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On the structure of (-β)-integers

The (-β)-integers are natural generalisations of the β-integers, and thus of the integers, for negative real bases. When β is the analogue of a Parry number, we describe the structure of the set of (-β)-integers by a fixed point of an anti-morphism.

Introduction

The aim of this paper is to study the structure of the set of real numbers having a digital expansion of the form

n-1 k=0 a k (-β) k ,
where (-β) is a negative real base with β > 1, the digits a k ∈ Z satisfy certain conditions specified below, and n ≥ 0. These numbers are called (-β)-integers, and have been recently studied by Ambrož, Dombek, Masáková and Pelantová [START_REF] Ambrož | Numbers with integer expansion in the numeration system with negative base[END_REF].

Before dealing with these numbers, we recall some facts about β-integers, which are the real numbers of the form

± n-1 k=0 a k β k such that 0 ≤ m-1 k=0 a k β k < β m for all 1 ≤ m ≤ n ,
i.e., n-1 k=0 a k β k is a greedy β-expansion. Equivalently, we can define the set of β-integers as

Z β = Z + β ∪ (-Z + β ) with Z + β = n≥0 β n T -n β (0) ,
where T β is the β-transformation, defined by

T β : [0, 1) → [0, 1) , x → βx -⌊βx⌋ .
This map and the corresponding β-expansions were first studied by Rényi [START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF].

The notion of β-integers was introduced in the domain of quasicrystallography, see for instance [START_REF] Burdík | Beta-integers as natural counting systems for quasicrystals[END_REF], and the structure of the β-integers is very well understood now. We have β Z β ⊆ Z β , the set of distances between consecutive elements of Z β is

∆ β = {T n β (1 -) | n ≥ 0}
, where T n β (x -) = lim y→x-T n β (y), and the sequence of distances between consecutive elements of Z + β is coded by the fixed point of a substition, see [START_REF] Fabre | Substitutions et β-systèmes de numération[END_REF] for the case when ∆ β is a finite set, that is when β is a Parry number. We give short proofs of these facts in Section 2. More detailed properties of this sequence can be found e.g. in [START_REF] Balková | Asymptotic behavior of beta-integers[END_REF][START_REF] Balková | Sequences with constant number of return words[END_REF][START_REF] Bernat | On a class of infinite words with affine factor complexity[END_REF][START_REF] Frougny | Complexity of infinite words associated with betaexpansions[END_REF][START_REF] Klouda | Factor complexity of infinite words associated with non-simple Parry numbers[END_REF].

Closely related to Z + β are the sets

S β (x) = n≥0 β n T -n β (x) (x ∈ [0, 1)),
which were used by Thurston [START_REF] Thurston | Groups, tilings and finite state automata[END_REF] to define (fractal) tilings of R d-1 when β is a Pisot number of degree d, i.e., a root > 1 of a polynomial

x d + p 1 x d-1 + • • • + p d ∈ Z[x]
such that all other roots have modulus < 1, and an algebraic unit, i.e., p d = ±1. These tilings allow e.g. to determine the k-th digit a k of a number without knowing the other digits, see [START_REF] Kalle | Beta-expansions, natural extensions and multiple tilings associated with Pisot units[END_REF]. It is widely agreed that the greedy β-expansions are the natural representations of real numbers in a real base β > 1. For the case of negative bases, the situation is not so clear. Ito and Sadahiro [START_REF] Ito | Beta-expansions with negative bases[END_REF] proposed recently to use the (-β)-transformation defined by T -β : -β β+1 , 1 β+1 , x → -βx -β β+1βx , see also [START_REF] Frougny | On negative bases[END_REF]. This transformation has the important property that T -β (-x/β) = x for all x ∈ -β β+1 , 1 β+1 . Some instances are depicted in Figures 1,3, 4 and 5. The set of (-β)-integers is therefore defined by

Z -β = n≥0 (-β) n T -n -β (0) .
These are the numbers

n-1 k=0 a k (-β) k such that -β β + 1 ≤ m-1 k=0 a k (-β) k-m < 1 β + 1 for all 1 ≤ m ≤ n .
Note that, in the case of β-integers, we have to add -Z + β to Z + β in order to obtain a set resembling Z. In the case of (-β)-integers, this is not necessary because the (-β)-transformation allows to represent positive and negative numbers.

It is not difficult to see that Z -β = Z = Z β when β ∈ Z, β ≥ 2. Some other properties of Z -β can be found in [START_REF] Ambrož | Numbers with integer expansion in the numeration system with negative base[END_REF], mainly for the case when

T n -β -β β+1 ≤ 0 and T 2n-1 -β -β β+1 ≥ 1-⌊β⌋ β for all n ≥ 1. (Note that T n -β -β β+1 ∈ 1 β+1 -⌊β⌋ β , 1-⌊β⌋ β ∪ -β -1 β+1 , 0 implies T n+1 -β -β β+1 > 0.) The set V β = T n -β -β
β+1 | n ≥ 0 plays a similar role for (-β)-expansions as the set {T n β (1 -) | n ≥ 0} for β-expansions. If V β is a finite set, then we call β > 1 an Yrrap number. Note that these numbers are called Ito-Sadahiro numbers in [START_REF] Masáková | Ito-Sadahiro numbers vs[END_REF], in reference to [START_REF] Ito | Beta-expansions with negative bases[END_REF]. However, as the generalised β-transformations in [START_REF] Góra | Invariant densities for generalized β-maps[END_REF] with E = (1, . . . , 1) are, up to conjugation by the map x → 1 β+1x, the same as our (-β)-transformations, these numbers were already considered by Góra and perhaps by other authors. Therefore, the neutral but intricate name (-β)-numbers was chosen in [START_REF] Liao | Dynamical properties of the negative beta-transformation[END_REF], referring to the original name β-numbers for Parry numbers [START_REF] Parry | On the β-expansions of real numbers[END_REF]. The name Yrrap number, used in the present paper, refers to the connection with Parry numbers and to the fact that T -β is (locally) orientation-reversing.

