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    Finite L2-induced gain and lambda-contractivity of discrete-time switching systems including modal nonlinearities and saturating actuator.

Hybrid Systems are dynamical systems exhibiting heterogeneous interactions between logic and differential or difference dynamics [START_REF] Van Der Schaft | An introduction to hybrid dynamical systems[END_REF]. The classical case is given by a finite family of differential or difference processes supervised by logical decision-making algorithms. Among this generic class of systems, two important and wide classes could be pointed out: switched systems and switching systems. In switched systems, the control inputs include (at least partially) the switching rule σ(•). In switching systems, the switching rule σ(•) is not a manipulable variable and is often generated by a complex logical decision-making algorithm, which could be state-, or outputor heterogenous input dependent. Such a switching rule is then modeled by an a priori unknown and induced signal, whose current value could be available. The properties of the designed control law should be thus satisfied for any arbitrary switching rule. One can also consider only switching sequences which are admissible for the physical process [START_REF] Lee | A new stability analysis of switched system[END_REF][START_REF] Liberzon | Basic problems in stability and design of switched systems[END_REF]. This paper focuses on switching systems, which are an elegant framework to deal with a large number of applications as, for example, power converters, automotive domain or air traffic control.

Stability and stabilization of such a general switching system is nowadays a theoretical challenge, which has attracted growing attention in the literature. Lyapunov-like functions and multiple Lyapunov functions introduced in [START_REF] Branicky | Multiple Lyapunov functions and other analysis tools for switched and hybrid systems[END_REF] offer adapted tools to deal with the stability of hybrid systems. Considering a common Lyapunov function is known to be highly conservative. For switching linear systems, a switching Lyapunov function approach has been provided in [START_REF] Daafouz | Stability analysis and control synthesis for switched systems[END_REF][START_REF] Mignone | Stability and stabilization of piecewie affine and hybrid systems: an LMI approach[END_REF][START_REF] Ferrari-Trecate | Analysis and control with performance of piecewise affine and hybrid systems[END_REF] (see also references therein). Nevertheless this technique has been developed for systems switching between only linear modes.

Depending on the physical application, the concept of linear system is valid only in a limited area, due to the fact that actuators cannot provide unbounded magnitude signals. Thus some nonlinearity with respect to the state or nonlinearity with respect to the control input, as saturation, should be taken into account to improve the modeling step and make it more realistic. Control design for classical systems including a saturation has been tackled in the literature, mainly by using a polytopic or a sector-bounded nonlinearity representation for the saturation phenomenon.

The polytopic representation of the saturation requires important computational capabilities [START_REF] Hu | Control systems with actuator saturation: analysis and design[END_REF]. This is why a sector bounded approach is preferred to cope with saturated control input (see for instance [START_REF] Tarbouriech | Stability analysis and stabilization of systems presenting nested saturations[END_REF][START_REF] Gomes Da | Anti-windup design with guaranteed regions of stability for discrete-time linear systems[END_REF][START_REF] Hu | An analysis and design method for linear systems subject to actuator saturation and disturbance[END_REF][START_REF] Castelan | Absolute stabilization of discrete-time systems with a sector bounded nonlinearity under control saturations[END_REF]). The case of nonlinear systems, with a dynamic being a sum of an actuator saturation, a sector bounded nonlinear term and a linear term with respect to the state as in [START_REF] Kokotović | Constructive nonlinear control: a historical perspective[END_REF][START_REF] Arcak | Circle and popov criteria as tools for nonlinear feedback designs[END_REF], is treated in [START_REF] Castelan | Control design for a class of nonlinear continuous-time systems[END_REF][START_REF] Castelan | Absolute stabilization of discrete-time systems with a sector bounded nonlinearity under control saturations[END_REF] for continuous-and discrete-time systems, respectively.

The input-output properties, and particularly L 2 -induced gains, play an essential role in control theory [START_REF] Van Der Schaft | L 2 -Gain and Passivity Techniques in Nonlinear Control[END_REF][START_REF] Zhou | Robust and Optimal Control[END_REF] for both linear and nonlinear (especially for saturated systems [START_REF] Dai | Output feedback design for saturated linear plants using deadzone loops[END_REF][START_REF] Fang | Analysis of linear systems in the presence of actuator saturation and L 2 -disturbances[END_REF][START_REF] Castelan | L 2 -stabilization of continuous-time linear systems with saturating actuators[END_REF][START_REF] Garcia | Finite L 2 gain and internal stabilisation of linear systems subject to actuator and sensor saturations[END_REF]) systems. The extension of such methods for switching systems implies some difficulties and is still an open problem [START_REF] Hespanha | L 2 -induced gains of switched linear systems[END_REF]. Some results should be noticed on this topic [START_REF] Hirata | L 2 -induced gain analysis for a class of switched systems[END_REF][START_REF] Zhai | Disturbance attenuation properties of time-controlled switched systems[END_REF] for continuous-time linear switching systems. To the best of our knowlegde, the problem of L 2 -induced gain for discrete-time nonlinear switching systems has not been addressed in literature. Neural network approaches have been proposed for discrete-time systems [START_REF] He | Reinforcement learning neural-network-based controller for nonlinear discrete-time systems with input constraints[END_REF]. However, the proposed methods do not take into account switching phenomena which is the main purpose here.

