. Migration of water would be greatly increased if
782	caverns exist: a cavern system was envisaged between Ganges Chasma and the

783	Shalbatana Vallis headwater source (Fig. 1) (Rodriguez et al., 2003). We add that
784	hydraulic conductivity can be enhanced also by the presence of buried impact craters in
785	the area (Rodriguez et al., 2005a). Ground penetrating radars such as the Mars
786	Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) and Shallow
787	Subsurface Radar (SHARAD) may provide data that confirm or reject such hypotheses.
788	How the crustal water (in liquid or ice form) had become enriched to cause the
789	hydrological activities observed in Aurorae and Ophir plana has to be explained.
790	Climatic shift is a possible mechanism for both deposition of water on the surface and
791	recharging of aquifers. For example, snowpacks or glaciers on the Tharsis rise, formed
792	during periods of high obliquity when precipitation occurs at low latitudes (e.g.,
793	Jakosky and Carr, 1985; Abe et al., 2005) have been suggested to be an efficient source
794	of recharge and may have provided hydraulic head for the circum-Chryse outflow
795	channels (Harrison and Grimm, 2004; Russell and Head, 2007). This mechanism could
796	have stored crustal water necessary also for the hydrological activities observed in
797	Aurorae and Ophir plana (Coleman et al., 2007).

7. Conclusions

801	Aurorae and Ophir plana south and west of Ganges Chasma are found to be regions
802	characterized by ancient hydrological processes including formation of paleolakes and
803	paleo-flood channels. Ganges Cavus is a 5-km-deep depression of probable collapse
804	origin located within the Morella crater basin in Aurorae Planum. A paleolake(s) in
805	the Morella basin likely formed by water emergence at least partially through Ganges
806	Cavus or its incipient depression. Water may have been supplied also from small-scale
807	springs within the basin. Cataclysmic spillover occurred, breached the eastern rim,
808	and formed an outflow channel system called Elaver Vallis. Multiple levels of the
809	paleolake in the Morella basin are inferred from possible shoreline features. Ophir
810	Planum, plains unit west of the Morella basin, hosts another outflow channel system
811	called Allegheny Vallis that originates from 1800-m-deep depression Ophir Cavus.
812	The nearby Wallula crater basin may have received water from a pit-crater chain to its
813	south. An unnamed crater basin 40 km in diameter to the south of Allegheny Vallis
814	seems to have hosted a paleolake as inferred from the presence of a possible fan delta
815	formed on the basin floor. Water may have been derived from outside of the basin, or
816	it may have emerged from depressions on its rim and/or small-scale springs within the
817	basin.

818	Water emergence in Aurorae and Ophir plana may have occurred as consequences
819	of ground ice melting or breaching of cryosphere to release water from the underlying
820	hydrosphere. Dike intrusion is considered to be an important cause of formation for
821	the cavi and smaller depressions explaining also melting of ground ice or breaching of
822	cryosphere. Alternatively, the depressions and crater basins may have been filled by
823	regional groundwater table rising during the period(s) when eryosphere was absent or
824	considerably thin.
825	The large quantities of water emerged in Aurorae and Ophir plana may have been
826	derived from the crust of higher plains in western Ophir Planum where water existed in
827	confined aquifers or was produced by melting of ground ice due to magmatic heating or
828	climatic shift, or from a paleolake in Candor Chasma further west. We hypothesize
829	that the groundwater migrated through the crust characterized by the presence of
830	fractures and/or caverns.
831	Our work revealed that the plains near Ganges Chasma are of paramount importance
832	for future explorations from both geological and exobiological points of view because
833	of their diverse geological evidence for water activities in the past.
834	

835	Acknowledgements. We thank constructive comments by Monica Pondrelli and
836	Simone Silvestro. The reviews comments by Vic Baker and an anonymous reviewer
837	were also helpful. All the THEMIS and MOC data are credited to NASA/JPL/Arizona
838	State University, NASA/Malin Space Science Systems respectively. We used the
839	HRSC data processed by HRSC view provided by Freie Universitaet Berlin and DLR
840	Berlin. The OMEGA data are credited to ESA/IAS. This project was supported by
841	the joint ASI/IRSPS PAGIS (Planetary Geosciences Information System) program.
842	
843	References:
844	
845	Abe, Y., Numaguti, A., Komatsu, G., Kobayashi, Y., 2005. Four climate regimes on a
846	land planet with wet surface: Effects of obliquity change and implications for
847	ancient Mars. Icarus 178, 27–39.
848	Baker, V.R., 1978. The Spokane Flood controversy and the Martian outflow channels.
849	
	Science 202, 1249–1256.