For any Yrrap number β ≥ (1 + √ 5)/2, we describe the sequence of (-β)-integers in terms of a two-sided infinite word on a finite alphabet which is a fixed point of an antimorphism (Theorem 3). Note that the orientation-reversing property of the map x → -βx imposes the use of an anti-morphism instead of a morphism, and that anti-morphisms were considered in a similar context by Enomoto [START_REF] Enomoto | AH-substitution and Markov partition of a group automorphism on T d[END_REF].

For 1 < β < 1+ √ 5

2 , we have Z -β = {0}, as already proved in [START_REF] Ambrož | Numbers with integer expansion in the numeration system with negative base[END_REF]. However, our study still makes sense for these bases (-β) because we can also describe the sets

S -β (x) = lim n→∞ (-β) n T -n -β (x) x ∈ -β β+1 , 1 β+1 ,
where the limit set consists of the numbers lying in all but finitely many sets (-β) n T -n -β (x), n ≥ 0. Taking the limit instead of the union over all n ≥ 0 implies that every y ∈ R lies in exactly one set

S -β (x), x ∈ -β β+1 , 1 β+1 , see Lemma 2. Note that T 2 -β -β -1 β+1 = -β β+1 when β ∈ Z. Other properties of the (-β)-transformation for 1 < β < 1+ √ 5 2
are exhibited in [START_REF] Liao | Dynamical properties of the negative beta-transformation[END_REF].

β-integers

In this section, we consider the structure of β-integers. The results are not new, but it is useful to state and prove them in order to understand the differences with (-β)-integers.

Recall that ∆ β = {T n β (1 -) | n ≥ 0}, and let ∆ * β be the free monoid generated by ∆ β . Elements of ∆ * β will be considered as words on the alphabet ∆ β , and the operation is the concatenation of words. The β-substitution is the morphism

ϕ β : ∆ * β → ∆ * β , defined by ϕ β (x) = 11 • • • 1 ⌈βx⌉-1 times T β (x -) (x ∈ ∆ β ).
Here, 1 is an element of ∆ β and not the identity element of ∆ * β (which is the empty word). Recall that, as ϕ β is a morphism, we have

ϕ β (uv) = ϕ β (u)ϕ β (v) for all u, v ∈ ∆ * β . Since ϕ n+1 β (1) = ϕ n β (ϕ β (1)
) and ϕ β (1) starts with 1, ϕ n β (1) is a prefix of ϕ n+1 β (1) for every n ≥ 0.

Theorem 1. For any β > 1, the set of non-negative β-integers takes the form

Z + β = {z k | k ≥ 0} with z k = k j=1 u j ,
where u 1 u 2 • • • is the infinite word with letters in ∆ β which has ϕ n β (1) as prefix for all n ≥ 0. The set of differences between consecutive β-integers is ∆ β .

The main observation for the proof of the theorem is the following. We use the notation

|v| = k and L(v) = k j=1 v j for any v = v 1 • • • v k ∈ ∆ k β , k ≥ 0. Lemma 1. For any n ≥ 0, 1 ≤ k ≤ |ϕ n β (1)|, we have T n β z k-1 β n , z k β n = [0, u k ) ,
and

z |ϕ n β (1)| = L(ϕ n β (1)) = β n . Proof. For n = 0, we have |ϕ 0 β (1)| = 1, z 0 = 0, z 1 = 1, u 1 = 1
, thus the statements are true. Suppose that they hold for n, and consider

u 1 u 2 • • • u |ϕ n+1 β (1)| = ϕ n+1 β (1) = ϕ β (ϕ n β (1)) = ϕ β (u 1 ) ϕ β (u 2 ) • • • ϕ β (u |ϕ n β (1)| ) . Let 1 ≤ k ≤ |ϕ n+1 β (1)|, and write u 1 • • • u k = ϕ β (u 1 • • • u j-1 ) v 1 • • • v i with 1 ≤ j ≤ |ϕ n β (1)|, 1 ≤ i ≤ |ϕ β (u j )|, i.e., v 1 • • • v i is a non-empty prefix of ϕ β (u j ).
For any x ∈ (0, 1], we have

T β (x -) = βx -⌈βx⌉ + 1, hence L(ϕ β (x)) = βx for x ∈ ∆ β . This yields that z k = L(u 1 • • • u k ) = β L(u 1 • • • u j-1 ) + L(v 1 • • • v i ) = βz j-1 + i -1 + v i and z k-1 = βz j-1 + i -1, hence z k-1 β , z k β = z j-1 + i -1 β , z j-1 + i -1 + v i β ⊆ [z j-1 , z j-1 + u j ) = [z j-1 , z j ) , T n+1 β z k-1 β n+1 , z k β n+1 = T β i -1 β , i -1 + v i β = [0, v i ) = [0, u k ) .
Moreover, we have L(ϕ n+1 β (1)) = β L(ϕ n β (1)) = β n+1 , thus the statements hold for n+1. Proof of Theorem 1. By Lemma 1, we have

z |ϕ n β (1)| = β n for all n ≥ 0, thus [0, 1) is split into the intervals [z k-1 /β n , z k /β n ), 1 ≤ k ≤ |ϕ n β (1)|. Therefore, Lemma 1 yields that T -n β (0) = {z k-1 /β n | 1 ≤ k ≤ |ϕ n β (1)|} , hence n≥0 β n T -n β (0) = {z k | k ≥ 0} . Since u k ∈ ∆ β for all k ≥ 1 and u |ϕ n (1)| = T n β (1 -) for all n ≥ 0, we have {z k -z k-1 | k ≥ 1} = {u k | k ≥ 1} = ∆ β .
For the sets S β (x), Lemma 1 gives the following corollary.