This paper aims at investigating discrete-time switching systems including nonlinearities with respect to the state for each mode, actuator saturations and additive L 2 -bounded disturbances. Two problems are then addressed in this context. The first one is to design a switching feedback control ensuring that the controlled system in the disturbance-free case is locally λcontractive at the origin with a basin of attraction as large as possible. The second one is to design a switching feedback control guaranteeing the boundedness of the closed-loop trajectories and minimizing the L 2 -gain from the disturbance to the output. Sufficient conditions, associated with both these problems, are provided by using a classical and a modified sector condition for taking into account the nonlinearity of each mode and the saturation of control inputs, respectively. These conditions, involving Linear Matrix Inequalities (LMI) [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF], allow to pose the control design as a convex programming problem.

It should be emphasized that switched linear continuous-time systems including saturated actuators have been already the objective of investigation, dealt with using a polytopic representation of the saturation [START_REF] Benzaouia | Stability and control synthesis of switched systems subject to actuator saturation[END_REF][START_REF] Lu | Design of switched linear systems in the presence of actuator saturation[END_REF]. In these papers, the considered systems are however not affected by modal nonlinearities.

The paper is organized as follows: Section 1 is devoted to the description of the system, while Section 2 gathers some preliminary results and definitions and Section 3 the statement of considered problems. The main results, formalized as convex programming problems, are proposed respectively in Subsections 4.1 and 4.2. Sections 5 and 6 contain respectively simulation results and a brief conclusion.

Notation. Relative to a matrix A ∈ R m×n , A ′ denotes its transpose, and

A (i) , i = 1, . . . , m, denotes its ith row. If A = A ′ ∈ R n×n , then A < 0 (A ≤ 0)
means that A is negative-(semi-)definite. The components of any vector x ∈ R n are denoted by x (i) , ∀i = 1, . . . , n. Inequalities between vectors are component-wise: x ≤ 0 means that x (i) ≤ 0 and x ≤ y means that x (i)y (i) ≤ 0. I n (resp. 0 n ) denotes the n × n identity (resp. null) matrix. The symbol ⋆ stands for symmetric blocks in matrices. For a symmetric and positive-definite matrix M ∈ R n×n , the ellipsoidal set E(M, α) associated with the matrix M and the positive scalar α is given by {x ∈ R n ; x ′ M x ≤ α}. We will use the shortcut E(M ) = E(M, 1).

System Description

Consider the following discrete-time switching nonlinear system (Σ):

(Σ) :

   x k+1 = A σ(k) x k +G σ(k) ϕ σ(k) (y k ) +B σ(k) sat(u k ) +E x σ(k) w k , z k = C z σ(k) x k +L σ(k) ϕ σ(k) (y k ) +D σ(k) sat(u k ) +E z σ(k) w k , y k = C y σ(k) x k +E y σ(k) w k , (1) where 
x k ∈ R n , u k ∈ R m , z k ∈ R pz , y k ∈ R py and w k ∈ R r
are respectively the state, the control input, the controlled output, the output involved in the nonlinearities ϕ σ(k) (•) and the disturbance. The assumptions satisfied by system (Σ) are now specified.

Remark 1. The output y k is independent with respect to ϕ σ (y k ) and to sat(u k ) in order to guarantee the well-posedness of this nonlinearity. It is possible to consider 

y k = C y σ(k) x k + D y σ(k) sat(u k ) + E y σ(k) w k + L y σ(k) ϕ σ(k) (y k ) if it
W δ = w : N → R r ; k∈N w ′ k w k ≤ 1 δ . ( 2 
)
Assumption 2. The switching rule σ(•) takes its value in the finite set

I N = {1, • • • , N }.
In order to avoid a complex description of the decision-making automaton, σ(•) is assumed to be not known a priori, but its current value σ(k), the output of the automaton, is assumed to be available in real-time.

The evolution of the switching rule is assumed to be not governed by the user.

The mode characterized by σ(•) will be called the active mode of the switching system. In other words, the notation M σ(k) means that at each time k, M σ(k) takes the matrix value in the set

{M 1 , • • • , M N } indexed by σ(k).
Assumption 3. The N nonlinearities ϕ i (•) : R py → R py associated with each mode i ∈ I N are assumed to be decentralized [START_REF] Khalil | Nonlinear Systems -Third Edition[END_REF].

