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Abstract: This  paper  starts  from a  notice  made in  semiconductor  industry:  process  control  system and especially 
control charts provide information that can be exploited for correlation analyses during process investigations. In this 
industry, key and costly investigations are made for improving yield and reducing scraps. Daily, engineering teams are 
working at manufacturing improvements. Without process data, their work could take much more time and lead to weak 
improvements. Nevertheless, design of process control systems and in particular control charts lacks from taking into 
account  this  remark.  As  their  is  no  sound  application  to  infer  optimal  control  chart  depending  on  « business 
parameters » like yield, scraps, customer audits... Meetings between several engineering teams (process control, quality, 
process integration, industrial engineering and production) occurs frequently to find an affordable quantity of controls 
for each operations. The literature point of view doesn't provide more recommandations to take into account the reuse 
of data into these costly investigations. 
The paper investigates then this issue. For this first investigation, works have been focused on the design economics of 
control charts for a simplified process model. The paper translates into the Lorenzen and Vance model this concept. It 
simulates the design economic of control chart taking into account this new model and infers new optimal SPC set 
points. An analysis of this new link is made in a context of yield improvement, providing reference for knowing optimal 
quantity and frequency of controls.

Key words: economic design of control chart, scrap investigation, learning, ramp-up

1 Introduction
Semiconductor industry has to cope with severe environment, drifting processes, and sensitive products at any process 
disturbance. Information coming from tools and process measurements is a central element for learning how to master 
manufacturing systems.  For each new semiconductor  technology a learning process  is  followed,  enabling the  fine 
tuning of specifications, operating modes, control positions, etc. This process is followed to master operational risks 
before increasing the volume of production. Often, it is admitted by manufacturing teams that during early phases of 
this learning process, the number of controls have to be high in order to learn faster. However, milestone after milestone 
processes  are expected to be more robust  and stable.  Progressively,  it  becomes possible to  release controls  as  the 
process is better mastered. Maintaining high level of controls is then a nonsense [1] and the pressure to release controls 
increase drastically as the ramp-up process is going on.

Nevertheless, releasing controls remains an high risky action for managers. As studied by Gershwin and Kim [2], and 
Colledani  [3], it increases the number of wafers produced between two control and by the way increases the risk of 
massive scrap.  Often decision of  affordable  quantity  of  controls  for  each operations  are  taken  during  engineering 
meeting between several teams: process control, quality, process integration, production management... This can lead at 
sticking the level of control close to a predefined value reasonable in the organization, often far from an optimum. For 
example, it is a common practice in semiconductor industry to measure over 200 points of control, each wafers during 
first phases then to decrease near 50 points alsmost each lot and to reach less than 10 points per measured lots every 100 
lots, when products are manufactured in volume. These control rates are not really linked at those provided by classical 
SPC design methods (either pure statistical design or economic design methods), which also fail to take into account 
business parameters like data reuse or global cost. There is then an opportunity to develop a decision aided tool to help 
balancing optimal parameters depending on scrap rate. The design of control charts takes care of external parameters, 
usually considered by managers like scrap rate and the reuse of quality information.

The aim of this paper is to provide a framework to help this decision process by taking into account both statistical and 
informational issues. This paper proposes a two stages approach toward such a tool :

● The first step enhances the now classical Lorenzen and Vance’s model [4]. The cost of one scrap is far more important 
than out of control ones and data collected from quality measurements are used during scrap analyzes for building 
root causes, curative and preventative action plans. It adds the influence between number of points, control frequency 
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and the necessary time to solve scrap issues.
● The second fold consists in discussing the evolution (through the simulation) of sampling points and rates under the 

condition of scrap rate evolution.

The paper is structured over fivesections. In a first part, the paper goes through a literature review of economic design 
of control chart. Then, the paper presents the model enhancing the Lorenzen and Vance’s once. The paper presents how 
simulations have been performed and several results. These two parts represent the first stage, discussed above. Then 
the paper goes through the second stage, also aforementioned. The paper ends with perspectives.

2 Literature review
The questionning of interaction between quality and manufacturing operation has been adressed recently by Gershwin 
and Kim  [2], and Colledani  [3]. Their works are firsts investigations of how quality considerations can modify the 
production control. 

The design of control charts involves the selection of three parameters: sampling size (n), control frequency (h), and 
control limits (L) in order to detect earlier tools and processes shifts [5]. Economic design of control chart is a method 
which aims at determining these parameters of a control chart in optimizing a cost function of the process monitored. 
Usually, it considers parameters inner to the monitored process, such as the cost of sampling and analyzing, quality cost 
and behavior of the machine.