Corollary 1. For any x ∈ [0, 1), we have

S β (x) = {z k + x | k ≥ 0, u k+1 > x} ⊆ x + S β (0) .
In particular, we have S β (x)x = S β (y)y for all x, y ∈ [0, 1) with (x, y] ∩ ∆ β = ∅. From the definition of S β (x) and since x ∈ β T -1 β (x), we also get that

S β (x) = y∈T -1 β (x)
β S β (y)

x ∈ [0, 1) .

This shows that S β (x) is the solution of a graph-directed iterated function system (GIFS) when β is a Parry number, cf. [15, Section 3.2].

(-β)-integers

We now turn to the discussion of (-β)-integers and sets

S -β (x), x ∈ -β β+1 , 1 β+1 . Lemma 2. For any β > 1, x ∈ -β β+1 , 1 β+1 , we have S -β (x) = n≥0 (-β) n T -n -β (x) \ -β β+1 = y∈T -1 -β (x) (-β) S -β (y) .
For any y ∈ R, there exists a unique x

∈ -β β+1 , 1 β+1 such that y ∈ S -β (x). If T -β (x) = x, then S -β (x) = n≥0 (-β) n T -n -β (x), in particular S -β (0) = Z -β . Proof. If y ∈ S -β (x), then we have y (-β) n ∈ T -n -β (x) for all sufficiently large n, thus y ∈ (-β) n T -n -β (x) \ -β β+1
for some n ≥ 0. On the other hand, y ∈ (-β

) n T -n -β (x) \ -β β+1 for some n ≥ 0 implies that T m -β ( y (-β) m ) = T n -β ( y (-β) n ) = x for all m ≥ n, thus y ∈ S -β (x). This shows the first equation. Since x ∈ -β β+1 , 1 β+1 implies that x ∈ (-β) T -1 -β (x)\ -β β+1 , we obtain that S -β (x) = y∈T -1 -β (x) (-β) S -β (y) for all x ∈ -β β+1 , 1 β+1 . For any y ∈ R, we have y ∈ S -β T n -β y (-β) n for all n ≥ 0 such that y (-β) n ∈ -β β+1 , 1 β+1 , thus y ∈ S -β (x) for some x ∈ -β β+1 , 1 β+1 . To show that this x is unique, let y ∈ S -β (x) and y ∈ S -β (x ′ ) for some x, x ′ ∈ -β β+1 , 1 β+1 . Then we have y ∈ (-β) n T -n -β (x) \ -β β+1 and y ∈ (-β) m T -m -β (x ′ ) \ -β β+1 for some m, n ≥ 0, thus x = T n -β y (-β) n = T m -β y (-β) m = x ′ . If T n -β -β β+1 = x = T -β (x), then T n+2 -β -β -1 β+1 = T n+1 -β -β β+1 = T -β (x) = x yields that (-β) n -β β+1 ∈ S -β (x), which shows that S -β (x) = n≥0 (-β) n T -n -β (x) when T -β (x) = x.
The first two statements of the following proposition can also be found in [START_REF] Ambrož | Numbers with integer expansion in the numeration system with negative base[END_REF].

Proposition 1. For any β > 1, we have (-β) Z -β ⊆ Z -β . If β < (1 + √ 5)/2, then Z -β = {0}. If β ≥ (1 + √ 5)/2, then Z -β ∩ (-β) n [-β, 1] = (-β) n , (-β) n+1 ∪ (-β) n+2 T -n-2 -β (0) ∩ -1 β , 1 β 2
for all n ≥ 0, in particular

Z -β ∩ [-β, 1] = {-β, -β + 1, . . . , -β + ⌊β⌋, 0, 1} if β 2 ≥ ⌊β⌋(β + 1), {-β, -β + 1, . . . , -β + ⌊β⌋ -1, 0, 1} if β 2 < ⌊β⌋(β + 1). Proof. The inclusion (-β) Z -β ⊆ Z -β is a consequence of Lemma 2 and 0 ∈ T -1 -β (0). If β < 1+ √ 5 2 , then -1 β < -β β+1 , hence T -1 -β (0) = {0} and Z -β = {0}, see Figure 1 (right). If β ≥ 1+ √ 5 2 , then -1 β ∈ T -1 -β (0) implies 1 ∈ Z -β , thus (-β) n ∈ Z -β for all n ≥ 0. Clearly, (-β) n+2 T -n-2 -β (0) ∩ -1 β , 1 β 2 ⊆ Z -β ∩ (-β) n (-β, 1) . To show the other inclusion, let z ∈ (-β) m T -m -β (0) ∩ (-β) n (-β, 1) for some m ≥ 0. If z = (-β) m -β β+1 , then z (-β) m ∈ -β β+1 , 1 β+1 and z (-β) n+2 ∈ -1 β , 1 β 2 ⊆ -β β+1 , 1 β+1 imply that T n+2 -β z (-β) n+2 = T m -β z (-β) m = 0. If z = (-β) m -β β+1 , then T n+2 -β z (-β) n+2 = T n+2 -β (-β) m-n-1 β+1 = T m+2 -β -β -1 β+1 = T m+1 -β -β β+1 = T -β (0) = 0 , where we have used that z (-β) n+2 ∈ -β β+1 , 1 β+1 implies m ≤ n. Therefore, we have z ∈ (-β) n+2 T -n-2 -β (0) for all z ∈ Z -β ∩ (-β) n (-β, 1). Consider now n = 0, then Z -β ∩ [-β, 1] = {-β, 1} ∪ {z ∈ (-β, 1) | T 2 -β (z/β 2 ) = 0} . Since -⌊β⌋ β ≥ -β β+1 if and only if β 2 ≥ ⌊β⌋(β + 1), we obtain that (-β) T -1 -β (0) = {0, 1, . . . , ⌊β⌋} if β 2 ≥ ⌊β⌋(β + 1), {0, 1, . . . , ⌊β⌋ -1} if β 2 < ⌊β⌋(β + 1). If T 2 -β (z/β 2 ) = 0, then z = -a 1 β + a 0 with a 0 ∈ (-β) T -1 -β (0), a 1 ∈ {0, 1, . . . , ⌊β⌋}, and 
Z -β ∩ [-β, 1] consists of those numbers -a 1 β + a 0 lying in [-β, 1].
Proposition 1 shows that the maximal difference between consecutive (-β)-integers exceeds 1 whenever β 2 < ⌊β⌋(β +1), i.e., T -β -β β+1 < 0. For an example, this was also proved in [START_REF] Ambrož | Numbers with integer expansion in the numeration system with negative base[END_REF]. In Examples 3 and 4, we see that the distance between two consecutive (-β)-integers can be even greater than 2, and the structure of Z -β can be quite complicated. Therefore, we adapt a slightly different strategy as for Z β .

