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ABSTRACT  

We present here the synthesis and structural characterization of new nanocomposites made of spherical 

magnetic nanoparticles of maghemite (γ-Fe2O3) dispersed in a polystyrene (PS) matrix. The γ-Fe2O3 

nanoparticles, synthetized in aqueous media, were first gently transferred by dialysis in 

dimethylacetamide (DMAc), a polar solvent which is a good solvent for PS. Electrostatic repulsions 

enable to keep colloidal stability in DMAc. The nanocomposites were then processed by a controlled 

evaporation of DMAc of binary mixtures of γ-Fe2O3 nanoparticles and PS chains. The size of the 

nanoparticles ranges from 3.5 to 6.5 nm and can be changed without any modification of the 

nanoparticles’ surface. The structural organization of the nanoparticles inside the polymer was 

determined as a function of the nanoparticles’ size. It was performed by combining very high resolution 

SAXS measurements which permit to decrease the nanoparticles content down to very low values 

(Φmag ~ 10-5) and TEM microscopy. Whatever the size, the nanoparticles are organized with a 

hierarchical structure that shows that their aggregation has been driven by a two-step process. At low 

spatial scale, dense primary aggregates composed of some tens of nanoparticles are formed whatever 

Φmag, resulting from the first aggregation step. For Φmag  > 10-4, these primary aggregates underwent a 

second aggregation step and are organized at larger scale in fractal aggregates of finite size of ~ 200nm 

of radius, with a dimension of 1.7. The size of the dense primary aggregates is almost constant when 

changing the nanoparticles radius, i.e the mean aggregation number of primary aggregates decreases 

with an increase of the radius.  
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 I Introduction  

The mechanical properties of a polymeric film can be improved by the inclusion of hard particles inside 

the matrix. In the last two decades, a specific attention has been focused on the reduction of the size of 

the particles down to the nanometer range to increase the specific surface between the particles and the 

polymer in order to improve both the reinforcement and the deformability of the resulting materials [1]. 

From an applicative point of view, the refined understanding of the mechanisms which govern the 

properties of the filled-polymer system is of great interest in order to design new materials with 

dedicated and controlled mechanical properties [2]. From a fundamental point of view, one still open 

question is to correlate the structural and dynamical properties of the components of the system at the 

microscopic level, i.e. the local structure of the filler and the polymer chain conformation, to the 

macroscopic response of the material like the elastic modulus. It is now commonly admitted that both 

the filler structure and chains dynamics contribute to the mechanisms of reinforcement. The contribution 

of the filler network comes from possible reorganizations under stretching (displacement/rotation, 

association/dissociation, and reorganization/breaking). It has been extensively studied from simple 

hydrodynamic models [3] to percolation effects at large filler content [4-7] in the linear, but also in the 

non linear regime with filler network breakdown and non affinity reorganizations [8].  The contribution 

of the chains, either before deformation or under stretching, has also been studied by simulations [9] and 

by experimental approaches [10, 11]. The emerging idea [12] to explain its influence on the 

reinforcement effects is the existence of a fraction of chains under a “glassy” state which will contribute 

to the elastic modulus as a rigid phase of the system. However, up to now, the direct measurement of 

this glassy fraction is still under discussions [13] as both contributions, filler and chains, can be 

correlated or not under deformation. As a consequence, it is difficult to separate their relative influence 

on the final properties of the materials at the macroscopic scale. Different strategies have been recently 

developed to elucidate these mechanisms by decoupling the contributions. Two main strategies are 

explored: modifying the interactions without changing the filler structure, or changing the polymer-filler 
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interactions without modifying the filler organization. The first method can be achieved by grafting the 

filler by the same polymeric chains as the ones of the matrix [14, 15]. It is attractive but implies to 

develop specific chemistry processes for the grafting of the filler. The second method, that can be 

achieved by a simpler processing route like simple mixing of components, offers nice perspectives for 

the design of model systems. Following this idea, some examples can be found using anisotropic or 

fractal fillers [16, 4] or changing the electrostatic interactions [17]. However, whatever the strategy used, 

changing the filler morphology at the local scale without changing organization at the large scale inside 

the polymer matrix by a simple tuning parameter (which is usually the particle content), is difficult 

because the filler-filler interactions usually depend of the filler concentration.  

In the present paper, we present a new model system of filler-polymer nanocomposite that really enables 

to change the polymer-filler interactions without modifying the filler organization at large scale. It is 

made of polystyrene (PS) matrix reinforced by spherical magnetic nanoparticles of maghemite (γ-

Fe2O3). Its specificity comes from the fact that different batches of nanoparticles with various mean radii 

ranging from 3.5 to 6.5 nm can be obtained starting from a single batch of nanoparticles after using a 

specific size-sorting process [18] based on colloidal gas-liquid transitions [19]. We thus dispose of a 

system for which the particle size can be finely tuned without making any surface modification. It 

provides us a new key parameter to manage the filler structure inside the polymer matrix. Such similar 

tuning of the particle size in nanocomposites is indeed rather difficult for other mineral particles, like 

silica for example, as it implies to synthesis each particles size separately, which results in surface 

modifications that can induce changes in polymer-filler interactions.  

 The use of magnetic nanoparticles has also a great potential interest for the improvement of the 

properties of polymeric systems in further studies. It has been demonstrated in the literature that it is 

possible to take advantage from the magnetic aspect of nanoparticles to design either magneto-

stimulable crosslinked gels [20, 21] or to create controlled anisotropic structures in nanocomposites 

using a magnetic field during casting [22]. 
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The paper is organized as follow: first we present the analysis of the nanoparticles in solution and 

especially the transfer from water to an organic solvent, dimethylacetamide, while keeping the colloidal 

stability using a dialysis process. Second, we have adapted the film processing developed by Jouault et 

al. [5] for silica fillers to our system in order to form homogeneous nanocomposites. Finally, the 

structure of the particles inside the polymer matrix is analyzed with a refined combination of high 

resolution SAXS measurements at the nanometer scale, which permit to cover a large range of particles 

volume fraction (from 10-5 to 5.10-2), with TEM microscopy which enable to validate the structure in the 

real space and the homogeneity at larger scale. The filler structure is then discussed as a function of the 

filler content and as a function of the tunable parameter, i.e. the native nanoparticles’ size. 

II Materials and Methods 

II.1 Synthesis of magnetic γ-Fe2O3 nanoparticles in aqueous solution

The maghemite (γ-Fe2O3) nanoparticles were chemically synthesized in water by coprecipitation in an 

aqueous ammonia solution of FeCl2 and FeCl3 salts. As a result we obtain colloidal magnetite which is 

fully oxidized to maghemite by Fe(NO3)3 in acidic medium [23]. The experimental conditions have been 

chosen in order to prepare particles with an average radius of the order of 40 Å. They have a roughly 

spherical shape. A size-sorting process based on colloidal gas-liquid transitions allowed then to split up 

the population of nanoparticles according to their diameter [18]. 4 batches of nanoparticles, with 

different sizes, have been obtained by such fractionation of the initial suspension. The size of the 

nanoparticles of the different batches and their volume fraction of magnetic nanoparticles Φmag were 

obtained by magnetization measurements performed with a home-made vibrating magnetometer device. 

The principle of the determination of the distribution of the radii from the magnetization curve [24] is 

recalled in supporting Information. The sizes were also measured by SAXS (see table 1 in part III).  

At the end of the synthesis, the positively charged naked nanoparticles were electrostatically stabilized 

at pH ~ 2 by HNO3
+- counterions (their PZC is 7.2). The ionic strength was ~ 2 10-2 mol/L. The ζ 
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potential of the nanoparticles, measured on a commercial setup (Delta Nano C, Beckman Coulter, 

France), was + 60mV.  