Classical criteria as statistical properties can be considered as economic variables. Duncan,  [6] proposes in 1956 the 
economical optimization of a X  control chart of a process which is only shut down during repairing. Several works 
around this model during the next 40 years have been interesting on the others types of control charts, adaptation to 
specific situations and resolution methods. A breakthrough has been the generalization of all these models by Lorenzen 
and Vance [4]. It is nowadays a reference in economic design, as it can be easily implemented and adapted.

Optimizing the design of control charts in an economic manner affords many opportunities to take into account external 
parameters of the process. One example is the adaptation of the economic design to semiconductor industries by Jang et 
al.  [7]. This study details cost parameters of the Lorenzen and Vance’s model, specifically the quality cost by using 
opportunity cost of the non-conformities. 

Several  critics and enhancements have been performed over economic control chart  design. Critics of this type of 
design highlight  a  lack  of  statistical  properties,  and the  difficulties  to  evaluate  correctly  the input  parameters  [8]. 
Improvements of the Lorenzen and Vance model have been done in adding statistical constraints [9], and by proposing 
more robust implementation: in using multiple scenarios in the optimization [10] or in expressing the input parameters 
in ranges of values  [11]. Extensions of the economic design have also been done through adaptive control  [12]. We 
recommend the overview of Tagaras [13] for more details about adaptive control.

Another lack pointed by Deming and Edwards  [14]  and Woodall  [8] in the economic design theory is the aim at 
maintaining the process in its initial situation, without any emphasis on continuous improvement. Silver and Rohleder 
[15] propose a dynamical optimization of the design parameters by reducing the out-of-control frequency at each cycle 
during the expected improvement period. This reflect the fact that improvement is inherent to the process and should be 
considered as it affect one design parameters. Weheba and Nickerson [16] consider the economic design of control chart 
as a reactive process and have a proactive approach, by adding the cost function of improvement in the process. Instead 
of considering improvement as a possibility to reduce costs, the targeted quality is imposed. The concept of “better 
quality level” is implemented in their model as lower process drifts. 

In the current literature, fact that controls retrieve data, which is employed to solve manufacturing issues, seems not 
exploited. However, data coming from tools, process and product controls are re-employed during problem solving 
sessions. An example is provided by a case study on the semiconductor industries [17]. This literature review has not 
retrieved any article about links between the reuse of process control data and the design of control charts. This paper 
investigates this link. Moreover, considering yield improvement, the paper discusses how quality control equilibriums 
(number of points to be measured, sampling rates in particular) will be modified by the decrease of scrap rate due to 
learning. Learning, as scrap rate or yield will be considered as exogenous factors of control chart design in this paper.

3 Description of the model and the cost function
This  paper  proposes  an  enhancement  of  the  Lorenzen  and  Vance's  economic  design  of  control  charts  model,  by 
embedding  a  link  between  control  plan  definition  (sampling  rate  and  number  of  controls)  and  duration  of  scrap 
investigation. This enhancement comes from literature review and authors experience in semi-conductor industry.
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The manufacturing process is composed of N stages, as presented  Figure 1, followed by a  X  control chart. It is 
similar to the model of Colledani  [3],  which investigates the equilibrium between process control actions and line 
balancing ones.

Usually, SPC measurements are employed for monitoring processes drifts. Each out of control is followed by a local 
action. Most of the time, this action is a predefined procedure known to be a fast answer at the drift. These kinds of 
actions remain low cost and simple to perform, so that any operator can apply it. They are full part of local continuous 
improvement. Long run investigations are usually not allowed within this frame.

At the end of the process, the product is qualified by functional tests. These controls are employed to sort dices and 
wafers and to scrap those rejected. When a product is considered faulty, long run investigations are performed to detect 
faulty process stages. Data from the entire production line are used to investigate, through data analysis algorithms 
(commonalities, clustering for example). These actions are performed by high qualified technicians and engineers. They 
are time consuming and rely on available process data. Speeding this stage remains a major stake as it is at the heart of 
process learning and global continuous improvement [18].

In the remainder, the paper aims to determine parameters of each SPC controls that will minimize the costs of the whole 
model.