In the following, we always assume that the set

V ′ β = V β ∪ {0} = T n -β -β β+1 | n ≥ 0 ∪ {0} is finite, i.e.
, β is an Yrrap number, and let β be fixed. For

x ∈ V ′ β , let r x = min y ∈ V ′ β ∪ 1 β+1 | y > x , x = x+rx 2 , J x = {x} and J x = (x, r x ) . Then {J a | a ∈ A β } forms a partition of -β β+1 , 1 β+1 , where A β = V ′ β ∪ V ′ β , with V ′ β = { x | x ∈ V ′ β } . We have T -β (J x ) = J T -β (x)
for every x ∈ V ′ β , and the following lemma shows that the image of every J

x , x ∈ V ′ β , is a union of intervals J a , a ∈ A β . Lemma 3. Let x ∈ V ′ β and write J x ∩ T -1 -β (V ′ β ) = {y 1 , . . . , y m } , with x = y 0 < y 1 < • • • < y m < y m+1 = r x . For any 0 ≤ i ≤ m, we have T -β (y i , y i+1 ) = J x i with x i = lim y→y i+1 - T -β (y) , i.e., x i = T -β y i +y i+1 2
, and β(y i+1y i ) = λ(J x i ), where λ denotes the Lebesgue measure.

Proof. Since T -β maps no point in (y i , y i+1 ) to -β β+1 ∈ V ′ β , the map is continuous on this interval and λ(T -β ((y i , y i+1 ))) = β(y i+1y i ). We have

x i ∈ V ′ β since x i = T -β (y i+1 ) in case y i+1 < 1
β+1 , and

x i = -β β+1 in case y i+1 = 1 β+1 . Since y i = max{y ∈ T -1 -β (V ′ β ) | y < y i+1 }, we obtain that r x i = lim y→y i + T -β (y), thus T -β ((y i , y i+1 )) = (x i , r x i ).
In view of Lemma 3, we define an anti-morphism

ψ β : A * β → A * β by ψ β (x) = T -β (x) and ψ β ( x) = x m T -β (y m ) • • • x 1 T -β (y 1 ) x 0 (x ∈ V ′ β
), with m, x i and y i as in Lemma 3. Here, anti-morphism means that

ψ β (uv) = ψ β (v)ψ β (u) for all u, v ∈ A * β . Now, the last letter of ψ β ( 0) is t, with t = max{x ∈ V β | x < 0}, and the first letter of ψ β ( t ) is 0. Therefore, ψ 2n β ( 0) is a prefix of ψ 2n+2 β ( 0) = ψ 2n β (ψ 2 β ( 0)) and ψ 2n+1 β ( 0) is a suffix of ψ 2n+3 β ( 0) for every n ≥ 0.
Theorem 2. For any Yrrap number β ≥ (1 + √ 5)/2, we have

Z -β = {z k | k ∈ Z, u 2k = 0} with z k = k j=1 λ(J u 2j-1 ) if k ≥ 0 , -|k| j=1 λ(J u -2j+1 ) if k ≤ 0 , where • • • u -1 u 0 u 1 • • • is the two-sided infinite word on the finite alphabet A β such that u 0 = 0, ψ 2n β ( 0) is a prefix of u 1 u 2 • • • and ψ 2n+1 β ( 0) is a suffix of • • • u -2 u -1 for all n ≥ 0. Note that • • • u -1 u 0 u 1 • • • is a fixed point of ψ β , with u 0 being mapped to u 0 .
The following lemma is the analogue of Lemma 1. We use the notation