These synthesis processes enabled us to get large amounts of the different suspensions, as we 

obtained several hundreds of ml of each batch with a Φmag higher than 0.02.  

- Transfer in DMAC solvent by dialysis 

The magnetic nanoparticles were then transferred by dialysis in the dimethylacetamide (DMAc), a 

polar solvent (εr = 37.8) which is also a good solvent for the polystyrene (PS), the polymer used as a 

matrix for the nanocomposite. The initial aqueous suspension of γ-Fe2O3 nanoparticles was placed in a 

dialysis bag made of regenerated cellulose with a MCWO Cut-off of 12000-14000 Da (Roth-Sochiel, 

France). The bag was then placed in a reservoir of DMAc (purity >99.9% %, Sigma Aldrich, France). 

The dialysis enables to exchange progressively the molecules of the solvent, respectively water and 

DMAc, while keeping the colloidal stability. The DMAc bath was changed several times to exchange 

almost all molecules of water. We stopped the procedure of changing bath when such traces of water 

were low enough in the reservoir to allow the solubilization of chains of highly hydrophobic PS within 

the solvent.  

The ζ potential of the nanoparticles after the transfer was still positive with a value of + 11mV.  

- Sample Preparation  

The sample preparation process have been developed by Jouault et al. [Jouault 2009] for silica 

nanoparticles and adapted here to maghemite particles. We use polystyrene (PS, Aldrich, Mw 280000 

g/mol, Ip = 2, used as-received) as a matrix. The glass transition Tg of pure PS is around 100 °C. A 

concentrated solution of PS in DMAc (10% v/v) is mixed with a solution of maghemite nanoparticles 

previously transferred in DMAc, ranging from 0 to 5% v/v. The mixtures are stirred (using a magnetic 

rod) for 2 h. They are then poured into an aluminium cup and let cast in an oven at constant temperature 

Tcast = 130 °C during 8 days. At the final stage, the residual solvent content inside the film is below 1% 
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w/w. This yields spherical dry films of 5 cm of radius and 0.1 cm of thickness (i.e., a volume of 1.9 

cm3). 

- SAXS and SANS scattering 

The SAXS experiments on the nanocomposites and solutions were carried out at the SWING beamline 

at Soleil, using a sample changer enabling to load 10 samples simultaneously. SAXS measurements 

were recorded with the 2D AVIEX CCD camera, placed in the vacuum detection tunnel. 2 setups were 

used in order to obtain a large q-range. The sample to detector distance was fixed at 6.5m and 1.8m and 

a beamstop of 3 mm (vertical size) with a photodiode inserted in its center enabled us to measure the 

transmitted intensity. The experiments at 6.5m were repeated using a specially designed beamstop of 1 

mm in order to access very small q values: qmin= 4.4 10-4A-1. The beamline energy was set to 7 keV for 

all experiments which enabled to obtain a large q range going from 1.8 10-3 to 0.15A-1, where 

q=2πsinθ/λ. The parasitic scattering from the air and mica windows was subtracted from the total 

scattering intensity. The resulting curves were normalized to take into account the effects related to the 

detector non-linearities and sample transmission. The 2D SAXS images obtained were radially averaged 

and corrected for the transmitted intensity using Foxtrot, the data reduction and analysis program 

developed at Soleil. In order to subtract the contribution of the PS chains in the nanocomposite samples, 

we have measured a pure PS matrix sample without magnetic nanoparticles Ipure_PS and subtracted (1-

Φmag*Ipure_PS) from all the nanocomposite samples. Concerning the liquid samples, both the scattering of 

the solvent Isolvent and the capillary Icapillary were removed by the subtraction of (1-Φ*Isolvent-Icapillary) from 

all the solutions.

SANS measurements were done on PACE spectrometer at LLB (LLB, Saclay, France). One 

configuration was used (Sample-Detector = 4.7m; λ = 6 Å), covering a q-range from 7.10-3 to 7.10-2 Å-1. 

All measurements were done under atmospheric pressure and at room temperature. Standard corrections 

for sample volume, neutron beam transmission, empty cell signal subtraction, detector efficiency, 

subtraction of incoherent scattering and solvent buffer were applied to get the scattered intensities in 

absolute scale [25].  
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- Transmission Electronic Microscopy 

In order to complete on a larger scale the SAS analysis of the nanocomposite structure, conventional 

TEM observations were also performed on the composite materials. The samples were cut at room 

temperature by ultramicrotomy using a Leica Ultracup UCT microtome with a diamond knife. The 

cutting speed was set to 0.2 mm s-1. The thin sections of about 40 nm thickness were floated on 

deionized water and collected on a 400 mesh copper grid. Transmission electron microscopy was 

performed on a Tecnai F20 ST microscope (field-emission gun operated at 3.8 kV extraction voltage) 

operating at 200 kV. Precise observations of various regions of the sample were systematically done, 

starting at a small magnification which was then gradually increased. The sections observed were stable 

under the electron beam. The sample aspect remained similar on the whole area and for all pieces. 

Except for a few cutting scratches, moderate buckling, very rare bubbles, and impurities, the pictures 

presented below are completely representative of the single aspect of the sample, which thus appears 

homogeneous. 

III Obtaining stable binary mixtures of magnetic nanoparticles and PS polymeric chains 

1 Transfer and stability of γγγγ−−−−Fe2O3 magnetic nanoparticles in DMAc

It has been demonstrated that DMAc enables a good control of the aggregation of the silica 

nanoparticles in the PS matrix [5]. Thus the film processing needs a first step of transfer of naked γ-

Fe2O3 nanoparticles, initially in water, to the organic medium. However, the transfer of such γ-Fe2O3 

nanoparticles in DMAc has never been reported. We present in this section how we achieved it and 

checked the stability of the nanoparticles by SAXS.  

1.1 Structure of acidic aqueous suspensions of γ−Fe2O3 magnetic nanoparticles
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Prior to the transfer in DMAc, we have first checked by SAXS the stability of the aqueous suspensions 

and determined the nanoparticles size for the four batches of particles. These four batches will be 

denoted hereafter A, B, C and D.   

The suspensions were measured at 2 different volume fractions of maghemite nanoparticles Φmag: 

immediately after the size-sorting process at Φmag = 0.028  and a dilute one at Φmag = 0.001. The initial 

suspensions were diluted in distilled water. We show the results in Figure 1.a for nanoparticles C. The 

results for the other batches are very similar and are presented in the Supporting Information (Figures 

SI.1.a, SI.1.b, SI.1.c).  

Figure 1: (a) SAXS scattering curves for the suspensions of nanoparticles C in water. Inset:  q4I(q) 

versus q for Φmag = 0.001 in water. The full line corresponds to the best fit of the form factor. (b) SAXS 
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scattering curves for the suspensions of nanoparticles C in DMAc. Inset:  q4I(q) versus q for Φmag = 

0.001 in DMac. The full line corresponds to the best fit of the form factor. (c)  Comparison of the 

structure factors of the concentrated suspensions of nanoparticles C in water and in DMAc.  

Since the spherical nanoparticles are centrosymetrical, their scattering is written as follow:  

)()()()( 2 qSqPVqI NPNPsolvmagmag ρρ −Φ= (1) 

where ρmag and ρsolv are the respective scattering electronic density of maghemite and solvent (water or 

DMAc), VNP is the volume of the nanoparticles, PNP(q) their form factor and S(q) the structure factor. 