Thus they verify the cone bounded sector condition ϕ i (•) ∈ [0 py , Ω i ], [START_REF] Khalil | Nonlinear Systems -Third Edition[END_REF], i.e., ϕ i (0) = 0 and there exist N diagonal positive definite matrices

Ω i = Ω ′ i ∈ R py×py such that independently, ∀y ∈ R py and ∀l = 1, • • • , p y : ϕ i,(l) (y) [ϕ i (y) -Ω i y] (l) ≤ 0. (3) 
Thus, we have the following inequality, ∀i ∈ I N :

ϕ ′ i (y)(∆ i ) -1 [ϕ i (y) -Ω i y] ≤ 0, (4) 
where

∆ i △ = diag{d q,i } q=1;••• ;py ∈ R py×py
is any diagonal and positive matrix. Thus, ∆ i represents a degree-of-freedom and is an optimization variable. Notice, however, that in a more general case where there may exist dependencies among different components of ϕ i (•), it could be possible to consider only the sector condition provided in [START_REF] Khalil | Nonlinear Systems -Third Edition[END_REF], by restricting the degree-of-freedom ∆ i to

∆ i = d i I py : ϕ ′ i (y) [ϕ i (y) -Ω i y] ≤ 0.
Note that Ω i is given by the designer and assumed to be known in the sequel for each mode i ∈ I N .

The control inputs are bounded in magnitude and the standard saturation function is considered:

sat(u(k)) (ℓ) = sign(u (ℓ) (k)) min(ρ (ℓ) , |u (ℓ) (k)|) (5) 
∀ℓ = 1, . . . , m, where ρ (ℓ) > 0 denotes the symmetric saturation level relative to the ℓ-th control. Throughout this work, the vector ρ is supposed to be given.

By extending the kind of control law provided in [START_REF] Castelan | Absolute stabilization of discrete-time systems with a sector bounded nonlinearity under control saturations[END_REF], we consider:

u k = K σ(k) x k + Γ σ(k) ϕ σ(k) (y k ) (6) 
where the m × n-matrix K σ(k) is a switching state feedback gain and the m × p y -matrix Γ σ(k) is a switching feedback gain associated to the active nonlinearity ϕ σ(k) (•). Thus, with non trivial Γ σ(k) , this feedback control law requires the following assumption.

Assumption 4. The nonlinearity ϕ σ(k) (•) is assumed to be known. This assumption could be weakened by assuming only the availability of ϕ σ(k) (y k ) as a signal [START_REF] Arcak | Circle and popov criteria as tools for nonlinear feedback designs[END_REF].

Preliminaries

It is helpful to introduce the indicator function ξ(•) mapping N into R N , defined by

ξ (i) (k) △ = 1, if i = σ(k); ∀i ∈ I N . 0, if i = σ(k); (7) 
Note that the indicator function satisfies

N i=1 ξ (i) (k) = 1; ∀i ∈ I N , ξ (i) (k) ∈ {0, 1}, (8) furthermore 
, ∀(i, j) ∈ I N × I N , i = j, ξ (i) (k) 2 = ξ (i) (k), ξ (i) (k)ξ (j) (k) = 0. (9) 
It is then possible to rewrite the switching matrices involved in the system (1) as matrices that are linear with respect to the indicator function:

M σ(k) = N i=1 ξ (i) (k)M i . ( 10 
)
Consider in addition the generic dead-zone nonlinearity:

Ψ(u k ) = u k -sat(u k ). (11) 
By considering u k given by ( 6), the closed-loop system (12) can be written under the form

x k+1 = A cl σ(k) x k + G cl σ(k) ϕ σ(k) (y k ) -B σ(k) Ψ(u k ) + E x σ(k) w k , (12) 
z k = C z,cl σ(k) x k + L cl σ(k) ϕ σ(k) (y k ) -D σ(k) Ψ(u k ) + E z σ(k) w k , (13) 
y k = C y σ(k) x k + E y σ(k) w k , (14) 
u k = K σ(k) x k + Γ σ(k) ϕ σ(k) (y k ), (15) 
where

A cl σ(k) = A σ(k) + B σ(k) K σ(k) , (16) 
G cl σ(k) = G σ(k) + B σ(k) Γ σ(k) , (17) 
C z,cl σ(k) = C z σ(k) + D σ(k) K σ(k) , (18) 
L cl σ(k) = L σ(k) + D σ(k) Γ σ(k) . (19) 
The following lemma will be used to consider the dead-zone as a nonlinearity belonging to a generalized sector condition. For given switching matrices

H i ∈ R m×n , i ∈ I N consider the set S(H i , ρ) defined by S(H i , ρ) = {x ∈ R n ; -ρ ≤ H i x ≤ ρ ; ∀i ∈ I N } . ( 20 
) Lemma 1. Consider switching m × n-matrices K i , J i , i ∈ I N . If x k is an element of S((K i -J i ), ρ)
, then with u k defined by ( 6), the nonlinearity Ψ(u k ) satisfies the following inequality

Ψ(u k ) ′ T σ(k) -1 Ψ(u k ) -J σ(k) x k -Γ σ(k) ϕ σ(k) (z k ) ≤ 0 (21) 
for any diagonal positive definite switching matrix T i ∈ R m×m , i ∈ I N .