L(v) = k j=1 λ(J v j ) if v = v 1 • • • v k ∈ A k β . Note that u 2k ∈ V ′ β and u 2k+1 ∈ V ′ β for all k ∈ Z, thus λ(J u 2k ) = 0 for all k ∈ Z. Lemma 4. For any n ≥ 0, 0 ≤ k < |ψ n β ( 0)|/2, we have T n -β z (-1) n k (-β) n = u (-1) n 2k , T n -β z (-1) n k (-β) n , z (-1) n (k+1) (-β) n = J u (-1) n (2k+1) ,
and

z (-1) n (|ψ n β ( 0)|+1)/2 = (-1) n L ψ n β ( 0) = λ(J 0 ) (-β) n = r 0 (-β) n .
Proof. The statements are true for n = 0 since |ψ 0 β ( 0)| = 1, z 0 = 0, z 1 = λ(J 0 ) = r 0 . Suppose that they hold for even n, and consider

u -|ψ n+1 β ( 0)| • • • u -2 u -1 = ψ n+1 β ( 0) = ψ β ψ n β ( 0) = ψ β (u |ψ n β ( 0)| ) • • • ψ β (u 2 )ψ β (u 1 ) . Let 0 ≤ k < |ψ n+1 β ( 0)|/2,
and write

u -2k-1 • • • u -1 = v -2i-1 • • • v -1 ψ β (u 1 • • • u 2j ) with 0 ≤ j < |ψ n β ( 0)|/2, 0 ≤ i < |ψ β (u 2j+1 )|/2, i.e., u -2i-1 • • • u -1 is a suffix of ψ β (u 2j+1 ). By Lemma 3, we have L(ψ β ( x)) = β λ(J x ) for any x ∈ V ′ β . This yields that -z -k-1 = β L(u 1 • • • u 2j ) + L(v -2i-1 • • • v -1 ) = β z j + L(v -2i-1 • • • v -1 ) and -z -k = β z j + L(v -2i • • • v -1 )
. By the induction hypothesis, we obtain that

T n+1 -β z -k (-β) n+1 = T n+1 -β z j (-β) n - L(v -2i • • • v -1 ) (-β) n+1 = T -β (u 2j ) = ψ β (u 2j ) = u -2k if i = 0, T -β x + L(v -2i • • • v -1 )/β = T -β (y i ) = v -2i = u -2k if i ≥ 1,
where the y i 's are the numbers from Lemma 3 for x = u 2j+1 , and

T n+1 -β z -k (-β) n+1 , z -k-1 (-β) n+1 = T -β (y i , y i+1 ) = J v -2i-1 = J u -2k-1 .
Moreover, we have L(ψ n+1 β ( 0)) = β L(ψ n β ( 0)) = r 0 β n+1 , thus the statements hold for n + 1. The proof for odd n runs along the same lines and is therefore omitted.

Proof of Theorem 2. By Lemma 4, we have z (-1) n (|ψ n β ( 0)|+1)/2 = r 0 (-β) n for all n ≥ 0, thus [0, r 0 ) splits into the intervals z (-1) n k (-β) -n , z (-1) n (k+1) (-β) -n and points z (-1

) n k (-β) -n , 0 ≤ k < |ψ n β ( 0)|/2, hence T -n -β (0) ∩ [0, r 0 ) = z (-1) n k (-β) -n | 0 ≤ k < |ψ n β ( 0)|/2, u (-1) n 2k = 0 . Let m ≥ 1 be such that β 2m r 0 ≥ 1 β+1 . Then we have -β β+1 , 1 β+1 ⊆ (-β 2m+1 r 0 , β 2m r 0 ), and 
T -n -β (0) \ -β β+1 ⊆ (-β) 2m T -n-2m -β (0) ∩ [0, r 0 ) ∪ (-β) 2m+1 T -n-2m-1 -β (0) ∩ [0, r 0 ) , thus n≥0 (-β) n T -n -β (0) \ -β β+1 = n≥0 (-β) n T -n -β (0) ∩ [0, r 0 ) = {z k | k ∈ Z, u 2k = 0} .
Together with Lemma 2, this proves the theorem.

As in the case of positive bases, the word • • • u -1 u 0 u 1 • • • also describes the sets S -β (x). Theorem 2 and Lemma 4 give the following corollary.

Corollary 2. For any

x ∈ V ′ β , y ∈ J x , we have S -β (x) = {z k | k ∈ Z, u 2k = x} and S -β (y) = {z k + y -x | k ∈ Z, u 2k+1 = x} .
Lemma 2 and Corollary 2 imply that S -β (x) is the solution of a GIFS for any Yrrap number β ≥ (1 + √ 5)/2, x ∈ -β β+1 , 1 β+1 , cf. the end of Section 2. Recall that our main goal is to understand the structure of Z -β (in case β ≥ (1+ √ 5)/2), i.e., to describe the occurrences of 0 in the word • • • u -1 u 0 u 1 • • • defined in Theorem 2 and the words between two successive occurrences. Let

R β = {u 2k u 2k+1 • • • u 2s(k)-1 | k ∈ Z, u 2k = 0} with s(k) = min{j ∈ Z | u 2j = 0, j > k} be the set of return words of 0 in • • • u -1 u 0 u 1 • • • . Note that s(k) is defined for all k ∈ Z since (-β) n ∈ Z -β for all n ≥ 0 by Proposition 1.
For any w ∈ R β , the word ψ β (w0) is a factor of • • • u -1 u 0 u 1 • • • starting and ending with 0, thus we can write ψ β (w0) = w 1 • • • w m 0 with w j ∈ R β , 1 ≤ j ≤ m, and set

ϕ -β (w) = w 1 • • • w m .
This defines an anti-morphism ϕ -β : R * β → R * β , which plays the role of the β-substitution.