For very dilute solutions, i.e when Φmag = 0.001, we assume that the interactions between the 

nanoparticles are negligible and thus S(q) is equal to 1 on all the probed q-range. This measurement 

allows us to determine PNP(q) that gives the size and shape of the nanoparticles. The plateau obtained at 

low q in the Guinier range (q < 0.01 Å-1) confirms that the interactions between particles can be almost 

neglected. At large q (q > 0.06 Å-1) in the so-called Porod regime, I(q) roughly decreases like q-4, which 

is characteristic of solid particles with a sharp interface. No oscillations are obtained in the form factor, 

indicating that the size distribution of the complexes is polydisperse. PNP(q) is modelled by the form 

factor of a sphere with a  lognormal distribution of median radius R0 and polydispersity σ : 
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The mean diameter of the nanoparticles RNP_mean is obtained from 
2

2

9
3

0
3

_

σ
eRR meanNP = . The best fit is 

presented in the inset of Figure 1, in a I(q)q4 = f(q) representation. A maximum appears at a q position 

which is directly linked to the average radius of the spheres. R0 and σ can be unambiguously determined 

because R0 is linked to the peak q-position and σ to the adjustment of the shape of the peak. The results 
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for all sizes are presented in Table 1. They are compared with the ones obtained from magnetization 

measurements. The magnetization curves are presented in Figure SI.2 of the Supporting Information. 

Results from the two techniques are in excellent agreement. The four batches have close polydispersities 

and different RNP_mean ranging from 37 Å to 65 Å, proving that the size-sorting process has been 

successful.  

R0 (Å) ; σ (SAXS) R0 (Å) ; 
σ (magnetization) 

RNP_mean (Å) (SAXS) 

A 32 ± 1; 0.32 33 ± 1; 0.29 37 ± 2 

B 38 ± 1 ; 0.32 38 ± 1; 0.32 45 ± 2 

C 44 ± 1 ; 0.32 45 ± 1; 0.27 51 ± 2 

D 54 ± 1 ; 0.32 52 ± 1; 0.34 65 ± 2 

Table 1: Size characteristics of the different batches γ-Fe2O3 nanoparticles obtained by SAXS and 

magnetization measurements. 

The scattering curves of the suspensions for the dilute and concentrated volume fractions superimpose 

at large q in the Porod regime (I(q)/Φ∆ρ = f(q)) to the one at Φmag = 0.001. This is due to the fact that 

only the form factor is probed in the Porod regime. However, for Φmag = 0.028, the scattering curve has 

a different behavior at low q. It presents a soft maximum around 0.02 Å-1.This comes from the inter-

particle interactions which are no longer negligible and the structure factor S(q) in equation (1) is no 

more equal to 1. This structure factor is presented in Figure 1.c. It is calculated by dividing the total 

scattering by the form factor of the nanoparticles. It is equal to 1 at large q, it shows a correlation peak at 

intermediate q and it tends to a value inferior to 1 when q → 0. In the thermodynamic limit (for q → 0), 

it tends to the isothermal osmotic compressibility of the system. Its decay to a value inferior to 1 when 

going towards very low q means that the interparticle interactions are repulsive on average. The 
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nanoparticles must thus be homogeneously dispersed in the suspension and the correlation peak of the 

structure factor at q* ~ 0.022 Å-1 should correspond in real space to the mean interparticle distance 

between the nanoparticles dmean. In this case, 2π/q* must be equal to 3

6
)2( _

mag

meanNPmean Rd
Φ

=
π

as Φmag 

= VNP_mean
3/dmean

3. For Φmag  = 0.028, one gets dmean = 285 Å from the measurement (qmax ~ 0.022 Å-1) 

and 272 Å from the calculation. The excellent agreement between those two estimations confirms the 

perfect dispersion of the nanoparticles. 

These results are in agreement with the values of the 2nd Virial coefficients of similar suspensions 

obtained by osmotic measurements [26]. In such suspensions of naked (γ-Fe2O3) nanoparticles in 

aqueous acidic medium, there are three main interactions that contribute to the interparticular potential 

[26, 27]: (i) short-range Van der Waals attractions, (ii) magnetic dipolar interactions, which are found to 

be globally attractive if the anisotropic interparticle potential is integrated over all directions. They vary 

from -1/r6 to -1/r3 depending on the strength of the magnetic coupling γ = (µ0/kT)(µ1µ2/r
3) between two 

nanoparticles of respective momentum µ1 and µ2. Finally there are (iii) the coulombian electrostatic 

repulsions at longer range described by a Yukawa potential according to the DLVO theory [28] : 

r

e
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eZ
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rV r

Br

NPel

κ

επε

−

=
0

22

4

)(
where 

Tk

Ie

Br 0

22

εε
κ = (3) 

where ZNP is the number of charges carried by the nanoparticles, e the elementary charge of an 

electron, ε0 the permittivity of the vacuum, εr the relative permittivity of the medium (78.5 in water), kB 

the Boltzmann constant, T the temperature, κ the inverse of the Debye length and I the ionic strength 

defined by ∑=
i

ii zcI 2

2
1

(ci is the concentration of the ionic specie i and Zi its valency). 

In our experimental conditions at pH 2, the surface of the nanoparticles is strongly positively charged 

as its ζ potential equals + 60 mV. As a result the coulombic repulsions are sufficiently important to 

overcome the attractive interactions at moderate ionic strength. As shown in Figure S.I 1 in Supporting 

Information, the sum of the interactions in all the aqueous suspensions from the different batches is 
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always repulsive, even for the largest nanoparticles D, although the attractive interactions strongly 

increase with size.  

1.2 Structure of the suspensions of γ−Fe2O3 magnetic nanoparticles in DMAc

After the solvent transfer of the naked (γ-Fe2O3) nanoparticles, the interparticular potential is much 

more repulsive in DMAc than in water because the soft maximum associated to the correlation peak of 

the structure factor is much marked, as shown by the SAXS scattering curves of Figure 1.b. This is 

highlighted in Figure 1.c which compares the structure factor at Φmag  = 0.028 in DMAc to the one at 

Φmag  = 0.028 in water. The correlation peak at q* is much more pronounced as it reaches a value of 1.4 

in DMAc while it was around 1.15 in water. Accordingly, the isothermal osmotic compressibility has 

been strongly reduced because S(q)q → 0 tends to a much lower value.  

We have also checked that a dilution in pure DMAc of the suspension after dialysis does not affect its 

stability by comparing in figure 1.c the structure factor of a suspension at Φmag  = 0.017 with the one at 

Φmag  = 0.028. Both structure factors look very similar. As dmean increases with dilution, the correlation 

peak is shifted towards low q. The height of the correlation peak is slightly lower for Φmag  = 0.017. 

S(q)q →0 has a higher value for Φmag  = 0.017, in accordance with the fact that  the isothermal osmotic 

compressibility decreases when increasing Φmag, in a case of repulsive interparticle interactions on 

average. At very low Φmag, please note that the form factor of the nanoparticle is the same after the 

transfer in the organic solvent.   

In DMAc, the attractive interactions in the system are close to the ones in water. The magnetic dipolar 

interactions, that depend only on RNP_mean, are exactly similar while the Van der Waals attractions are of 

the same order (the Hamaker constant is slightly changed because the relative permittivity of DMAc is 

around twice lower than the one of water). The strong changes in the interparticular potential are thus 

related to an important increase of the electrostatic repulsions. The nanoparticles indeed still bear a 

positive charge because the ζ potential was still measurable at + 11 mV. The high dielectric constant of 
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DMAc enables the dissociation of the Fe-OH groups at the nanoparticles surface. The surface charge of 

the nanoparticles has nevertheless been strongly reduced compared to the acidic aqueous suspension as ζ 

was reduced from + 60 mV down to +11 mV. However the dialysis procedure with several baths in pure 

DMAc had progressively washed away all ions and the ionic strength I at the end of the transfer is close 

to 0 (only the nanoparticles counterions ensure the electroneutrality of the suspension). Thus, during the 

transfer process, the strong reduction of I combined with the decrease of εr overcompensate the decrease 

of ZNP, which globally increase the electrostatic repulsions. Please note that the elimination of the ionic 

strength by the use of dialysis to transfer the solvent is crucial. We tried to exchange the solvents by 

evaporating the water on mixtures of acidic aqueous suspensions and DMAc by simple boiling. It 

always leads to flocculation during the process because the salt was not removed but progressively 

concentrated. 