Proof: It follows the same lines as the proof of Lemma 1 in [START_REF] Tarbouriech | Stability analysis and stabilization of systems presenting nested saturations[END_REF] (see also [START_REF] Montagner | Improved estimation of stability regions for uncertain linear systems with saturating actuators: an LMI-based approach[END_REF] or [START_REF] Castelan | Control design for a class of nonlinear continuous-time systems[END_REF]).

Let us consider a switching Lyapunov Function (SLF) defined by

V :    R n × N -→ R + , (x k , k) -→ V σ(k) (x k ) = N i=1 ξ (i) (k)V i (x k ). (22) 
The Switching Level Set (SLS) associated to V and δ is given by

L V (δ) △ = x ∈ R n ; V i (x) ≤ 1 δ , ∀i ∈ I N . ( 23 
)
The notion of contractive sets is basic for determining regions of asymptotic stability for the saturating closed-loop system [START_REF] Castelan | Absolute stabilization of discrete-time systems with a sector bounded nonlinearity under control saturations[END_REF]. The following definition of λ-contractivity is adapted to consider the sector bounded nonlinearity ϕ i (•) and to consider some time-domain performance associated with the coefficient λ. Definition 1. Consider a non-negative scalar 0 < λ ≤ 1. The SLS L V (δ) is absolutely λ-contractive with respect to the trajectories of system [START_REF] Castelan | Absolute stabilization of discrete-time systems with a sector bounded nonlinearity under control saturations[END_REF], with

w k = 0, if ∀x k ∈ L V (δ), ∀σ(k) ∈ I N and ∀ϕ σ (•) ∈ [0 py , Ω σ ], ∆ λ V = V σ(k+1) (x k+1 ) -λV σ(k) (x k ) < 0. ( 24 
)
To provide the desired λ-contractivity conditions, the class of SLF of the form

V σ(k) (x k ) = x ′ k P σ(k) x k , (25) 
with

P σ(k) = N i=1
ξ (i) (k)P i and P i = P ′ i > 0 is considered throughout the paper. It is noteworthy that by invoking the property (9), P σ(k) and its inverse are linear with respect to the indicator function ξ(k):

P -1 σ(k) = N i=1 ξ (i) (k)P -1 i = N i=1 ξ (i) (k)Q i , (26) 
by noting

Q i = P -1 i , ∀i ∈ I N .
The property of ξ(k) allows obviously to rewrite the SLS L V (δ), defined by ( 23), as

L V (δ) = σ(k)∈I N E(P σ(k) , 1 δ ) = i∈I N E(P i , 1 δ ) = i∈I N E(Q -1 i , 1 δ ). ( 27 
)
Definition 2. The L 2 -induced gain [START_REF] Van Der Schaft | L 2 -Gain and Passivity Techniques in Nonlinear Control[END_REF], Σ L 2 , associated to the closed-loop system (12) of the system Σ, is defined by

Σ 2 L 2 = max x 0 =0 ; w∈W δ z 2 w 2 . ( 28 
)
The L 2 -induced gain of the closed-loop system ( 12) is equal or less to √ γ if and only if

1 γ k∈N z ′ k z k ≤ k∈N w ′ k w k . ( 29 
)

Formulation of the problems

The goal of the paper is twofold and corresponds to provide a solution to the two following problems.

Problem 1 (λ-contractivity). For w k = 0, ∀k ∈ N, a fixed δ > 0 and 0 < λ ≤ 1, design a control law in the class [START_REF] Mignone | Stability and stabilization of piecewie affine and hybrid systems: an LMI approach[END_REF] that allows the λ-contractivity of some L V (δ), verifying [START_REF] Benzaouia | Stability and control synthesis of switched systems subject to actuator saturation[END_REF], so that the closed-loop system is locally asymptocally stable to the origin with a basin of attraction as large as possible.

Problem 2 (Disturbance rejection). The objective in this case consists in ensuring that the trajectories, with x 0 = 0, of the system (1) are bounded for any disturbance belonging to W δ , as defined in [START_REF] Lee | A new stability analysis of switched system[END_REF] and, in addition, in minimizing the L 2 -induced gain Σ L 2 from the disturbance w k to the regulated output z k .

Let us consider the following technical essential lemmas, which are required to derive the main results.