In order to simplify the mechanism of the model, only the size (n) and the interval between two sampling (h) will be 
optimized, given control limit (L). In order to focus the analysis on the effect of the scrap investigation costs and to 
constrain the solution space, L is held at three in our optimization as presented by Weheba and Nickerson  [16]. This 
assumption respects the “six sigma” method recommendations. When relaxing this assumption, constraints have to be 
added on the “average run length (ARL)” to ensure statistical properties of the optimization, as in the economical-
statistical design of Saniga  [9]. Besides, emphasis should be put in optimization methods to maintain a short time 
optimization.

The function to minimize is:

min
ni , hi

(∑
i=1

N

f i ni , hi  )b
n1

h1
,
n2

h2
, . .. ,

nN

hN


 
Where fi is the cost function of the ith SPC control and b is the cost function of the scrap investigation. 

The cost of the investigation (function b) has been formulated in function of the quantity of SPC control done during 

the production. At stage i, if n i  is the size of a sample and 
1
hi

 the frequency of sampling, then 
ni

hi
 is the quantity of 

controls per hour. Each control is assimilated at one measurement retrieving data. As mentioned before, this amount of 
data is stored and used both for local and global improvement. The more information is available, the more analyses can 

Figure 1: Modeling of the production line and the quality controls
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be driven without any extra test. Time of investigation is shortened and extra costs are reduced with high quantity of 
control.

In this model, b is two folded. It is made of a fixed cost C when no information are available and a function -g() which 
decreases the cost when available SPC data increases. As the problem has been formulated as an optimization process, 
C can be suppressed. In the remainder, only g() will be taken in account. 

The function to minimize becomes then

Model studied

For the sake of simplification, a model composed only of the ith stage and the scrap investigation has been implemented. 
It is presented Figure 2.

The function to minimize is simplified to:

min
n ,h

 f  n ,h −g  n
h


Notations and the cost function of the economic design model are taken from Lorenzen and Vance model  [4]. This 
function follow the classical control cycle detailed Figure 3, each parameter and cost are described Table 1.1. 

min
n i , hi

∑
i=1

N

f in i , h ib
n1

h1
,
n2

h2
, . .. ,

nN

hN
=min

ni ,hi

∑
i=1

N

f i ni , hi C−g 
n1

h1
,
n2

h2
, .. . ,

nN

hN
=min

ni , hi
∑i=1

N

f i ni , hi −g 
n1

h1
,

n2

h2
,. .. ,

nN

hN


Figure 2: Simplified model
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The cycle starts in control. Their is  a control before the drift.  The duration of the « in control » state is 1/λ + s* 
T0/ARL1.  τ is the mean time between the last sample before the drift and the drift. h is the time between samplings. 
However the control chart cannot detect immediately the drift. Then h*(ARL2-1) time passes until the sampling which 
will detect the out of control. Between the sample and the out of control signal, their is a data treatment duration : n*E. 
After the out of control, is T1 the investigation time, and T2, the repair time. At the end of T2, the issue is fixed and the 
process is released in control.

Type Variable Designation

Design Variables n sample size

h hours between samples

L number of standard deviation from control limit to center line

Process Parameters λ 1/mean time process is in control

Δ number of standard deviation slip when out of control

C0
Quality cost / hour while In Control (IC)

C1
Quality cost / hour while Out Of Control (OoC)

Sample parameters a fixed cost per sample

b cost per unit sampled

E time to sample and chart on item

OOC Parameters Y cost per false alarm

W cost to locate and repair the assignable cause

T 0
expected search time when false alarm

T 1
expected time to discover the assignable cause

T 2
expected time to repair the process

Calculated variables s mean number of sample while IC

τ mean time between last sample while IC and the drift

ARL1 mean number of sample between an out of control while IC

ARL 2
mean number of sample between an out of control sample while OoC

Figure 3: A control cycle
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Table 1.1 List of parameters

 The hourly cost function of a classical economic design is: f n ,h =
C NCCOoCC S

T cycle

Where: T cycle  is the length of a cycle from the production beginning to the occurrence of an assignable 
cause, then its detection, and finally its repair.

T cycle=
1
λ


Y . s
ARL1

−τ  h . ARL2 n .E  T 1T 2

C NC  is the non-conformities costs for a cycle.

C NC=
C0

λ
C1−τn . Eh . ARL2 

COoC is the false alarm and detection costs for a cycle.

COoC=
Y . s
ARL1

W  

CS  is the direct sampling cost for a cycle.

CS=a  b .n    1 / λ  - τ n .E  h .ARL2 
h

For a detailed explanation of this classical model, authors recommend to read the paper of Lorenzen and Vance [4].