851 198 pp.

- Baker, V.R., Milton, D.J., 1974. Erosion by catastrophic floods on Mars and Earth.
- 853 Icarus 23, 27–41.
- 854 Baker, V.R., Benito, G., Rudoy, A.N., 1993. Paleohydrology of Late Pleistocene
- superflooding, Altai Mountains, Siberia. Science 259, 348–350.
- 856 Bourke, M.C., Bullard, J., Barnouin-Jha, O., 2004. Aeolian sediment transport pathways
- and aerodynamics at troughs on Mars. J. Geophys. Res. 109, E07005,
- 858 doi:10.1029/2003JE002155.
- 859 Burr, D.M., Grier, J.A., McEwen A.S., Keszthelyi, L.P., 2002. Repeated aqueous
- flooding from the Cerberus Fossae: Evidence for very recently extant, deep
 groundwater on Mars. Icarus 159, 53–73.
- 862 Cabrol, N.A., Grin, E., 1999. Distribution, classification, and ages of Martian impact
- 863 crater lakes. Icarus 142, 160–172.
- Chan, M.A., Beitler, B., Parry, W.T., Ormö, J., Komatsu, G., 2004. A possible terrestrial
 analogue for haematite concretions on Mars. Nature 429, 731–734.
- Chapman, M.G., Tanaka, K.L., 2002. Related magma-ice interactions: possible origins
 of chasmata, chaos, outflow channels, and surface materials in Xanthe,
 Margaritifer, and Meridiani Terrae, Mars. Icarus 155, 324–339.
- 869 Christensen, P.R., Bandfield, J.L., Bell, J.F., III, Gorelick, N., Hamilton, V.E., Ivanov, A.,

870	Jakosky, B.M., Kieffer, H.H., Lane, M.D., Malin, M.C., Mehall, G.L.,
871	McConnochie, T., McEwen, A.S., McSween, H.Y., Jr., Moersch, J.E., Nealson,
872	K.H., Rice, J.W., Jr., Richardson, M.I., Ruff, S.W., Smith, M.D., Titus, T.N., Wyatt,
873	W., 2003. Morphology and composition of the surface of Mars: Mars Odyssey
874	THEMIS results. Science 300, 2056–2061.
875	Clark, G.K.C., Mathews, W.H., Pack, R.T., 1984. Outburst floods from glacial Lake
876	Missoula. Quaternary Research 22, 289–299.
877	Clifford, S.M., 1993. A model for the hydrologic and climatic behavior of water of Mars,
878	J. Geophys. Res. 98, 10,973–11,016.
879	Clifford, S.M., Parker, T.J., 2001. The evolution of the Martian hydrosphere:
880	Implications for the fate of a primordial ocean and the current state of the northern
881	plains. Icarus 154, 40–79.
882	Coleman, N.M., 2003. Aqueous flows carved the outflow channels on Mars. J. Geophys.

- 883 Res. 108, doi:10.1029/2002JE001940.
- Coleman, N.M., 2005. Martian megaflood-triggered chaos formation, revealing
 groundwater depth, cryosphere thickness, and crustal heat flux. J. Geophys. Res.
- 886 110, E12S20, doi:10.1029/2005JE002419.
- 887 Coleman, N.M., Dinwiddie, C.L., 2007. Hydrologic analysis of the birth of Elaver Vallis,

888	Mars by catastrophic drainage of a lake in Morella Crater. In: Seventh		
889	International Conference on Mars, Abstract #3107.		
890	Coleman, N.M. Dinwiddie, C.L., Casteel, K., 2003. High channels on Mars indicate		
891	Hesperian recharge at low latitudes. In Sixth International Conference on Mars, #		
892	3071.		
893	Coleman, N.M., Dinwiddie, C.L., Casteel, K., 2007. High outflow channels on Mars		
894	indicate Hesperian recharge at low latitudes and the presence of canyon lakes.		
895	Icarus 189, 344–361, doi:10.1016/j.icarus.2007.01.020.		
896	Di Achille, G., Komatsu, G., 2008. Using HRSC and HiRISE for the study of Martian		
897	depositional environments: an example from Ophir Planum. In: Proc. Lunar Planet.		
898	Sci. Conf. 39th, Abstract #1608.		
899	Di Achille, G., Marinangeli, L., Ori, G.G., Hauber, E., Gwinner, K., Reiss, D., Neukum,		
900	G., 2006. Geological evolution of the Tyras Vallis paleolacustrine system, Mars. J.		
901	Geophys. Res. 111, E04003, doi:10.1029/2005JE002561.		
902	Dinwiddie, C.L., Coleman, N.M., Necsoiu, M., 2004. Walla Walla Vallis and Wallulla		
903	Crater: two recently discovered Martian features record aqueous history. In: Proc.		
904	Lunar Planet. Sci. Conf. 35th, Abstract #1316.		