Lemma 2. For a fixed 0 < λ ≤ 1, consider for i ∈ I N , the existence of symmetric positive definite matrices

Q i ∈ R n×n , positive diagonal matrices ∆ i ∈ R py×py and T i ∈ R m×m , matrices U i ∈ R n×n , Y 1,i ∈ R m×n , Z 1,i ∈ R m×n , Y 2,i ∈ R m×py and a scalar γ such that M ij < 0, ∀(i, j) ∈ I 2 N , (30) 
where

M ij =           (E x i ) ′ (E z i ) ′ 0 -(E y i ) ′ Ω ′ i 0 -I r           . ( 31 
)
Then, applying the control law

u k = K σ(k) x k + Γ σ(k) ϕ σ(k) (z k ), = (Y 1,σ(k) U -1 σ(k) )x k + (Y 2,σ(k) ∆ -1 σ(k) )ϕ σ(k) (z k ), (32) 
implies that

V σ(k+1) (x k+1 ) -λV σ(k) (x k ) + 1 γ z ′ k z k -w ′ k w k -2ψ ′ (u k )T -1 σ(k) ψ(u k ) -J σ(k) x k -Γ σ(k) ϕ σ(k) -2ϕ ′ σ(k) ∆ -1 σ(k) ϕ σ(k) -Ω σ(k) y k < 0. ( 33 
)
Proof: Due to the properties of ξ(k) given by ( 9) and LMIs [START_REF] Montagner | Improved estimation of stability regions for uncertain linear systems with saturating actuators: an LMI-based approach[END_REF], the sum

M(ξ(k), ξ(k + 1)) = i∈I N j∈I N ξ (i) (k + 1)ξ (j) (k)M ij (34) 
is negative definite. For a sake of clarity, the dependency with respect to ξ(k) will be avoided and the dependency with respect to ξ(k + 1) will be denoted with a ' + ' in the matrix index i.e. Q(ξ(k + 1)) = Q + . Thus rewriting Inequality (34) leads to

          -(BT ) ′ -(DT ) ′ Z 1 Y 2 -2T ⋆ (E x ) ′ (E z ) ′ 0 -(ΩE y ) ′ 0 -I r           < 0. (35) It follows that Q > 0 and U ′ + U -Q > 0, which imply that U has full rank. Then (Q -U ) ′ Q -1 (Q -U ) ≥ 0 and λ (Q -U -U ′ ) ≥ -λU ′ Q -1 U. ( 36 
)
Combining the change of basis diag I; I; U -1 ; ∆ -1 ; T -1 ; I and Inequality (36) leads, by introducing

K σ(k) = Y 1,σ(k) U -1 σ(k) , Γ σ(k) = Y 2,σ(k) ∆ -1 σ(k) , J σ(k) = Z 1,σ(k) U -1
σ(k) and by using a Schur complement, to inequality

    (A cl ) ′ (G cl ) ′ -B ′ (E x ) ′     Q -1 +     (A cl ) ′ (G cl ) ′ -B ′ (E x ) ′     ′ +     (C z,cl ) ′ (L cl ) ′ -D ′ (E z ) ′     1 γ     (C z,cl ) ′ (L cl ) ′ -D ′ (E z ) ′     ′ +     Lemma 3.
For a fixed 0 < λ ≤ 1, consider for i ∈ I N , the existence of symmetric positive definite matrices

Q i ∈ R n×n , positive diagonal matrices ∆ i ∈ R py×py and T i ∈ R m×m , matrices U i ∈ R n×n , Y 1,i ∈ R m×n , Z 1,i ∈ R m×n and Y 2,i ∈ R m×py such that L ij < 0, ∀(i, j) ∈ I 2 N , ( 38 
)
where

L ij =     -Q j ⋆ ⋆ ⋆ (A i U i + B i Y 1,i ) ′ λ(Q i -U i -U ′ i ) ⋆ ⋆ (G i ∆ i + B i Y 2,i ) ′ Ω(C z i U i + D z i Y 1,i ) -2∆ i ⋆ -(B i T i ) ′ Z 1,i Y 2,i -2T i     , ( 39 
)
then applying the control law defined by (32) implies that

V σ(k+1) (x k+1 ) -λV σ(k) (x k ) -2ϕ ′ σ(k) ∆ -1 σ(k) ϕ σ(k) -Ω σ(k) y k -2ψ ′ (u k )T -1 σ(k) ψ(u k ) -J σ(k) x k -Γ σ(k) ϕ σ(k) < 0. ( 40 
)
Proof: The proof of Lemma 3 follows the one of Lemma 2 by noticing that L ij is an restriction of matrix M ij . It could also be found in [START_REF] Jungers | Stabilization of discrete-time switching systems including modal nonlinearities and saturating actuators[END_REF]. Lemma 4. Consider, for i ∈ I N , that there exist matrices U i ∈ R n×n , symmetric positive definite matrices

Q i ∈ R n×n , matrices Y 1,i ∈ R m×n , Z 1,i ∈ R m×n and a scalar δ such that ∀i ∈ I N and ∀ℓ = 1, • • • , m: N i,ℓ = -Q i + U i + U ′ i ⋆ (Y 1,i -Z 1,i ) (ℓ) δρ 2 (ℓ) > 0.
(41)

Then L V (δ) ⊂ S(K(•) -J(•), ρ), ( 42 
)
with J σ(k) = Z 1,σ(k) U -1 σ(k)

and definition (32).