Since • • • u -1 u 0 u 1 • • • is generated by u 1 = 0, as described in Theorem 2, we consider w β = u 0 u 1 • • • u 2s(0)-1 . We have [0, 1] = 0, 1 β+1 ∪ 1 β+1 , 1 , T -β (-β) -1 1 β+1 , 1 = -β β+1 , 0 , thus L(w β ) = 1 and
w β = 0 0 x 1 x 1 • • • x m x m x -ℓ x -ℓ • • • x -1 x -1 ,
where the x j are defined by

V ′ β = {x -ℓ , . . . , x -1 , 0, x 1 , . . . , x m }, x -ℓ < • • • < x -1 < 0 < x 1 < • • • < x m .
Theorem 3. For any Yrrap number β ≥ (1 + √ 5)/2, we have

Z -β = {z ′ k | k ∈ Z} with z ′ k = k j=1 L(u ′ j ) if k ≥ 0 , -|k| j=1 L(u ′ -j ) if k ≤ 0 , where • • • u ′ -2 u ′ -1 u ′ 1 u ′ 2 • • • is the two-sided infinite word on the finite alphabet R β such that ϕ 2n -β (w β ) is a prefix of u ′ 1 u ′ 2 • • • and ϕ 2n+1 -β (w β ) is a suffix of • • • u ′ -2 u ′ -1 for all n ≥ 0. The set of distances between consecutive (-β)-integers is ∆ -β = {z ′ k+1 -z ′ k | k ∈ Z} = {L(w) | w ∈ R β } . Note that the index 0 is omitted in • • • u ′ -2 u ′ -1 u ′ 1 u ′ 2 • • • for reasons of symmetry. Proof. The definitions of • • • u -1 u 0 u 1 • • • in Theorem 2 and of ϕ -β imply that • • • u ′ -2 u ′ -1 u ′ 1 u ′ 2 • • • is the derived word of • • • u -1 u 0 u 1 • • • with respect to R β , that is u ′ k = u |u ′ 1 •••u ′ k-1 | • • • u |u ′ 1 •••u ′ k |-1 , u ′ -k = u -|u ′ -k •••u ′ -1 | • • • u -|u ′ 1-k •••u ′ -1 |-1 (k ≥ 1) with {|u ′ 1 • • • u ′ k-1 | | k ≥ 1} ∪ {-|u ′ -k • • • u ′ -1 | | k ≥ 1} = {k ∈ Z | u k = 0} .
Here, for any v ∈ R * β , |v| denotes the length of v as a word in

A * β , not in R * β . Since z ′ k = k j=1 L(u ′ j ) = |u ′ 1 •••u ′ k |-1 j=0 λ(J u j ) = |u ′ 1 •••u ′ k | j=1 λ(J u j ) , z ′ -k = - k j=1 L(u ′ -j ) = - |u ′ -k •••u ′ -1 | j=1 λ(J u -j ) for all k ≥ 0, Theorem 2 yields that {z ′ k | k ∈ Z} = Z -β . It follows from the definition of R β that ∆ -β = {L(w) | w ∈ R β }.
It remains to show that R β is a finite set. We first show that the restriction of ψ β to V ′ β is primitive, which means that there exists some m ≥ 1 such that, for every

x ∈ V ′ β , ψ m β ( x) contains all elements of V ′ β .
The proof is taken from [START_REF] Góra | Invariant densities for generalized β-maps[END_REF]Proposition 8]. If β > 2, then the largest connected pieces of images of J x under T -β grow until they cover two consecutive discontinuity points 1 β+1 -a+1 β , 1 β+1 -a β of T -β , and the next image covers all intervals J y ,

y ∈ V ′ β . If 1+ √ 5 2
< β ≤ 2, then β 2 > 2 implies that the largest connected pieces of images of J x under T 2 -β grow until they cover two consecutive discontinuity points of

T 2 -β . Since T 2 -β -β β+1 , β -2 β+1 -1 β = -β 3 +β 2 +β β+1 , 1 β+1 , T 2 -β β -2 β+1 -1 β , -β -1 β+1 = -β β+1 , β 2 -β-1 β+1 , T 2 -β -β -1 β+1 , β -2 β+1 = -β β+1 , 1 β+1 , T 2 -β β -2 β+1 , 1 β+1 = -β β+1 , β 2 -β-1 β+1
, the next image covers the fixed point 0, and further images grow until after a finite number of steps they cover all intervals J y ,

y ∈ V ′ β . The case β = 1+ √ 5 2 is treated in Example 1. If T n -β -β β+1 = 0 for all n ≥ 0, then T n -β is continuous at all points x ∈ -β β+1 , 1 β+1 with T n
-β (x) = 0, thus u 2k = 0 is equivalent to u 2k+1 = 0 (see also Proposition 2 below). Hence we can consider the return words of 0 in • • • u -1 u 0 u 1 • • • instead of the return words of 0. Since ψ m β ( x 0 x 1 x 2 ) has at least two occurrences of 0 for all x 0 , x 1 , x 2 ∈ V ′ β , there are only finitely many such return words. If T n -β -β β+1 = 0, then ψ n β (x 0 x 1 x 2 ) starts and ends with 0 for all x 0 , x 1 , x 2 ∈ V ′ β , hence R β is finite as well. For details on derived words of primitive substitutive words, we refer to [START_REF] Durand | A characterization of substitutive sequences using return words[END_REF]. We remark that, for practical reasons, the set R β can be obtained from the set R = {w β } by adding to R iteratively all return words of 0 which appear in ψ β (w0) for some w ∈ R until R stabilises. The final set R is equal to R β . Now, we apply the theorems in the case of two quadratic examples.