Expression of the gain function

g    is the gain per hour on the scrap investigation. It is estimated by the following function:

g  n
h
=I .C Inv 

n
h


Where :

● I is the number of investigations per hour.  I  equals the Scrap rate (or mechanical yield) times Number of 
products per hour.

●  C Inv 
n
h
  is the expected gain per investigation. It equals the maximum gain times j  n

h


○ j    expresses the impact of the quantity of available information, that is the quantity of control done, on 

the gain of investigation. j  n
h
∈[0,1 ]

○ Several functions have been tested, such as linear, logarithmic or sigmoid ones. To translate the fact that 

the value of data is higher when we present a first order model: j  n
h
=1−e

-Q. n
h , where is Q a constant 

which determines both the slope of the function and the maximum of profitable information.

Even if  data  are  reused  for  scrap  and  yield improvement,  the  learning mechanism remains  unknown and  will  be 
considered as a black box in this paper. As a consequence, scrap rate will be considered as exogenous parameters of 
control charts design.

4 Simulation and results
The case study used to test this model generalizes a typical process in the semi conductor industry  [19] in a 300mm 
wafer fab. The maximum gain is estimated at 2500 € per investigation, and is reached when controls are about 200 units 
per hour, that is Q is around 0.029. We assume that the process drifts to 1 sigma every 24 hours in average. Costs are 
estimated upon a cost of a machine of 300 €/h. C0 is roughly estimated at 160 €/h. C1  reaches 640 €/h.
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Sampling parameters considers a fixed cost per sample of 2 € (a 1000€ test wafer is used about 500 times), a time to 
sample 17 units takes about 5 minutes i.e. 5.10-3min/unit sampled. This leads to a variable cost of 1.4706€ (time to 
sample x 300€/h). The search time following an out of control is one hour, whenever the process is in control or not. So 
the cost of a false alarm is 300 € (1 hour x 300€/h). The time to repair the process is 4 hours, and the cost to locate and  
repair the assignable causes is 2000€ (5 hours x 300 €/h). Parameters are synthesized in appendix. ARL1, the  mean 
number of sample between an out of control while IC is estimated at  ___ and ARL2,  the mean number of sample 
between an out of control sample while OoC is estimated at ____

The maximum gain over one scrap analysis is estimated at 2500€. The scrap rate (also named S) for this simulation is 
50%. The manufacture processes 12 products per hour.

A synthesis of these parameters is presented Table 1.2

The optimization is a systematic enumeration of the possible combinations of n and h, in a few steps: first, a rough step 
for n and h is used to determine the valuable scale (ie n is search between 1 and 1000 with a step of 10, h between 0 and 
20 with a 0.1 step). Then the window is narrowed and the step is refined. Thanks to modern computers and the fact that 
we consider L given, the enumeration is fast and take less than five seconds for 40000 combinations tested on a Pentium 
M processor at 2.1 GHz with 1 Go RAM. The program has been made in C++ with graphic representation using Root 1 

(CERN) libraries, and is available upon request from the authors.

1  http://root.cern.ch/

Table 1.2: Model's paramters
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 The results are represented in Figure 4 and Figure 5:

Curves represent « iso » values of f n , h −g  n
h
  depending on n and h. Costs are elevated when 

 n is low, because of false alarm and scrap investigation costs
 h is low and n is high, because of out-of-control and direct sampling costs

The integration of the scrap investigation costs in the economic design of control chart modifies quantity of control 
optimum. Indeed, in our example, quantity of controls increases from 10.85 u/hour to 25.17 u/hour, the interval between 
two samples decreases from 1.475 hour to 0.715 hour and the sample size increases from 16 to 17 points. This result 
shows that: the reuse of SPC data for speeding scrap investigations has a clear impact on SPC parameter and tends to 
increase the number of controls. This connection proves that other sampling plan choices would lead at higher process 
control cost.

5 Discussions about the use of this model in a ramp-up context
During  the  ramp up  phase  of  a  new product,  significant  improvement  in  the  process  happens.  Preventive  actions 
improve  yields,  manufacturing  stability  and  robustness.  Therefore,  production  costs  and  scrap  rate  are  decreasing 
rapidly [20]. In the semiconductor context, priority is to reduce ramp-up time and to achieve as soon as possible a good 
yield [21], because of the product life cycle, characterized by decreasing of the prices and short life time [7]. Experience 
on the past product and learning curves [20] can provide estimation of the scrap rate.