Proof: The proof is obtained from derivation of classical conditions of inclusion (see [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]). By noting

N ℓ (ξ(k)) = -Q(ξ(k)) + U (ξ(k)) + U ′ (ξ(k)) ⋆ (Y 1 (ξ(k)) -Z 1 (ξ(k))) (ℓ) δρ 2 (ℓ) , (43) 
and due to the property (9), we have

N ℓ (ξ(k)) = i∈I N ξ (i) (k)N i,ℓ . (44) 
It implies that the inequality

N ℓ (ξ(k)) > 0 is equivalent to ∀i ∈ I N , ℓ = 1, • • • , m, N i,ℓ > 0.
By using the change of basis diag[U -1 (ξ(k)); 1] and Inequality (36), N ℓ (ξ(k)) > 0 leads to

Q -1 (ξ(k)) ⋆ (K(ξ(k)) -J(ξ(k))) (ℓ) δρ 2 (ℓ) > 0. ( 45 
)
Schur complement induces

δQ -1 (ξ(k)) > 1 ρ 2 (ℓ) (K(ξ(k)) -J(ξ(k))) ′ (ℓ) × (K(ξ(k)) -J(ξ(k))) (ℓ) . ( 46 
)
By multiplying this last inequality at left by x ′ k and at right by its transpose, one has

δV σ(k) (x k ) ≥ 1 ρ 2 (ℓ) K σ(k) -J σ(k) (ℓ) x k 2 . ( 47 
) For all x k ∈ L V (δ), V σ(k) (x k ) < 1 δ , which implies that x k ∈ S((K i -J i ), ρ).
We obtain the relation (42).

Main results

Control design solving λ-contractity problem

This subsection is dedicated to provide an optimization problem which solves Problem 1 related to the λ-contractivity of the system (12) without disturbance. Since no disturbance is considered, the value δ has not anymore physical sense and could be arbitrarily fixed. To simplify, δ is normalized in the following by δ = 1, as in [START_REF] Jungers | Stabilization of discrete-time switching systems including modal nonlinearities and saturating actuators[END_REF]. The SLS L V (1), defined by ( 23) is then the set S 0 of initial condition x 0 of switching closed-loop system which is λ-contractive for any nonlinearities ϕ i (•) (i ∈ I N ) verifying the sector condition (4), without disturbance (w k = 0). This set L V (1) is convex, since it is the intersection of convex sets.

The optimization problem consists of determining a control defined by (32), with the largest set L V (1) = S 0 , under the constraints ( 30) and (41). For obtaining the largest set L V (1), let us consider, as in [START_REF] Castelan | Absolute stabilization of discrete-time systems with a sector bounded nonlinearity under control saturations[END_REF], a given and scaled polyhedral shape set included in L V [START_REF] Van Der Schaft | An introduction to hybrid dynamical systems[END_REF]. The goal is to maximize the scaling factor of this set. However this approach depends on the direction of the vectors of the polyhedral set. In order to avoid this dependency, a √ α-radius ball included into L V (1) is considered:

E (I n , α) = {x ∈ R n ; x ′ x ≤ α} ⊂ L V (1) = S 0 . (48) 
Being the SLS L V (1) the intersection of the N ellipsoidal sets E(Q -1 i ), Inclusion (48) is equivalent [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF] to:

1 α I n I n I n Q i > 0, ∀i ∈ I N . (49) 
An important property is exposed in the following Proposition.

Proposition 1. Given 0 < λ ≤ 1 and δ > 0, by considering symmetric positive definite matrices

Q i ∈ R n×n , positive diagonal matrices ∆ i ∈ R py×py and T i ∈ R m×m , matrices U i ∈ R n×n , Y 1,i ∈ R m×n , Z 1,i ∈ R m×n and Y 2,i ∈
R m×py , for i ∈ I N and a scalar µ, the convex optimization problem

min Q i ,U i ,∆ i ,T i ,Z 1,i ,Y 1,i ,Y 2,i ,µ
µ subject to LMIs (38), (41) and

µI n I n I n Q i > 0, ∀i ∈ I N ,
leads to a switching control law represented by (32), solution of Problem 1.

Proof: Being LMIs (41) satisfied, Lemma 4 implies that the modified bounded sector condition for the dead-zone function ( 21) is verified on L V (1). LMIs (38) being satisfied, Lemma 3 allows to write Inequality (33). Since there is no disturbance and the modified bounded conditions ( 21) and ( 4) are verified, we obtain ∆ λ V < 0, which proves the λ-contractivity of the set. The proof of the proposition is obtained by denoting µ = 1/α.