905	Dohm, J.M., Maruyama, S., Baker, V.R., Anderson, R.C., Ferris, J.C., 2002. Evolution
906	and traits of Tharsis superplume, Mars: Superplume International Workshop,
907	Abstracts with Programs, Tokyo Institute of Technology, Tokyo, 406–410.
908	Geissler, P.E., Singer, R.B., Komatsu, G., Murchie, S., Mustard, J., 1993. An unusual
909	spectral unit in west Candor Chasma: Evidence for aqueous or hydrothermal
910	alteration in the Martian canyons. Icarus 106, 380–39.
911	Ghatan, G.J., Head, J.W. Wilson, L., 2005. Mangala Valles, Mars: Assessment of early
912	stages of flooding and downstream flood evolution, Earth, Moon, and Planets, doi:
913	10.1007/s11038-005-9009-y.
914	Gilbert, G.K., 1890. Lake Bonneville. U.S. Geological Survey Monograph 1.
915	Washington, D.C., 438 pp.
916	Greeley, R., Kuzmin, R.O., Nelson, D., Farmer, J., 2003. Eos Chasma, Mars: site for
917	astrobiology. J. Geophys. Res. 108, doi:10.1029/2002JE002014.
918	Harrison, K.P., Grimm, R.E., 2004. Tharsis recharge: A source of groundwater for
919	Martian outflow channels. Geophys. Res. Lett. 31, L14703,
920	doi:10.1029/2004GL020502.
921	Hartmann, W.K., 1999. Martian cratering VI: Crater count isochrones and evidence for
922	recent volcanism from Mars Global Surveyor. Meteoritics and Planetary Sciences
923	34, 167–177.

CEPTED MA

- 924 Hartmann, W.K., Neukum, G., 2001. Cratering chronology and the evolution of Mars, Space Science Reviews 96, 165–194. 925
- Hoffman, N., 2000. White Mars: A new model for Mars surface and atmosphere based 926 on CO₂. Icarus 146, 326–342. 927
- Howard, A.D., Moore, J.M., Irwin R.P.III, 2005. An intense terminal epoch of 928
- widespread fluvial activity in the Martian highlands: 1. Valley network incision 929
- 110, and associated deposits. J. Geophys. Res. E12S14, 930
- doi:10.1029/2005JE002459. 931
- Irwin, R.P.III, Maxwell, T.A., Howard, A.D., Craddock, R.A., Leverington, D.W., 2002. 932
- A large paleolake basin at the head of Ma'adim Vallis, Mars. Science 296, 933
- 9342209-2212.

940

- Ivanov, B.A., 2001. Mars/Moon cratering rate ratio estimates, Space Science Reviews 935 96, 87–104. 936
- Jakosky, B.M., Carr, M.H., 1985. Possible precipitation of ice at low latitudes of Mars 937 during periods of high obliquity. Nature 315, 559-561. 938
- 939 Komar, P.D., 1979. Comparison of the hydraulics of water flows in Martian outflow
- channels with flows of similar scale on Earth. Icarus 37, 156–181.
- Komatsu, G., Baker, V.R., 1997. Paleohydrology and flood geomorphology of a Martian 941
- outflow channel, Ares Vallis. J. Geophys. Res. 102, 4151-4160. 942