As for the aqueous suspensions, we checked that the sum of the interactions of the suspensions with 

the four different sizes of nanoparticles in DMAc was repulsive (see Figure S.I 1 in Supporting 

Information). 

2 Effect of the addition of PS chains on the suspensions of γγγγ−−−−Fe2O3 magnetic nanoparticles in DMAc

Prior to the processing of the films, we have studied the influence of the addition of a large amount of 

PS chains on the colloidal stability of γ-Fe2O3 nanoparticles suspensions in DMAc. We have measured 

by SANS the scattering of a suspension of nanoparticles C at Φmag  = 0.015 in which we added a 

quantity of PS chains (10% v/v). The scattering signal of the PS chains was matched to get only the 

scattering of the maghemite nanoparticles. The measurements were performed in a mixture of 15% of 

deuterated DMAc (Euristop France) and 85 % of hydrogenated DMAc which has a neutron scattering 

length density ρmixture of 1.43 10-10 cm-2 that exactly matches the one of hydrogenated PS. The nuclear 

scattering length density of maghemite ργ-Fe2O3 has a very different value (6.96 10-10 cm-2), which 

enabled a measurement of the scattering of the nanoparticles alone with a good statistics. 
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The scattering intensity of the maghemite nanoparticles in the DMAc suspension with contrast-

matched PS chains is presented in the inset of Figure 2. It can be described as presented in Equation 1, 

by a product of a form factor and a structure factor. The structure factor is displayed in figure 2 where it 

is compared to the one of a suspension with a close Φmag (0.017) in pure DMAc solution presented in 

previous section.  

Figure 2: Comparison of the structure factors of the suspensions of nanoparticles C with close Φmag 

either in pure DMAc solution or with 10% v/v of contrast-matched PS chains. Inset:  SANS scattering of 

suspensions of nanoparticles C with Φmag = 0.015 in DMAc with 10% v/v of contrast-matched PS 

chains. The full line corresponds to the form factor.   

It clearly appears that the introduction of the PS chains has changed the interparticular potential 

between the nanoparticles in the system. The two structure factors have the characteristic features of 
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repulsive systems (S(q)q→0 < 1 and a correlation peak at intermediate q) with rather similar 

concentrations. For the suspension with contrast-matched PS chains, q* is slightly shifted towards the 

low q compared to the suspension in pure DMAc because Φmag is slightly lower (0.015 versus 0.017). 

However, the repulsions are much less marked when PS chains are introduced in solution. The height of 

the correlation peak at q*, directly linked to the intensity of the repulsions, decreases from a value of ~ 

1.4 in pure DMAc to a value of ~ 1.15 with 10%v/v of PS chains. Accordingly, the isothermal osmotic 

compressibility is higher as S(q)q→0 increases from a ~ 0.4 in pure DMAc up to ~ 0.8 with the PS chains. 

As the nanoparticles are still in repulsive regime when PS chains are introduced, there are thus no 

specific interactions between the naked maghemite nanoparticles and PS which would have led to 

aggregation via a bridging process. The change in the interparticular potential can result from the 

following changes in the effective interactions between nanoparticles. First, as the content of PS chains 

is very important, the effective dielectric constant of the binary mixture of DMAc and PS chains is 

reduced compared to the one of the pure DMAc because εr ~ 3 for PS. This can both increase the Van 

der Waals attractions and decrease the electrostatic repulsions by changing the dissociation of the 

charges at the surface of the naked nanoparticles. Second, the presence of the PS chains can induce some 

depletion attractive interactions. However these depletion attractions must have a very limited range. As 

the PS chains are in semi-dilute regime with a very high concentration, the typical size of the system is 

the mesh size of the blob ξ of the semi-dilute solution, around 11Å here [29]. The range of the depletion 

interactions is thus necessarily lower than such a value. 

Despite the reduction of the effective repulsions between the nanoparticles in presence of  PS chains, 

our experimental system proves to be a good candidate for forming a nanocomposite with controlled 

aggregation due to its weak repulsive structure prior to the drying. 

IV Structures of aggregates of magnetic nanoparticles in nanocomposites polymeric films  
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Several nanocomposite films were obtained for the four different types of nanoparticles and over a 

large range of Φmag (calculated in this section after evaporation of the DMAc solvent) on almost four 

decades ranging from 10-5 up to 0.05. The films had a surface of ~ 80 cm2 and a typical thickness 

ranging from 0.5 to 1 mm. Their aspect was macroscopically homogeneous. As the maghemite optically 

absorbs in the red, the films diluted in γ−Fe2O3 nanoparticles were red/orange while the most 

concentrated were black. As reported on the system close to this one, made of silica nanoparticles 

dispersed in PS matrix [5], there were microcracks at the surface of the films. We describe in this 

section how we obtained the main structure of the aggregates of γ−Fe2O3 nanoparticles by SAXS and 

TEM microscopy first by focusing on a single nanoparticle size (sample C) and in a second step, how a 

change of the initial size of the nanoparticles tunes the aggregation. X-rays scattering is mainly 

dominated by the contrast between the inorganic particles and the polymer. It directly depends on the 

particles’ concentration in the polymer matrix. Only the powerful high resolution available in the setup 

of a SAXS apparatus in the synchrotron source enables to determine the structure of filled 

nanocomposites at the very low nanoparticle content range probed here.  

1 Typical features of the scattering of γγγγ−−−−Fe2O3 nanoparticles in the nanocomposites polymeric films

We present in this section the main features of the scattering curves of the γ−Fe2O3 nanoparticles within 

the polymeric matrix obtained by SAXS. They are shown in Figure 3 for the nanoparticles C for  
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Φmag  ranging from 10-5 to 0.05. 

Figure 3: SAXS scattering curves of the γ−Fe2O3 nanoparticles in the PS polymeric matrix obtained by 

SAXS for nanoparticles C. The dashed lines correspond to the form factor of the nanoparticles.  

Irrespective of the nanoparticles size and Φmag, all the scattering curves present a q-4 decay at large q (q 

> 0.1 Å-1) corresponding to the surface scattering of the individual nanoparticles. All the scattering 

curves perfectly superimpose to the form factors of the nanoparticles measured in section III.1.  

At lower q, two distinct behaviors appear depending on Φmag: 
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- For Φmag ≤ 10-4, there is a correlation peak in the range 0.05 Å-1 - 0.08 Å-1. Its q-position corresponds 

exactly to 2π/(2RNP_mean), i.e to the contact between 2 nanoparticles in real space. At lower q, the 

scattering presents a strong decay (between q-3 and q-4) and bends toward a Guinier regime around q ~ 

0.008 Å-1, indicating that the aggregates have a finite size. At lower q, depending on the samples, there 

is eventually an upturn at very low q with a q-3 behavior. 