Control design solving disturbance rejection problem

This subsection presents the solution of Problem 2, dealing with the best L 2 -induced gain for a null initial condition (x 0 = 0) and for a priori given upper bound of the energy of the admissible disturbances

1 δ
. The idea consists in minimizing the upper bound √ γ for the L 2 -induced gain Σ L 2 from disturbance w k to output z k . The following convex programming problem is given in Proposition 2, where the names and the dimensions of free variables are consistent with the ones of Proposition 1.

Proposition 2. Given 0 < λ ≤ 1 and δ > 0, by considering symmetric positive definite matrices

Q i ∈ R n×n , positive diagonal matrices ∆ i ∈ R py×py and T i ∈ R m×m , matrices U i ∈ R n×n , Y 1,i ∈ R m×n , Z 1,i ∈ R m×n and Y 2,i ∈
R m×py , for i ∈ I N and scalar γ, the convex optimization problem Proof: We proceed by recurrence to prove this proposition. Assume

min Q i ,U i ,∆ i ,T i ,Z 1,i ,Y 1,i ,Y
that x k ∈ L V (δ), that is V σ(k) (x k ) < 1 δ for all k = 0, • • • , k 0 . Let us prove firstly that x k 0 +1 satisfies V σ(k 0 +1) (x k 0 +1 ) < 1 δ
: since LMIs (41) are satisfied, Lemma 4 implies that the modified bounded sector condition for the deadzone function ( 21) is verified at each instants k = 0, • • • , k 0 . Being LMIs [START_REF] Montagner | Improved estimation of stability regions for uncertain linear systems with saturating actuators: an LMI-based approach[END_REF] satisfied, Lemma 2 allows to write Inequality (33), that is, we have

∆ λ V + 1 γ z ′ k z k -w ′ k w k < 0. (50) 
By assuming that x 0 = 0 (V σ(0) (0) = 0), Inequality (50) (or more particularly ∆ λ V < w ′ k w k ) leads to ∀k 0 ∈ N:

V σ(k 0 +1) (x k 0 +1 ) ≤ k=k 0 k=0 ∆ 1 V ≤ k=k 0 k=0 ∆ λ V ≤ k=k 0 k=0 w ′ k w k ≤ 1 δ . ( 51 
)
The limit lim k 0 →+∞ V σ(k 0 ) (x k 0 ) exists and is positive and bounded by 1 δ .

By summing Inequality (50), we have In Figure 2, the sets E(Q -1 1 ) and E(Q -1 2 ) corresponding to the above synthesis result are plotted with symbol '+'. The solid line denotes the intersection of E(Q -1 1 ) and E(Q -1 2 ), that is the set L V (1). Finally the solid circle denotes the largest circle E(µI), included in L V (1). In the same figure, one illustrative example of trajectory is presented. The trajectory (circles linked by solid lines) starts from a point in L V (1). The initial point x 0 = -0.3 -1 ′ is depicted with a square. One can note that L V (1) is contractive. ) and E(Q -1 2 ) obtained from the optimization problem, the intersection L V (δ) and the largest circle included in L V (1).

1 γ k∈N z ′ k z k ≤ k∈N w ′ k w k .
The trajectory x k is plotted with the control u k and its saturation in Figure 3, in function of the time. The saturation sat(u k ) is emphasized at instants k = 0, 1, 3.

The convergence rate λ is conflicting with the size of L V (δ). A compromise should be obtained by a correct choice of λ, as shown in Table 1. The associated sets L V (1) are represented on Figure 4 for the different values of λ from Table 1.

If Assumption 2 does not hold, the active mode is not known. Furthermore if the Assumption 4 is not applicable, the value of the active nonlinearity is not available. By considering the additionnal constraints 
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(Y 1,i , Y 2,i , U i , ∆ i ) = (Y 1 , Y 2 ,
U, ∆) independent on the mode i, ∀i ∈ I N , or Y 2,i = 0, it is possible to obtain particular control laws with constant gains, or a pure state feedback control law. For λ = 0.9, the conservatism is emphasized in Table 2.

Applying the algorithm provided in Proposition 2 leads, with λ = 1 and The energy of this disturbance is equal to 1.7616 ≤ 1 δ = 2. A trajectory associated to this disturbance is depicted on Figure 5. We can note that the disturbance is rejected.

As in the previous problem, a trade-off should be found between the values δ and γ, as presented in Table 3 

Conclusion

This paper has investigated the control problems of λ-contractivity and L 2 gain induced gain minimizing, related to discrete-time switching systems, which include modal nonlinearities, actuator saturations and additional energy-bounded disturbances. These modal nonlinearities are assumed to satisfy their own cone bounded sector condition. The class of switched control laws, composed of a state feedback and an active nonlinearity feedback is considered. Optimization problems under LMIs constraints are provided to solve the considered problems. A numerical example is studied to illustrate these results. Several problems are still open: for example designing controllers subject to decentralized control structure. Furthermore, the design problem of output dynamic controllers for both the cases where the cone bounded nonlinearity is available or not for feedback could be also investigated.