943	Komatsu, G., Baker, V.R., 2007. Formation of valleys and cataclysmic flood channels
944	on Earth and Mars. In: Chapman, M.G. (ed), The Geology of Mars: Evidence
945	from Earth-Based Analogs. Cambridge University Press, 297–321.
946	Komatsu, G., J.S. Kargel, V.R. Baker, R.G. Strom, G.G. Ori, C. Mosangini and K.L.
947	Tanaka, 2000. A chaotic terrain formation hypothesis: Explosive outgas and
948	outflow by dissociation of clathrate on Mars. In: Proc. Lunar Planet. Sci. Conf.
949	31st, Abstract #1434.
950	Komatsu, G., Dohm, J.M., Hare, T.M., 2004. Hydrologeologic processes of large-scale
951	tectonomagmatic complexes in Mongolia-southern Siberia and on Mars. Geology
952	32, 325–328.
953	Komatsu, G., Ori, G.G., Marinangeli, L., Moersch, J.E., 2007. Playa environments on
954	Earth: Possible analogues for Mars. In: Chapman, M.G. (ed), The Geology of
955	Mars: Evidence from Earth-Based Analogs. Cambridge University Press,
956	322–348.
957	Komatsu, G., Arzhannikov, S.G., Gillespie, A.R., Burke, R.M., Miyamoto, H., Baker,
958	V.R., 2009. Quaternary paleolake formation and cataclysmic flooding along the
959	upper Yenisei River. Geomorphology 104, doi:10.1016/j.geomorph.2008.08.009,
960	143–164.

961	Le Deit, L., Bourgeois, O., Le Mouélic, S., Mège, D., Combe, JPh., Sotin, C., Massé,
962	M., 2008. Light-toned layers on plateaus above Valles Marineris (Mars). In: Proc.
963	Lunar Planet. Sci. Conf. 39th, Abstract #1740.
964	Leverington, D.W., 2004. Volcanic rilles, streamlined islands, and the origin of outflow
965	channels on Mars. J. Geophys. Res. 109, E10011, doi:10.1029/2004JE002311.
966	Leverington, D.W., Maxwell, T.A., 2004. An igneous origin for features of a candidate
967	crater-lake system in western Memnonia, Mars. J. Geophys. Res. 109, E06006
968	doi:10.1029/2004JE002237.
969	Malin, M.C., Edgett, K.S., 2003. Evidence for persistent flow and aqueous
970	sedimentation on early Mars. Science 302, 1931–1934.
971	Mangold, N., Quantin, C., Ansan, V., Delacourt, C., Allemand, P., 2004. Evidence for
972	precipitation on Mars from dendritic valleys in the Valles Marineris area. Science
973	305, 78–81.
974	Max, M.D., Clifford, S.M., 2000. The initiation of Martian outflow channels through

- 975 the catastrophic decomposition of methane hydrate, In: Proc. Lunar Planet. Sci.
 976 Conf. 31st, Abstract #2094.
- 977 McKenzie, D., Nimmo, F., 1999. The generation of Martian floods by melting
 978 permafrost above dykes. Nature 397, 231–233.

979	McLennan, S.M., Bell, III, J.F., Calvin, W., Christensen, P.R., Clark, B.C., de Souza,
980	P.A., Farmer, J., Farrand, W.H., Fike, D.A., Gellert, R., Ghosh, A., Glotch, T.D.,
981	Grotzinger, J.P., Hahn, B., Herkenhoff, K.E., Hurowitz, J.A., Johnson, J.R.,
982	Johnson, S.S., Jolliff, B.L., Klingelhöfer, G., Knoll, A.H., Learner, Z.A., Malin,
983	M.C., McSween, Jr, H.Y., Pocock, J., Ruff, S.W., Soderblom, L.A., Squyres, S.W.,
984	Tosca, N.J., Watters, W.A., Wyatt, M.B., Yen, A., 2005. Provenance and diagenesis
985	of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth and
986	Planetary Science Letters 240, 95–121.
987	Mège, D., Masson, P., 1996a. Amounts of stretching in Valles Marineris. Planet. Space
988	Sci. 44, 749–782.
989	Mège, D., Masson, P., 1996b. Stress models for Tharsis formation, Mars. Planet. Space
000	

- 991 Mège, D., Masson, P., 1996c. A plume tectonics model for the Tharsis province, Mars.
- 992 Planet. Space Sci. 44, 1499–1546.
- Meresse, S., Costard, F., Mangold, N., Masson, P., Neukum, G., the HRSC Co-I Team,
 2008. Formation and evolution of the chaotic terrains by subsidence and
 magmatism: Hydraotes Chaos, Mars. Icarus 194, 487–500,
- 996 doi:10.1016/j.icarus.2007.10.023.