Example 1. Let β = 1+ √ 5 2 , i.e., β 2 = β + 1, and t = -β β+1 = -1 β , then V β = V ′ β = {t, 0}. Since J t = (t, 0) = t, -1 β 3 ∪ -1 β 3 ∪ -1 β 3 , 0 , J 0 = 0, 1 β 2 , see Figure 1 (middle), the anti-morphism ψ β on A * β is defined by ψ β : t → 0 , t → 0 t t , 0 → 0 , 0 → t . Its two-sided fixed point • • • u -1 u 0 u 1 • • • is • • • 0 ψ β (0) 0 t t ψ β ( t ) 0 ψ β (t) t ψ β ( 0) 0 ψ β (0) 0 t t ψ β ( t ) 0 ψ β (t) t ψ β ( 0) 0 ψ β ( 0) 0 t t ψ β ( t ) 0 ψ β (0) 0 t t ψ β ( t ) 0 ψ β (t) t ψ β ( 0) 0 ψ β (0) t ψ β ( 0) 0 ψ β (0) • • • ,
where 0 marks the central letter u 0 . The return word of 0 starting at u 0 is w β = 0 0 t t. The image ψ β (w β 0) = 0 0 t t 0 t 0 contains the return words w β and 0 t. Since ψ β (0 t 0) = 0 0 t t 0, there are no other return words of 0, i.e., R β = {A, B} with A = 0 0 t t, B = 0 t. Therefore,

• • • u ′ -2 u ′ -1 u ′ 1 u ′ 2 • • • is a two-sided fixed point of the anti-morphism ϕ -β : A → AB , B → A , with u ′ -13 • • • u ′ -1 u ′ 1 • • • u ′ 21 = AABAABABAABAB AABAABABAABAABABAABAB . We have λ(J 0 ) = 1 β 2 , λ(J t ) = 1 β , thus L(A) = 1, L(B) = 1 β = β -1
, and some (-β)-integers are shown in Figure 2. Note that (-β) n can also be represented as

(-β) n+2 + (-β) n+1 . -β 3 -β 3 +β 2 -β -β 3 +β 2 -β +1 -β -β +1 0 1 β 2 -β +1 β 2 β 4 -β 3 +β 2 -β β 4 -β 3 +β 2 -β +1 β 4 -β 3 +β 2 β 4 -β +1 β 4 A A B A B A A B A A B A B Figure 2. The (-β)-integers in [-β 3 , β 4 ], β = (1 + √ 5)/2. Example 2. Let β = 3+ √ 5 
2 , i.e., β 2 = 3β -1, then the (-β)-transformation is depicted in Figure 3, where

t 0 = -β β+1 , t 1 = T -β (t 0 ) = β 2 β+1 -2 = -β -1 β+1 , T -β (t 1 ) = 1 β+1 -1 = t 0 . Therefore, V ′ β = {t 0 , t 1 , 0} and the anti-morphism ψ β : A * β → A * β is defined by ψ β : t 0 → t 1 , t 0 → t 0 t 1 t 1 0 0 t 0 t 0 , t 1 → t 0 , t 1 → 0 , 0 → 0 , 0 → t 0 t 1 t 1 ,
which has the two-sided fixed point

• • • 0 ψ β (0) 0 ψ β ( t 1 ) t 0 ψ β (t 1 ) t 0 t 1 t 1 0 0 t 0 t 0 ψ β ( t 0 ) t 1 ψ β (t 0 ) t 0 t 1 t 1 ψ β ( 0) 0 ψ β (0) 0 ψ β ( t 1 ) t 0 ψ β (t 1 ) t 0 t 1 t 1 0 0 t 0 t 0 ψ β ( t 0 ) • • • ,
where 0 marks the central letter u 0 . We have w β = 0 0 t 0 t 0 t 1 t 1 and

ψ β : 0 0 t 0 t 0 t 1 t 1 0 → 0 0 t 0 t 0 t 1 t 1 0 0 t 0 t 0 t 1 t 0 t 1 t 1 0 , 0 0 t 0 t 0 t 1 t 0 t 1 t 1 0 → 0 0 t 0 t 0 t 1 t 1 0 0 t 0 t 0 t 0 t 0 t 1 t 1 0 0 t 0 t 0 t 1 t 0 t 1 t 1 0 , 0 0 t 0 t 0 t 0 t 0 t 1 t 1 0 → 0 0 t 0 t 0 t 1 t 1 0 0 t 0 t 0 t 1 t 0 t 1 t 1 0 0 t 0 t 0 t 1 t 0 t 1 t 1 0 .
Note that 0 0 t 0 t 0 t 1 t 0 t 1 t 1 and 0 0 t 0 t 0 t 0 t 0 t 1 t 1 differ only by a letter in V ′ β , and correspond therefore to intervals of the same length. Since the letters t 0 and t 1 are never mapped to 0, we identify these two return words. This means that R β = {A, B} with A = 0 0 t 0 t 0 t 1 t 1 , B = 0 0 t 0 t 0 {t 0 , t 1 } t 0 t 1 t 1 , and

• • • u ′ -2 u ′ -1 u ′ 1 u ′ 2 • • • = • • • ABBABABBABBAB ABBABABBABBAB • • • is a two-sided fixed point of the anti-morphism ϕ -β : A → AB , B → ABB .
We have L(A) = 1, L(B) = β -1 > 1, and some (-β)-integers are shown in Figure 3.

0 0 t 0 t 0 1 β+1 1 β+1 t 1 t 1 J t 0 J t 1 J 0 -β 3 -β 3 +1 -β 3 +β 2 -2β +1 -β 3 +β 2 -β -β 3 +β 2 -β +1 -β 3 +β 2 -β 3 +β 2 +1 -β 3 +2β 2 -2β +1 -β 3 +2β 2 -β -β 3 +2β 2 -β +1 -2β +1 -β -β +1 0 1 β 2 -2β +1 β 2 -β β 2 -β +1 β 2 A B B A B A B B A B B A B A B B A B Figure 3. The (-β)-transformation and Z -β ∩ [-β 3 , β 2 ], β = (3 + √ 5)/2.
We remark that it is sufficient to consider the elements of V ′ β when one is only interested in Z -β . This is made precise in the following proposition.