- For Φmag ≥  5 10-4, the scattering spectra look different. The correlation peak still exists in the 

range 5 10-3 < Φmag < 10-2 but less pronounced. For higher Φmag, it is also present but looks more like a 

break of slope. At intermediate q, the scattering increases rather strongly again and, around 0.025 Å-1, 

there is a net break of slope for all samples and all Φmag. The scattering decays like q-1.7 (in the q- range 

0.0008 Å-1 - 0.008 Å-1). At very low q, (q < 0.0008 Å-1), the scattering tends towards a Guinier regime, 

indicating that the aggregates have a finite size. 

This first qualitative description indicates that the overall size of the aggregate is much larger in the 

high Φmag regime than in the low Φmag one, because the Guinier regime is reached at much lower q. As 

the correlation peak is present for all Φmag, with a q-postion corresponding to two nanoparticles in close 

contact, it is likely that the aggregates present at low Φmag, that will be named hereafter ‘primary 

aggregates’, are in fact present for all Φmag. They must then form aggregates of primary aggregates at 

higher Φmag that we will describe in the following by ‘supra-aggregates’. We present in the next sections 

a quantitative analysis of the structure of the supra-aggregates realized in the framework of such a 

hypothesis. 

2 Structure of supra-aggregates from the combined analysis of SAXS scattering and TEM 

experiments 

2.1 Nanocomposites at Φmag ≤ 10
-4

 : Scattering of primary aggregates
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Concerning the primary aggregates, the intensity of the correlation peak at qpeak = 2π/(2RNP_mean) 

indicates that the contact distance between two nanoparticles is strongly favored in the sample. The 

primary aggregate must thus be composed of dense clusters of several nanoparticles. This is confirmed 

in Figure 4.c that presents a TEM picture of such a primary aggregate obtained with nanoparticles C at 

Φmag = 10-5. This picture is representative of the aggregates that are observed on the whole TEM grid 

with a very low content. This explains why the scattering decay of the primary aggregate at intermediate 

q lies between q-3 and q-4, as one probes the surface scattering of a dense object. The Guinier regime at 

low q and the decay at intermediate q can thus be described by the form factor of polydisperse spheres. 

However this does not explain the q-3 upturn observed at very low q. It could arise from the presence of 

a limited number of larger aggregates but none are observed on the whole TEM grid (Figure 4.c). The q-

3 upturn indeed comes from the scattering of microcracks present in the sample, which decay like q-3, as 

it as been shown in [30]. Even after the subtraction of the pure PS matrix (see the Materials and 

Methods section), there remains some scattering signal of microcracks because their scattering behavior 

is modified by the presence of the nanoparticles. At low q, the whole scattering can thus be described by 

the linear combination of a form factor of polydisperse spheres and of a q-3 decay with a K prefactor: 
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P(R) accounts for the same lognormal law as in equation (2). However, the median radius is here the one 
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Figure 4: (a) Scattering of primary aggregates of nanoparticles C at Φmag = 10-5, decomposed at low q in 

a linear combination of the form factor of polydisperse spheres and scattering of microcracks, compared 

with the form factor of the nanoparticles C at the same Φmag. (b) Scattering of the form factor of primary 

aggregates of nanoparticles C. (c) TEM picture of a nanocomposite made of nanoparticles C at 

Φmag = 10-5. 

It is shown in Figure 4.a how such a linear combination enables to perfectly modeled the low q 

scattering of the primary aggregate of nanoparticles C measured at  Φmag = 10-5 (for q < 0.02 Å-1). In the 

next sections, the form factor of the primary aggregate of nanoparticles C will be described by such a 

scattering curve after the subtraction of the microcracks scattering. It is shown in Figure 4.b. 

The mean radius of the primary aggregate RPA_mean is 168 Å (RPA_0 = 140 Å; σ = 0.35), about three 

times the mean diameter of the nanoparticles, in accordance with Figure 4.c. 
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As the scattering of an assembly of non-interacting centro-symmetrical objects can be described by 

equation 1, with S(q) = 1 for all q, the value of Iobjects(q=0)/Φ∆ρ2 is a direct measurement of the volume 

of the object. This is true both for primary aggregates and for isolated nanoparticles. The direct 

comparison of the scattered intensity of primary aggregates IPA(0) and of the scattered intensity of 

nanoparticles INP(0), for same Φ and ∆ρ2 as shown in Figure 4.a, enables the measurement of the mean 

number of aggregation in the primary aggregates NPA_agg because IPA(0) = NPA_agg INP(0). We obtain 

NPA_agg ~ 10 for the primary aggregate of nanoparticles C measured at Φmag = 10-5, here again in 

accordance with picture of Figure 4.c. 

Finally, we can measure the compactness of the primary aggregates because the inner volume fraction 

of nanoparticles within the primary complexes ΦPA_inner is obtained from: 

3

_

_
__ 










=Φ

meanPA

meanNP

aggPAinnerPA
R

R
N (5) 

We get ΦPA_inner = 0.3. This high value confirms that the primary aggregates are dense clusters and 

explains why they scatter at low q like dense polydisperse spheres. 

It is worth noting that a similar scattering behavior of dense clusters of few nanoparticles has also been 

reported by Fresnais et al [31] on different systems of polymer/inorganic nanoparticles co-assemblies. 

Although there is no analytic form for the scattering signal of such dense small clusters made of 

polydisperse spheres, the authors have shown that the scattering features of such clusters can be 

perfectly recovered by reverse Monte-Carlo simulations. 

2.2 Nanocomposites at Φmag ≥ 5 10
-4

: Scattering of supra- aggregates

We detail here the scattering of the supra-aggregates made of primary aggregates. First of all, let us 

note that the scattering of the microcracks is here negligible compared to the one of the supra-aggregates 

because Φmag is rather high. As the primary aggregates are dense 3-D objects, they are centro-

symmetrical. The scattering of the supra-aggregates can thus be described like in equation 1 by the 
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product of the form factor of the primary aggregates and an effective structure factor between primary 

aggregates Seff(q). The Seff(q) are plotted in Figure 5.a for nanoparticles C at various Φmag ranging from 

5 10-4 to 5 10-2. They are calculated by dividing the scattered intensity by P(q)prim_aggΦprim_agg/Φmag, 

where P(q)prim_agg is the form factor of the primary aggregate presented in Figure 4.b and Φprim_agg its 

volume fraction. 

Figure 5: (a) Effective structure factor between the primary aggregates Seff(q) for nanoparticles C. Inset: 

same Seff(q) in log-linear scale. (b) TEM picture of a nanocomposite made of nanoparticles C at 

Φmag = 5 10-4. (c) TEM picture of a nanocomposite made of nanoparticles C at Φmag = 5 10-4 with a 

higher magnification. 

Very nicely, Seff(q) is perfectly equal to 1 between 0.05 Å-1 and 0.08 Å-1 (see inset of Figure 5.a),  in 

the q-region where the correlation peaks were observed (its q-value was 0.06 Å-1).  It proves that the 

mean number of aggregation of primary aggregates NPA_agg is exactly the same at every Φmag from 10-5 
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up to 5 10-2. It validates the hypothesis of supra-aggregates formed by a hierarchical structure made of 

dense primary aggregates and organized at a higher scale in a more open way. 

At lower q, Seff(q) shows a strong correlation peak at 0.025 Å-1. It roughly corresponds, in real space, 

to twice the mean radius of primary aggregates. This confirms again the hierarchical structure of the 

supra-aggregates with primary aggregates in close contact. In figure 3, the slope break observed in this 

q-range comes from the convolution of such correlation peak in Seff(q) with the form factor of the 

primary aggregates that is still increasing when going towards low q. 