997	Michael G., Neukum G., 2007. Refinement of cratering model age for the case of partial		
998	resurfacing. In: Proc. Lunar Planet. Sci. Conf. 38th, #1825.		
999	Milliken, R.E., Swayze, G.A., Arvidson, R.E., Bishop, J.L., Clark, R.N., Ehlmann, B.L.,		
1000	Green, R.O., Grotzinger, J.P., Morris, R.V., Murchie, S.L., Mustard, J.F., Weitz, C.,		
1001	2008. Opaline silica in young deposits on Mars, Geology 36, 847–850.		
1002	Miyamoto, H., Itoh, K., Komatsu, G., Baker, V.R., Dohm, J.M., Tosaka, H., Sasaki, S.,		
1003	2006. Numerical simulations of large-scale cataclysmic floodwater: A simple		
1004	depth-averaged model and an illustrative application. Geomorphology 76, 179–192.		
1005	Miyamoto, H., Komatsu, G., Baker, V.R., Dohm, J.M., Itoh, K., Tosaka, H., 2007.		
1006	Cataclysmic Scabland flooding: Insights from a simple depth-averaged numerical		
1007	model. Environmental Modelling and Software 22, 1400-1408,		
1008	doi:10.1016/j.envsoft.2006.07.006.		
1009	Montgomery, D.R., Gillespie, A., 2005. Formation of Martian outflow channels by		
1010	catastrophic dewatering of evaporite deposits. Geology 33, 625-628.		
1011	Montgomery, D., Som, S., Schreiber, B.C., Jackson, M., Gillespie, A., Adams, J., 2009.		
1012	Continental-scale salt tectonics on Mars and the origin of Valles Marineris and		
1013	associated outflow channels. Geological Society of America Bulletin 121,		
1014	117–133, doi: 10.1130/B26307.1.		

1015	Mustard, J.F., Poulet, F., Gendrin, A., Bibring, JP., Langevin, Y., Gondet, B., Mangold,
1016	N., Bellucci, G., Altieri, F., 2005. Olivine and pyroxene diversity in the crust of
1017	Mars. Science 307, 1594–1597.
1018	O'Connor, J.E., 1993. Hydrology, Hydraulics, and Geomorphology of the Bonneville
1019	Flood. Geol. Soc. America Special Paper 274, Boulder, Colorado.
1020	O'Connor, J.E., Baker V.R., 1992. Magnitudes and implications of peak discharges from
1021	Glacial Lake Missoula. Geological Society of America Bulletin 104, 267–279.
1022	Okubo, C.H., McEwen, A.S., 2007. Fracture controlled paleo-fluid flow in Candor
1023	Chasma, Mars. Science 315, 983–985, doi:10.1126/science.1136855.
1024	Okubo, C.H., Schultz, R.A., 2005. Evidence of normal faulting and dike intrusion at
1025	Valles Marineris from pit crater topography. In: Proc. Lunar Planet. Sci. Conf.
1026	36th, Abstract #1008.
1027	Okubo, C.H., Schultz, R.A., Chan, M.A., Komatsu, G., and the HiRISE Team, 2009.
1028	Deformation band clusters on Mars and implications for subsurface fluid flow.
1029	Geological Society of America Bulletin, doi: 10.1130/B26421.1, in press.
1030	Ori, G.G., Marinangeli, L., Baliva, A., 2000. Terraces and Gilbert-type deltas in crater

- 1031 lakes in Ismenius Lacus and Memnonia (Mars). J. Geophys. Res. 105,
- 1032 17629–17641.

1033	Ormö, J., Komatsu, G., Chan, M.A., Beitler, B., Parry, W.T., 2004. Geological features
1034	indicative of processes related to the hematite formation in Meridiani Planum and
1035	Aram Chaos, Mars: A comparison with diagenetic hematite deposits in southern
1036	Utah, USA. Icarus 171, 295–316, doi:10.1016/j.icarus.2004.06.001.
1037	Pondrelli, M., Baliva, A., Di Lorenzo, S., Marinangeli, L., Rossi, A.P., 2005. Complex
1038	evolution of paleolacustrine systems on Mars: An example from the Holden crater.
1039	J. Geophys. Res. 110, E04016, doi:10.1029/2004JE002335.
1040	Poulet, F., Gomez, C., Bibring, JP., Langevin, Y., Gondet, B., Belluci, G., Mustard, J.F.,
1041	2007. Martian surface mineralogy from Observatoire pour la Minéralogie, l'Eau,
1042	les Glaces et l'Activité on board the Mars Express spacecraft (OMEGA/MEx):
1043	Global mineral maps. J. Geophys. Res. 112, E08S02, doi:10.1029/2006JE002840.
1044	Quantin, C., Allemand, P., Mangold, N., Dromart, G., Delacourt, C., 2005. Fluvial and
1045	lacustrine activity on layered deposits in Melas Chasma, Valles Marineris, Mars. J.
1046	Geophys. Res. 110, E12S19, doi:10.1029/2005JE002440.
1047	Quantin, C., A. Gendrin, N. Mangold, JP. Bibring, E. Hauber, P. Allemand, Omega
1048	Team, 2006. Stratigraphy and elevation distribution of sulfate deposits in Valles
1049	Marineris. In: Proc. Lunar Planet. Sci. Conf. 37th, Abstract #2046.