Figure 1 :

 1 Figure 1: Nonlinearities ϕ 1 (•) and ϕ 2 (•) verifying the sector condition.

2 Figure 2 :

 22 Figure 2: Sets E(Q -1 1) and E(Q -1 2 ) obtained from the optimization problem, the intersection L V (δ) and the largest circle included in L V (1).

Figure 3 :

 3 Figure 3: A particular trajectory: a) state components (x 1 with '+'; x 2 with '×'); b) control u k with blue '+' and saturated control sat(u k ) with red '×'; c) first component of the indicator function ξ (1 )(k).

2 Figure 4 :

 24 Figure 4: Sets L V (1) for several λu k µ 1/ √ µ K σ(k) x k + Γ σ(k) ϕ σ(k) (y k ) 2.3542 0.4248 Kx k + Γϕ σ(k) (y k ) 3.7897 0.2639 K σ(k) x k 2.4804 0.4032 Kx k unfeasible

Figure 5 :

 5 Figure 5: A particular trajectory: a) state components (x 1 with '+'; x 2 with '×'); b) control u k with blue '+' and saturated control sat(u k ) with red '×'; c) first component of the indicator function ξ (1) (k).

is assumed that this relation defines one and only one value y k , for all possible x k , u k and w k . Assumption 1. The disturbance {w k } k∈N is assumed to have a bounded en-

  

	ergy, less than or equal to	1 δ	∈ R

+ 

, that is it belongs to the set

Table 1 :

 1 Compromise between λ and µ.

  . For δ ≤ 0.092, the optimization problem has no solution.

	δ	γ
	0.092 2.2576 × 10 7 0.093 6.0260 × 10 4 0.095 8.4925
	0.097	4.2079
	0.099	2.8066
	0.1	2.4087
	0.2	0.1976
	1	0.1182
	10	0.1182
	100	0.1182

Table 3 :

 3 Compromise between δ and γ.

-Q j ⋆ ⋆ ⋆ ⋆ ⋆ 0 -γI pz ⋆ ⋆ ⋆ ⋆ (A i U i + B i Y 1,i ) ′ (C z i U i + D i Y 1,i ) ′ λ(Q i -U i -U ′ i ) ⋆ ⋆ ⋆ (G i ∆ i + B i Y 2,i ) ′ (L i ∆ i + D i Y 2,i ) ′ Ω(C z i U i + D i Y 1,i ) -2∆ i ⋆ ⋆ -(B i T i ) ′ -(D i T i ) ′ Z 1,i Y 2,i -2T i ⋆

-Q + ⋆ ⋆ ⋆ ⋆ ⋆ 0 -γI pz ⋆ ⋆ ⋆ ⋆ (AU + BY 1 ) ′ (C z U + DY 1 ) ′ λ (Q -U -U ′ ) ⋆ ⋆ ⋆ (G∆ + BY 2 ) ′ (L∆ + DY 2 ) ′ Ω(C z U + DY 1 ) -2∆ ⋆ ⋆

-λQ -1 ⋆ ⋆ ⋆ ∆ -1 ΩC z,cl -2∆ -1 ⋆ ⋆ T -1 J T -1 Γ -2T -1 ⋆ 0 -(ΩE y ) ′ ∆ -1

& )&
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In other words, the system verifies Σ L 2 ≤ √ γ. Since the optimization problem provides the minimal γ, this is the optimal L 2 -gain.

Remark 2. In the case of non-trivial initial condition x 0 belonging to

where β is a positive scalar, the definition of L 2 -gain should be extended to

Remark 3. The problem of maximizing the disturbance tolerance could be treated by an optimization problem similar to that one of Proposition 2. More precisely, the optimization problem aims at minimizing δ instead of γ. The value of γ is thus not essential, but should remain finite to ensure that Inequality [START_REF] Montagner | Improved estimation of stability regions for uncertain linear systems with saturating actuators: an LMI-based approach[END_REF] is verified (see for more details [START_REF] Garcia | Finite L 2 gain and internal stabilisation of linear systems subject to actuator and sensor saturations[END_REF]).

Illustrations

Consider system (1) switching between N = 2 modes, with the following matrices (n = 2; m = p y = p z = r = 1):

The nonlinearities ϕ 1 and ϕ 2 verifying the sector condition with Ω 1 = 0.6, Ω 2 = 0.5 and ρ = 0.5 are depicted in Figure 1 and are given by ϕ 1 (y) = 0.6 y(1 + sin(y)) 2 ; ϕ 2 (y) = 0.5 y(1 + exp(-y 2 /2)) 2 .

Applying the algorithm given in Proposition 1 with λ = 1, we obtain the following numerical results: γ = 1.4160 × 10 5 and µ = 1.1687.