In the q-region ranging from 0.0008 Å-1 to 0.008 Å-1, Seff(q) decays like q-1.7. The primary aggregates 

are organized within the supra-aggregates in a fractal way with a fractal dimension Df of 1.7. Finally, at 

very low q, the scattering curves reach a Guinier regime. The supra-aggregates have a finite size. All of 

these features are observed in Figure 5.b and Figure 5.c showing TEM pictures of isolated supra-

aggregates measured for nanoparticles C at Φmag = 5 10-4 with different magnifications. 

The SAXS scattering enables to extract quantitative information on the supra-aggregates. In a similar 

way as we obtained the mean number of aggregated nanoparticles within the primary aggregates NPA_agg 

in previous section, it is possible to obtain the mean number of aggregated primary aggregates within the 

supra-aggregates NSA_PA_agg. The scattered intensity of supra-aggregates ISA(0) is compared to the one of 

the primary aggregates IPA(0). NSA_PA_agg can be directly obtained from Figure 5.a because it corresponds 

to Seff(q) when q → 0. We get here NSA_PA_agg ~ 12 - 16 for Φmag higher than 10-2 and a slightly larger 

value for Φmag = 5 10-4. The mean number of total aggregation of nanoparticles within the supra-

aggregates NSA_agg is the product of NPA_agg and NSA_PA_agg. It is ~ 100 for nanoparticles C. In the TEM 

pictures of Figure 5.b and 5.c, the supra-aggregates seem to contain less nanoparticles than we obtained 

from SAXS analysis. It is a misleading effect from TEM microscopy because the overall size of the 

supra-aggregates is larger than the thickness of the cut of the samples used (40 nm, see Materials and 

Methods section). 

The values of Df, NSA_PA_agg and RPA_mean enable to get the mean radius RSA_mean of supra-aggregates: 
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meanPA

D

aggPASAmeanSA RNR
f

_
/1

___ = (6) 

We obtain RSA_mean ~ 800 Å, similarly as observed in Figure 5.c. 

As recalled in the Introduction section, one of the main dominant effects in the reinforcement 

mechanisms of nanocomposites is the network effect. It is thus important to be able to determine 

precisely the percolation threshold volume fraction in our nanocomposites.  This can be done because all 

the structural dimensions of the system are quantitatively characterized. Let us determine the effective 

volume fraction occupied by spheres ΦSA with the radius of supra-aggregates RSA_mean as a function of 

Φmag : 
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For the suspensions of nanoparticles C at Φmag = 0.02, Φmag = 0.03 and Φmag = 0.05, one obtains 

respectively ΦSA = 0.60, ΦSA = 0.79 and ΦSA = 1.2. 

If the supra-aggregates are homogeneously dispersed at large scale, the percolation threshold volume 

fraction is located at ΦSA ~ 1 when interpenetration between supra-aggregates is forced. The 

connectivity transition must thus be located at a Φmag slightly higher than 0.03. 

2.3 Homogeneity of supra-aggregates at large scale 

In order to know if the supra-aggregates are homogeneously dispersed at large scale, we have taken 

TEM pictures of films made of nanoparticles C at rather high Φmag ranging from 0.01 to 0.05. They are 

presented in Figure 6. For all the Φmag, we observe a homogeneous dispersion of supra-aggregates with 

the same structural characteristics as the ones derived from the SAXS analysis of previous section. 

Several scans of various regions of the samples were systematically done and they show perfectly 

reproducible pictures over the whole TEM grid.  The supra-aggregates are homogeneously dispersed in 

the whole PS matrix. 
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Figure 6: TEM picture of a nanocomposite made of nanoparticles C: (a) Φmag = 0.01; (b) Φmag = 0.02; 

(c) Φmag = 0.03; (d) Φmag = 0.05. 

The progressive concentration of the supra-aggregates, by increasing Φmag, seems to lead to the 

percolation of the system between around Φmag = 0.03, which is in perfect accordance with the previous 

SAXS analysis. 

3 Influence of the effect of nanoparticles size on the structure of supra-aggregates.  

We describe in this part the influence of the nanoparticles' size on the structure of the supra-aggregates. 

The SAXS scattering curves for the nanoparticles A, B, and D look very similar to the ones of 

nanoparticles C for the whole range of volume fractions. They are presented in Figure SI.3 in Supporting 

Information. This shows that the aggregates within the nanocomposites films are produced with a highly 

reproducible structure for all nanoparticles’ size. There exist nevertheless some differences in the 
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structure from one size to another. We compare here the scattering of the four different batches in the 

three regimes of interest: (i) at Φmag = 10-5 where only the primary aggregates are formed, (ii) at Φmag = 

5 10-4 where the supra-aggregates are formed, far below the percolation threshold, and (iii) at Φmag = 

0.03, close the percolation threshold. 

We start first with nanocomposites polymer films diluted in nanoparticles, i.e where only the primary 

aggregates are formed. Figure 7 presents the scattering curves features for the four batches of 

nanoparticles. As expected, the position of the correlation peak corresponding to the contact of two 

nanoparticles at q* = 2π/(2RNP_mean) is shifted towards the low q when RNP_mean increases. However, the 

structure is different from one sample to another. The intensity of the correlation peak changes with  the 

nanoparticles’ size. It almost vanishes for nanoparticles D, meaning that the mean number of 

aggregation in the primary aggregates NPA_agg decreases when the particles size decreases. This comes 

from the fact that, very nicely and very surprisingly, the mean radius of the primary aggregate RPA_mean is 

similar for the four sizes of nanoparticles. The shape of the scattering part curves corresponding to the 

Guinier regime of the form factor of the primary aggregate is indeed similar for all samples, as 

highlighted by the guide of the eye of Figure 7 which points out the q-position where the Guinier regime 

starts. NPA_agg decreases from ~ 30 for nanoparticles A (obtained by the same study as described in 

previous part) to a few nanoparticles for nanoparticles D. In this latter case, it is difficult to get NPA_agg 

with a good accuracy because there is a large uncertainty on RNP_mean. It is due to the cross-over of the 

Guinier Regime of the primary aggregate with the correlation peak corresponding to the contact between 

two nanoparticles (RPA_mean is only almost 2 times RNP_mean for nanoparticles D). The decrease of NPA_agg 

while increasing RNP_mean  is nicely illustrated in Figure 7.b and in Figure 7.c that present TEM pictures 

of primary aggregates for both types of nanoparticles A and D. 
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Figure 7: Influence of the nanoparticles' size on the structure of primary aggregates. (a)  Comparison of 

SAXS spectra for the different nanoparticles batches compared with their form factor. The scattering 

curves are shifted in intensity for clarity. The dashed lines correspond to the form factor of the 

nanoparticles. The two grey lines are only guides for the eyes that point out the q-position of the Guinier 

regime starts and the correlation peak corresponding to the contact between two nanoparticless.  (b) 

TEM picture of a nanocomposite made of nanoparticles A at Φmag = 10-5. (c) TEM picture of a 

nanocomposite made of nanoparticles D at Φmag = 10-5.  

Figure 8.a presents the influence of the nanoparticles size on the structure of supra-aggregates, by 

comparing the SAXS scattering spectra of the four samples made at Φmag = 5.10-4.  At very low q 

(besides the structure of the primary aggregates), all the scattering curves are exactly the same, as 

highlighted Figure 8.b where all the experimental scattering curves are rescaled in intensity. Figure 8.d 

to Figure 8.g present TEM pictures of supra-aggregates for both types of nanoparticles A and D at Φmag 
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= 5.10-4 for two different magnifications.  For the 4 nanoparticles sizes, the samples form exactly the same 

kind of supra-aggregate made of primary aggregates of the same mean radius.   