1050 Robinson, M.S., Tanaka, K.L., 1990. Magnitude of a catastrophic flood event at Kasei

1051 Valles, Mars. Geology 18, 902–905.

- 1052 Rodriguez, J.A.P., Sasaki, S., Miyamoto, H., 2003. Nature and hydrological relevance of
- 1053 the Shalbatana complex underground cavernous system. Geophys. Res. Lett. 30(6),

1054 1304, doi:10.1029/2002GL016547.

1055 Rodriguez, J.A.P., Sasaki, S., Dohm, J.M., Tanaka, K.L., Strom, B., Kargel, J., Kuzmin,

1056 R., Miyamoto, H., Spray, J.G., Fairén, A.G., Komatsu, G., Kurita, K., Baker, V.,

- 10572005a. Control of impact crater fracture systems on subsurface hydrology, ground1058subsidence and collapse, Mars. J. Geophys. Res. 110, E06003,
- 1059 doi:10.1029/2004JE002365.
- 1060 Rodriguez, J.A.P., Sasaki, S., Kuzmin, R.O., Dohm, J.M., Tanaka, K.L., Miyamoto, H.,
- 1061 Kurita, K., Komatsu, G., Fairén, A.G., Ferris, J.C., 2005b. Outflow channel sources,
- reactivation and chaos formation, Xanthe Terra, Mars. Icarus 175, 36–57.
- 1063 Rodriguez, J.A.P., Kargel, J., Crown, D.A., Bleamaster III, L.F., Tanaka, K.L., Baker, V.,

1064 Miyamoto, H., Dohm, J.M., Sasaki, S., Komatsu, G., 2006. Headward growth of

- chasmata by volatile outbursts, collapse, and drainage: Evidence from Ganges
 chaos, Mars. Geophys. Res. Lett. 33, L18203, doi:10.1029/2006GL026275.
- 1067 Rodriguez, J.A.P., Tanaka, K.L., Kargel, J.S., Dohm, J.M., Kuzmin, R., Fairén, A.G.,
- 1068 Sasaki, S., Komatsu, G., Schulze-Makuch, D., Jianguo, Y., 2007. Formation and

- disruption of aquifers in southwestern Chryse Planitia, Mars. Icarus 191, 545–567,
- 1070 doi:10.1016/j.icarus.2007.05.021.
- 1071 Rossi, A. P., Neukum, G., Pondrelli, M., van Gasselt, S., Zegers, T., Hauber, E., Chicarro,
- 1072 A., Foing, B., 2008. Large-scale spring deposits on Mars? J. Geophys. Res. 113,
- 1073 E08016, doi:10.1029/2007JE003062.
- 1074 Rotto, S., Tanaka K.L., 1995. Geologic/geomorphologic map of the Chryse Planitia
- region of Mars, scale 1:5,000,000. U.S. Geol. Surv. Misc. Invest. Ser., Map
 I-2441.
- 1077 Russell, P.S., Head J.W., III, 2007. The Martian hydrologic system: Multiple recharge
- 1078 centers at large volcanic provinces and the contribution of snowmelt to outflow
- 1079 channel activity. Planet. Space Sci. 55, 315–332, doi:10.1016/j.pss.2006.03.010.
- 1080 Schultz, R.A., 1989. Do pit crater chains grow up to be Valles Marineris canyons? In
- 1081 Proceedings of MEVTV Workshop on Tectonic Features on Mars (T. R. Watters
- and M. P. Golombek, Eds.), pp. 47–48 (abstract). LPI Technical Report 89–06.
- Schultz, R.A., 1998. Multiple-process origin of Valles Marineris and troughs, Mars.
 Planet. Space Sci. 46, 827–834.
- 1085 Scott, D.H., Tanaka, K.L., 1986. Geologic map of the western equatorial region of Mars.
- 1086 U. S. Geological Survey Miscellaneous Investigation Map I-1802-A.