The model assumes that  S is  an exogenous parameter  toward  C0  and  C1 .When the process  is  in control,  the 
monitored tool produces nevertheless some scraps. Wafers can be scratched or broken, or contribute to the final yield 
reduction, without knowing clearly each process stage implication. As final scrap rate evolves during the manufacturing 
ramp-up or the technology lifecycle, there is a relation between  C0 and S. Nevertheless, as it is possible to know 
broken and scratches costs at each process stage, estimating the true contribution of each operation upon hundreds of 
them to the final yield is hard to perform. That is why learning is considered only through the evolution of S, while 
C0 and C1 are assumed to be fixed quality costs.

Following curves present the evolution of optimal n and h parameters depending on scrap rate.

Figure 4: Cost per hour of the classical  
economic design

Figure 5: Cost per hour with integration of  
the scrap investigation costs 
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Figure 6 presents the frequency of control decreases dramatically, with slight peak augmentations when n increases. 

Figure 7 presents  number of units sampled is discrete. It increases slightly from 16 when scrap rate is below 28% to 19 
above 62%. 

 Figure 8  combines the two previous ones. Figure 8 shows the optimal solution for n, h, and the quantity of control (n / 
h) in function of the scrap rate.

When the scrap rate  is  null,  optimum values  are the classical  economic design optimum. The quantity of  control 
considerably increases with the scrap rate. The more scrap there are, the more controls have to be performed. Moreover, 
two major phenomena appear on the latter graph:

 The influence of the gain on investigation is strengthened with scrap rate, as more investigations happen, and 
the derivate of the quantity of control increase with scrap. 

 Then, the expression of the gain on investigation weaken the influence of the quantity of control when n/h > 
30.

These two points are related to the gain function. Other gains would have provided other curves.

As pratical  application, by anticipating scrap rate,  it  is  possible to evaluate accurately the quantity of information 
needed for both process control and process learning. It rationalizes extensive sampling early in the product life cycle to 
achieve faster learning. 

A simulation of  yield learning phenomenon,   is  presented  Figure 9.  Yield increases  following a 1st order  learning 
process from 5 up to 98% in 100 periods: minimum and maximum yield, yield evolution, and period length should be 
adjusted to the studied industry.

Figure 6: h, function of scrap rate Figure 7:  n, function of scrap rate

Figure 8: Evolution of the optimal quantity  
of control per hour depending on scrap rate
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In semiconductor industry, it is common to find such yield learning curves. Yield is just assimilated at (100-(Scrap 
rate)). Result presented  Figure 9 can be used as a first tool for adjusting controls while yield increases, based on a 
economical approach.

6 Conclusion
In  this  paper,  we  presented  an  adaptation  of  the  economic  design  of  control  charts  by  integrating  that  SPC 
measurements are valuable data for scraps analysis. Control charts are used for both monitoring locally the process and 
gathering  information  about  each  manufacturing  steps.  Scrap  investigations  duration  are  globally  decreased  by 
employing data analysis algorithms, which rely on SPC data.

The paper proposed a model enhancing the Lorenzen and Vance’s Design economic model. The simulation leads at a 
new equilibrium of optimal sampling plan. Based on this model, the paper investigates also the impact of scrap rate 
evolution on optimal control plan. Several perspectives pursue this enhancement. 

Final scrap rate and learning processes, locally and globally are considered as external variables of the model. In a next 
model, they could be considered as endogenous parameters. 

Indeed, if (n,h) are modified, few data will be available for investigate scrap issues and related problems and then it 
could take more time to investigate. Lets’ note t a discrete time period, It is understandable that change of (n,h) t leads at 
a change of (S)t+1, which leads at a change of (n,h)t+1 and so on. (n,h)t is then a function of previous n and h couples and 
scraps rate. (n,h)t = Θ((n,h)t-1, … , (n,h)0, (S)t, (S)t-1,…, (S)0). It is the same for  C0  and C1  parameters. During this 
investigation, the stability of the model should be checked. The convergence toward an attraction pole should also be 
investigated.

A second investigation to lead is to take into account that process control has several layers of information [22], [23]: 
SPC, EPC, Run To Run, Alarms, Customer Feedbacks… Each of these layers generates data, which can be used for 
learning. It can be useful to take into account this new configuration to set control of each layer depending of its impact 
on yield learning. 

A third extension of the paper could be N process stage instead of only one [24]. Stage correlations could be part of this 
extension. In this extension, the integration with WIP should also be taken into account.

Finally a full model: dynamic, multilayer and N process stage could be proposed.

Figure 9: Impact of Yield learning curves on process  
control plans 
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