Figure 8: Influence of the nanoparticles' size on the structure of supra-aggregates. (a)  Comparison of 

SAXS spectra for the different nanoparticles batches at Φmag = 5.10-4. The scattering curves are shifted 

in intensity for clarity. (b) Same scattering curves rescaled in intensity to the one of nanoparticles A. (c) 

q4I(q) versus q for the same scattering curves. (d) & (e) TEM pictures of a nanocomposite made of 

nanoparticles D at Φmag = 5.10-4 at different magnifications. (f) & (g) TEM picture of a nanocomposite 

made of nanoparticles A at Φmag = 5.10-4 at different magnifications. 

The modification of the specific surface of the primary aggregates with the particles’ size resulting from 

the variation of the number of the native nanoparticles per primary aggregate is illustrated in the I.q4 
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versus q representation of figure 8.c. At large q in the so-called limiting Porod regime, all the curves 

exhibit a plateau, of which intensity is directly proportional to the S/V ratio of the aggregates. This 

intensity nicely decreases when the nanoparticles’ size increases. This means that the contact surface 

between the polymer matrix and the filler, i.e. the quantity of chains influenced by the proximity of the 

filler, can be easily tuned by the native nanoparticles’ size without modifying the surface of the 

nanoparticles and thus the nature of the interaction with the polymer.   

Figure 9 displays the SAXS scattering curves of the nanocomposites made at a higher concentration 

(Φmag = 0.03), in the regime where the supra-aggregates are close to the percolation threshold, for the 

four nanoparticles’s size. The previous analysis is confirmed as presented in the inset of Figure 8 where 

all the experimental scattering curves are rescaled in intensity. They perfectly superimpose together, 

indicating that all the samples have the same structure in this q-range.  
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Figure 9: Influence of the nanoparticles' size on the structure of supra-aggregates. Comparison of SAXS 

spectra for the different nanoparticles batches at Φmag = 0.03. The scattering curves are shifted in 

intensity for clarity. Inset: Same scattering curves rescaled in intensity to the one of nanoparticles A 

4 Mechanisms of formation of the primary aggregates and of the supra-aggregates  

We discuss here about the mechanisms of formation of supra-aggregates, in spite of the fact that they 

remain partially poorly understood. A full understanding would require the determination of the 

evolution of the structure of the system at different steps during the evaporation process, which is very 

difficult because it is not possible to match the signal from the remaining solvent in SAXS and it is not 

possible to get a good statistics at very low Φmag in SANS. However, the amount of reproducible 

structural data obtained here on the system allows us to reveal some major trends to describe them. 

 First, the aggregation of the nanoparticles occurs during the film processing, only after the beginning 

of the DMAc evaporation. As proven by the results of part III.2, there are still repulsions between the 

naked γ-Fe2O3 nanoparticles when they are mixed with PS chains in DMAc. A mechanism of initial 

aggregation of the nanoparticles induced by the PS chains can thus be dismissed. 

Second, the aggregation mechanism during drying is a two-step process. As the primary aggregates are 

obtained in a reproducible way for all the samples at Φmag down to 10-5, they are presumably formed 

during an initial step of the drying. For the concentrated samples, a secondary step of aggregation, which 

leads to supra-aggregates, should occur only later during the drying process. 

 The primary aggregation step process is unexpected, and its mechanisms of formation remain unclear. 

It does not come from direct interactions between nanoparticles because this aggregation step occurs 

even at Φmag down to 10-5 after drying. For Φmag = 10-5, the mean distance between two nanoparticles 

dmean in the initial homogeneous dispersion of spheres is higher than 3

5_ 610
)(

−

π
meanNPd where dNP_mean is 
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the mean diameter of the nanoparticles. Thus dmean > ~ 40 dNP_mean. For electrostatic suspensions of 

maghemite nanoparticles of such a typical diameter, it has been shown in [Cousin 2003] that the 

interparticle potential between nanoparticles almost vanish at dmean ~ 3 dNP_mean because all the 

interactions have a limited range (Van der Waals attractions, magnetic dipolar attractions and 

electrostatic repulsions). Some eventual depletion interactions induced by the PS chains have also a very 

limited range (see part III.2). Moreover, an aggregation process driven by such attractive interactions 

would have lead to an increase of NPA_agg with RNP_mean, but the opposite effect is observed. As the 

primary aggregation leads to clusters which always have roughly the same size, the understanding of its 

origin may pass through the identification of the parameter of our experimental system that has such a 

characteristic size (~ 168 Å). This is not the mean radius of the nanoparticles RNP_mean.  It is much closer 

to the gyration radius of the PS chains in θ solvent used here (we get 230 Å for PS chains of Mw 280 000 

g/mol). However the PS chains are in semi-dilute regime before casting with a characteristics blob size ξ 

of 11Å [32], a size much lower than the one of the primary aggregates. It is likely that for nanoparticles 

of higher mean radius, the primary aggregation step would disappear. 

The secondary aggregation step process, that leads to open fractal aggregates with a Df of 1.7, is much 

easier to understand. This fractal dimension is indeed very close to 1.78, corresponding to the one 

measured and computed [33] for colloids aggregated through a Diffusion Limited Aggregation (DLA) 

process. As primary aggregates do not interact a priori, their further aggregation can thus only be driven 

by diffusion processes.  Theses processes are progressively frozen during drying, because the viscosity 

diverges. They do not occur for very dilute systems, because the primary aggregates are too far away 

from each other to aggregate by DLA before freezing. Once a critical concentration of primary 

aggregates is reached (ranging from Φmag =10-4 to 5 10-4), the system becomes concentrated enough in 

primary aggregates to allow DLA processes. The aggregation is limited at much larger scale by the 

competing effects of both the increase of the aggregates size by the DLA and of the freezing of the 

system, which leads to the finite size of supra-aggregates. As Φmag has a minor impact on the viscosity 

of the whole mixture, the process is similar for all samples, and leads to the same size. 
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5 Specificity of the system  

If some mechanisms of formation of the supra-aggregates remain to be understood, the clear 

description of the final dispersion of the maghemite nanoparticles inside the PS matrix gives an original 

picture. To our best knowledge, a reproducible two-step aggregation process of native nanoparticles 

inside a polymer matrix has never been reported in the literature on comparable systems (naked 

nanoparticles mixed with polymer chains). The formation of nanocomposites is usually driven by a more 

classical single-step aggregation process [5,34, 35] The native particles form objects of finite size at low 

content which percolate when increasing the concentration. 

This original two-step process, associated to the possibility of tuning the polymer-filler surface contact 

by the size of the native particles, is a very promising way to understand the microscopic mechanisms of 

the mechanical properties of reinforced materials, which involve two contributions in the elastic 

modulus, one coming from the fillers and one coming from the polymer chain. It is actually difficult to 

discriminate from an experimental point of view these two contributions. Indeed, changing the polymer-

filler interaction in order to probe the chain contribution usually modifies also the filler organization. 

Reciprocally, changing the filler structure, for example by the particles’ concentration, also modifies the 

polymer-filler interactions. 

To date, some fillers effects have been clearly described in the literature, especially the deviation of the 

hydrodynamic reinforcement associated to the percolation process of the fillers [Heinrich 2002]. But 

some other effects below the percolation threshold, like the existence of an elastic contribution, have 

been also observed [36]. The origin of this last contribution, which involves both the conformation [37] 

and the dynamic [12] of some polymer chains in the vicinity of the filler, is still under discussion. It 

remains indeed difficult to highlight it directly because it depends on the fraction of  the implicated 

chains, which is difficult to evaluate and could be reduced to a small value [13]. Thus, our experimental 

system is of great interest to understand the contribution of the polymer chains in the mechanical 
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reinforcement because it enables to increase the fraction of the implicated chains by changing the 

specific surface of the fillers without changing the fillers contributions (the threshold percolation, here, 

is mainly related to the size of the supra-aggregates and it is independent of the size of the native 

maghemite nanoparticles). 