1087	Seidelmann, P.K., Abalakin, V.K., Bursa, M., Davies, M.E., De Bergh, C., Lieske, J.H.,
1088	Oberst, J., Simon, J.L., Standish, E.M., Stooke, P., Thomas, P.C., 2002. Report of
1089	the IAU/IAG Working Group on cartographic coordinates and rotational elements
1090	of the planets, and satellites: 2000. Celest. Mech. Dyn. Astron. 82, 83–110.
1091	Smith, D., Neumann, G., Ford, P., Guinness, E.A., Slavney, S., 1999. Mars Global
1092	Surveyor Laser Altimeter Precision Experiment Data Record, NASA Planetary
1093	Data System, MGS-M-MOLA-3-PEDR-L1A-V1.0, vols.
1094	MGSL_0001-MGSL_0054.
1095	Tanaka, K.L., Scott, D.H., Greeley, R., 1992. Global stratigraphy. In: Mars (Kieffer,
1096	H.H., et al., eds.), University of Arizona Press, Tucson, 345–382.
1097	Treiman, A.H., 2008. Ancient groundwater flow in the Valles Marineris on Mars
1098	inferred from fault trace ridges. Nature Geoscience 1, 181–183,
1099	doi:10.1038/ngeo131.
1100	Wessel, P., Smith, W.H.F., 1998. New, improved version of Generic Mapping Tools
1101	released. EOS trans, AGU, 79, 579.
1102	Williams, R.M., Phillips, R.J., Malin, M.C., 2000. Flow rates and duration within Kasei
1103	Valles, Mars: Implications for the formation of a Martian ocean. Geophys. Res.
1104	Lett. 27, 1073–1076.

1105	Wilson, L., Ghatan, G.J., Head III, J.W., Mitchell K. L., 2004. Mars outflow channels: A	
1106	reappraisal of the estimation of water flow velocities from water depths, regional	
1107	slopes, and channel floor properties. J. Geophys. Res. 109, E09003,	
1108	doi:10.1029/2004JE002281.	
1109	Wise, D.U., Golombek, M.P., McGill, G.E., 1979. Tharsis province of Mars: geologic	
1110	sequence, geometry and a deformation mechanism. Icarus 38, 456–72.	
1111	Wyrick, D., Ferrill, D.A., Morris, A.P., Colton, S.L., Sims, D.W., 2004. Distribution,	
1112	morphology, and origins of Martian pit crater chains. J. Geophys. Res. 109,	
1113	E06005, doi:10.1029/2004JE002240.	

1114 Figure captions

1115

1116 **Fig. 1.** Location map (MOLA topography) of the Valles Marineris-chaotic terrain 1117 transition zone and the study area. The rectangle shows the area of **Fig. 2**.

1118

Fig. 2. THEMIS infrared daytime image mosaic of the study area, Aurorae and Ophirplana.

1121

Fig. 3. Cumulative crater population plot of the plains unit around Ganges Chasma.
The plot was made using the Craterstats software (Michael and Neukun, 2007).

1124

1125 Fig. 4. 3-dimentional view of Elaver Vallis in Aurorae Planum south of Ganges 1126 Chasma (THEMIS infrared daytime image mosaic draped on MOLA topography; inset 1127 from THEMIS visible image V10051003). Elaver Vallis is characterized by the 1128 morphology of an outflow channel system. The primary source for the flooding is the 1129 Morella basin (70-80 km in diameter), but fluid could have originated also from the 1130 patches of chaotic terrain observed in the middle reach. Elaver Vallis terminates on the 1131 floor of Ganges Chasma. The large Elaver fan complex is placed in front of the Elaver Vallis mouth and smaller fans exist to both sides of this complex. These fans are 1132 1133 coalesced (bajadas). The arrow in the inset (a) indicates an erosional margin of the 1134 Elaver fan complex cutting an adjacent smaller fan.

1135

Fig. 5. a) Overview of the Elaver Vallis region from THEMIS infrared daytime image
mosaic. Locations of images in Fig. 6 and topographic profiles in Fig. 7 are also
shown. b) MOLA topography of the Elaver Vallis region.

1139

Fig. 6. Detailed characteristics of Elaver Vallis. a) Near terminal reach of Elaver Vallis. A cross-cutting relationship is observable between two grooved reaches (THEMIS visible image V10051003). b) Grooves exist on a portion of plains separated from Elaver Vallis (THEMIS visible image V15255002). c) Patches of chaotic terrain are distributed in the middle reach of Elaver Vallis (THEMIS visible image V10076002).

1146

Fig. 7. A topographic profile (A-A') across the Morella basin stretches down to the floor of Ganges Chasma. Longitudinal (B-B') and cross-sectional (b-b') profiles of Elaver Vallis. Longitudinal (C-C') and cross-sectional (c-c') profiles of the lowermost

part of Elaver Vallis. See Fig. 5a for their locations. These profiles were derivedfrom the MOLA gridded data set.