V Conclusion and perspectives  

We have shown here first how we have succeeded in obtaining stable colloidal suspensions of 

magnetic nanoparticles of maghemite (γ-Fe2O3) of ~ 40 Å of radius in dimethylacetamide (DMAc), a 

polar solvent which is also a good solvent of several common polymer chains (PS, PMMA, …). This 

was obtained by a gentle exchange of solvents by dialysis on suspensions that were initially synthetized 

in water, without any treatment of the bare nanoparticles. Such suspensions are promising from a 

polymer science point of view, as they could be the starting point of controlled polymerizations from the 

surface of the nanoparticles while keeping colloidal stability to achieve PS-grafted nanoparticles with 

controlled corona. Several successful polymerizations from different "Grafting from" routes have been 

reported on close systems made of silica nanoparticles stabilized in DMAc (ATRP [38], NMP [15]). 

We have also shown that we were able to easily produce highly reproducible nanocomposites made of 

such γ-Fe2O3 nanoparticles dispersed in a polystyrene matrix. At high volume fraction (Φmag ≥ 5 10-4), 

the magnetic nanoparticles in the matrix were forming an homogeneous dispersion of supra-aggregates 

with a finite size of around ~ 200 nm, with a hierarchical structure made of dense primary aggregates 

composed of some tens of nanoparticles. The latter supra-aggregates are organized in fractal way at 

higher scale with a dimension of 1.7. At low volume fraction (Φmag ≤ 10-4), only the primary aggregates 

were obtained. All the structural parameters of the supra-aggregates were perfectly characterized by an 

analysis combining SAXS and TEM microscopy. 

A remarkable specificity of the system comes from the reproducibility of the hierarchical structure 

obtained at a large scale. It is indeed possible to tune the inner structure of the elementary ‘bricks’ 
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forming the supra-aggregates (the primary aggregates) by an appropriate choice of the initial size of the 

nanoparticles without altering the structure at larger scale. This provides huge potentials to the system 

that will be presented in forthcoming studies:   

(i) First, it is a perfect model system to go further in the understanding of mechanical properties of 

nanocomposites because it allows to uncouple perfectly the respective contribution of the filler structure and 

polymer dynamics to the reinforcement. It allows indeed to process different samples with the same filler 

structure and the same ΦSA, either below the percolation threshold or above it, but with different surface 

contact between the nanoparticles and the PS matrix by playing on the nanoparticles' size.  

(ii) Second, the primary aggregates are a powerful tool to design new nanocomposites with various and 

controlled anisotropic morphologies of the filler, ranging from slightly anisotropic structures to highly 

anisotropic structures. This can be done by using an external magnetic field during casting and playing on 

the magnetic susceptibility of the nanoparticles, that strongly increases with the size of the 

nanoparticles.  
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Supporting Information Available. The magnetization curves of supensions of γ−Fe2O3 magnetic 

nanoparticles in H2O, the SAXS spectra of suspensions of γ−Fe2O3 magnetic nanoparticles in H2O and 

the SAXS spectra of γ−Fe2O3 nanoparticles in the nanocomposites polymeric films are presented in 

Supporting Information. This material is available free of charge via the Internet at http://pubs.acs.org. 
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1 SAXS spectra of suspensions of γγγγFe2O3 magnetic nanoparticles in H2O and DMAc  

 
 
Figure SI 1.a: SAXS scattering curves for the suspensions of nanoparticles A either in water 

or in DMAc presented in a I(q)/Φ∆ρ = f(q) representation. ∆ρ stands either for (ρmag - ρDMAc)
2 

or (ρmag - ρwater)
2 depending on the solvent used. Inset:  q4I(q) versus q for Φmag = 0.001 in 

water. The full line corresponds to the best fit of the form factor.   

 
 

 
 



Figure SI 1.b: SAXS scattering curves for the suspensions of nanoparticles B either in water 

or in DMAc presented in a I(q)/Φ∆ρ = f(q) representation. ∆ρ stands either for (ρmag - ρDMAc)
2 

or (ρmag - ρwater)
2 depending on the solvent used. Inset:  q4I(q) versus q for Φmag = 0.001 in 

water. The full line corresponds to the best fit of the form factor.   

 
 
Figure SI 1.c: SAXS scattering curves for the suspensions of nanoparticles D either in water 

or in DMAc presented in a I(q)/Φ∆ρ = f(q) representation. ∆ρ stands either for (ρmag - ρDMAc)
2 

or (ρmag - ρwater)
2 depending on the solvent used. Inset:  q4I(q) versus q for Φmag = 0.001 in 

water. The full line corresponds to the best fit of the form factor.   

 
2 Magnetization curves of suspensions of γγγγFe2O3 magnetic nanoparticles in H2O 

 

In order to determine the volume fraction of the different suspensions after synthesis and 

the size distribution of the nanoparticles, we have measured the magnetization curves of the 

suspensions in H2O.  

We briefly recall the principle here. Each nanoparticle bears a magnetic moment   
r 
µ  which 

is of the order of 104 Bohr magnetons. Its modulus 
  

r 
µ = mSVmagn is proportional to the 

magnetic volume Vmagn of the nanoparticles and to mS the magnetization of the maghemite. 

Under a large applied field   
r 
H , this magnetic moment   

r 
µ  orientates along the field direction. 

In a liquid suspension of γ-Fe2O3 nanoparticles of radius ~ 4 nm, it also rotates mechanically 

the core of the nanoparticle. The alignment of   
r 
µ  along   

r 
H  provides to the suspension a 



macroscopic magnetization M. At saturation, all the magnetic moments align along  
r 
H , then M 

= MS= mSΦ. For intermediate fields, the behavior of the suspension is superparamagnetic. For 

a suspension of monodisperse nanoparticles of radius R, M is well described by the first 

Langevin law L(R) at low Φ (when dipole-dipole correlations are neglected) :  
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For polydisperse suspensions, the shape of the curves M(H) is modified by the log-

normal size distribution of the particles size P(R0, s) (see equation 2 of main text) :   
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At low H, in the linear regime, the magnetization curve is proportional to the magnetic 

susceptibility of the nanoparticles. The magnetization curves are presented for the different 

batches of nanoparticles A, B, C and D in Figure SI.1.  

 

 



 
Figure SI.2: Magnetization curve of the suspensions of γFe2O3 nanoparticles in H2O. The 

magnetization curves are modelled by the first Langevin law and take into account the 

polydispersity of the nanoparticles. Inset: same curves in log-log scale. (a) batch A; (b) batch 

B; (c) batch C; (d) batch D.  



 
3 SAXS spectra of γγγγFe2O3 nanoparticles in the nanocomposite polymeric films  

 
Figure SI.3.a: SAXS scattering curves of the γFe2O3 nanoparticles in the PS polymeric matrix 

obtained by SAXS for nanoparticles A. The dashed lines correspond to the form factor of the 

nanoparticles.  



 
 
Figure SI.3.b: SAXS scattering curves of the γFe2O3 nanoparticles in the PS polymeric matrix 

obtained by SAXS for nanoparticles B. The dashed lines correspond to the form factor of the 

nanoparticles.  

 
 



 
Figure SI.3.c: SAXS scattering curves of the γFe2O3 nanoparticles in the PS polymeric matrix 

obtained by SAXS for nanoparticles D. The dashed lines correspond to the form factor of the 

nanoparticles.  

 