1152

Fig. 8. The Morella basin and Ganges Cavus (HRSC nadir image from orbit 0394_2).
The Morella basin is connected with Elaver Vallis with a spillway to the east. A crater
named Johnstown with irregular rim is observed on the basin floor (J). Locations of
images in Fig. 9 are shown.

1157

Fig. 9. Detailed characteristics of the Morella basin. a) Grooves near the spillway (THEMIS visible image V08179002). b) Locally, dark-toned materials exhibit their margins raised above the adjacent basin floor (HiRISE red CCD mosaic from orbit PSP_003183_1705). c) Dark-toned materials observed in channels (MOC narrow angle image R0501760). d) A channel originating from a shallow depression outside of the Morella basin (THEMIS visible image V11661002).

1164

Fig. 10. THEMIS infrared images of the Morella basin: a) THEMIS daytime image
mosaic b) THEMIS nighttime image mosaic. The horizontal strips are artifacts.

1167

Fig. 11. a) Three elevations corresponding to possible paleolake levels within the 1168 1169 Morella basin (MOLA contours over HRSC nadir image from orbit 0394 2). b) 1170 Pyroxene distribution determined by OMEGA observation (orbit 0394 2). Olivine 1171mineral distributions determined by OMEGA observation (orbit 0394 2): c) forsterite; 1172 d) fayalite. White bars indicate the eastern limit of the OMEGA orbit coverage. The 1173 lower numbers on the scale bars are the minimum value or the detection threshold (see 1174 Poulet et al., 2007) of spectral parameters that represent the absorption band depth for each mineral. 1175

1176

Fig. 12. Ophir Planum west of the Morella basin (THEMIS infrared daytime image mosaic). Allegheny Vallis originates from an elongated depression called Ophir Cavus.
Topographic profiles of its lower reach are shown below. Walla Walla Vallis originates from a pit-crater chain. A probable deltaic body was formed in front of a valley in the rim of a 40-km-diameter basin. Locations of Figs. 13, 14, 15 are shown.

1182

Fig. 13. Details of sources of Allegheny Vallis. a) This image shows a terraced upper
reach of Allegheny Vallis near Ophir Cavus (HiRISE red CCD mosaic from orbit
PSP_005082_1700). b) Layered outcrops occur on the bottom of Ophir Cavus.

1186 (HiRISE red CCD mosaic from orbit PSP_005082_1700). c) A branch of Allegheny

- 1187 Vallis originates from shallow depressions (THEMIS infrared daytime image).
- 1188

1189 Fig. 14. Details of the area where Walla Walla Vallis originates from a pit-crater chain1190 (THEMIS visible image V10176001).

1191

Fig. 15. a) A 40-km-diameter basin east of the Wallula basin hosts a variety of features indicative of paleo-hydrological processes. A possible fan delta is positioned in front of a valley in the rim. Its delta front elevation (~1300 m) coincides with terminations of channels inward of the rim (HRSC nadir image from orbit 100). A small valley is incised into a massif east of the basin (V). b) Details of the possible fan delta. Layers are observed in the steep front slopes (L) (HiRISE red CCD mosaic from orbit PSP_005583_1700 and MOC narrow angle image S1600444).

1199

1200 Fig. 16. a) Regional MOLA topography of Aurorae and Ophir plana. Ophir and 1201 Ganges cavi are in line with depression features including Ophir Catenae and large 1202 canyons of Candor Chasma, implying a genetic connection of these features. b) It is 1203 hypothesized that the fluid emerging at least partially through Ganges Cavus or its incipient depression filled the Morella basin and spilled out of the basin to the east, 1204 1205 forming Elaver Vallis. Fluid emerged from Ophir Cavus formed Allegheny Vallis. A local elevation level of 2250 m is shown. The Wallua basin may have received fluid 1206 1207 from a pit-crater chain to its south. A 40-km-diameter basin appears to have hosted a 1208 paleolake.

Shoreline level (m)*	Inferred from	Volume (km ³)
1780	Cross-over channel	2773
1250	Spillway	377
1200	Terminations of channels	199
1120	Terminations of channels	42
Ganges Cavus		2202

Table 1. Estimated volumes of the purported paleolake in the Morella basin.

*Based on the gridded PEDR. The volume estimations for 1120, 1200, 1250 and 1780 m do not include the volume of Ganges Cavus.