Proposition 2. Let β and • • • u -1 u 0 u 1 • • • be as in Theorem 2, t = max{x ∈ V β | x < 0}.
For any k ∈ Z, u 2k = 0 is equivalent to u 2k-1 = t or u 2k+1 = 0.

If 0 ∈ V β or the size of V β is even, then u 2k = 0 is equivalent to u 2k-1 = t. If 0 ∈ V β or the size of V β is odd, then u 2k = 0 is equivalent to u 2k+1 = 0.

Proof. Let k ∈ Z and m ≥ 0 such that z k /β 2m ∈ -β β+1 , 1 β+1 . Then we have

• u 2k = 0 if and only if T 2m -β (z k /β 2m ) = 0, • u 2k-1 = t if and only if lim y→z k -T 2m -β (y/β 2m ) = 0, • u 2k+1 = 0 if and only if lim y→z k + T 2m -β (y/β 2m ) = 0. Thus u 2k = 0, u 2k-1 = t and u 2k+1 = 0 are equivalent when T 2m -β is continuous at z k /β 2m . Assume from now on that z k /β 2m is a discontinuity point of T 2m -β . Then T ℓ -β (z k /β 2m ) = -β β+1
for some 1 ≤ ℓ ≤ 2m and, if ℓ is minimal with this property, lim

y→z k - T 2⌊ℓ/2⌋+1 -β (y/β 2m ) = -β β+1
and lim

y→z k + T 2⌈ℓ/2⌉ -β (y/β 2m ) = -β β+1 .
Hence, if 0 ∈ V β , we cannot have u 2k = 0, u 2k-1 = t or u 2k+1 = 0 at a discontinuity point, which proves the proposition in this case. If 0 ∈ V β , then T

#V β -1 -β -β β+1 = 0, thus • T j -β (z k /β 2m ) = 0 if and only if j ≥ ℓ + #V β -1, • lim y→z k -T j -β (y/β 2m ) = 0 if and only if j ≥ 2⌊ℓ/2⌋ + #V β , • lim y→z k + T j
-β (y/β 2m ) = 0 if and only if j ≥ 2⌈ℓ/2⌉ + #V β -1. Since 2⌊ℓ/2⌋ ≥ ℓ -1 and 2⌈ℓ/2⌉ ≥ ℓ, we obtain u 2k = 0 whenever u 2k-1 = t or u 2k+1 = 0. If #V β is even, then u 2k = 0 implies that u 2k-1 = t since 2m ≥ ℓ + #V β -1 implies that 2m ≥ 2⌊ℓ/2⌋ + #V β . If #V β is odd, then u 2k = 0 implies that u 2k+1 = 0 since 2m ≥ ℓ + #V β -1 implies that 2m ≥ 2⌈ℓ/2⌉ + #V β -1. This proves the proposition.

By Proposition 2, it suffices to consider the anti-morphism

ψ β : V ′ β * → V ′ β * defined by ψ β ( x) = x m • • • x 1 x 0 when ψ β ( x) = x m T -β (y m ) • • • x 1 T -β (y 1 ) x 0 (x ∈ V ′ β ).
Then ∆ -β is given by the set R β which consists of the return words of 0 when 0 ∈ V β or the size of V β is odd. When 0 ∈ V β and the size of V β is even, as in Example 1, then R β consists of the words w t such that t w is a return word of t. 

t 0 = -β β+1 , t 1 = β 2 β+1 -2 = β -1 -2 β+1 , t 2 = 2β-1 β+1 -1 = β -2 β+1 , t 3 = -β -1 β+1 , t 4 = 1 β+1 -1 = t 0 , see Figure 4. The anti-morphism ψ β : V ′ β * → V ′ β * is therefore defined by ψ β : t 0 → t 2 t 0 , t 1 → t 0 t 1 t 3 0 , t 3 → 0 t 2 , 0 → t 3 , t 2 → t 0 t 1 .
Since 0 ∈ V β , we consider return words of 0 in the ψ β -images of w β = 0 t 2 t 0 t 1 t 3 :

0 t 2 t 0 t 1 t 3 → 0 t 2 t 0 t 1 t 3 0 t 2 t 0 t 0 t 1 t 3 , 0 t 2 t 0 t 0 t 1 t 3 → 0 t 2 t 0 t 1 t 3 0 t 2 t 0 t 2 t 0 t 0 t 1 t 3 , 0 t 2 t 0 t 2 t 0 t 0 t 1 t 3 → 0 t 2 t 0 t 1 t 3 0 t 2 t 0 t 2 t 0 t 0 t 1 t 2 t 0 t 0 t 1 t 3 , 0 t 2 t 0 t 2 t 0 t 0 t 1 t 2 t 0 t 0 t 1 t 3 → 0 t 2 t 0 t 1 t 3 0 t 2 t 0 t 2 t 0 t 0 t 1 t 0 t 1 t 3 0 t 2 t 0 t 2 t 0 t 0 t 1 t 2 t 0 t 0 t 1 t 3 , 0 t 2 t 0 t 2 t 0 t 0 t 1 t 0 t 1 t 3 → 0 t 2 t 0 t 1 t 3 0 t 2 t 0 t 0 t 1 t 3 0 t 2 t 0 t 2 t 0 t 0 t 1 t 2 t 0 t 0 t 1 t 3 . Hence R β = {A, B, C, D, E} with A = 0 t 2 t 0 t 1 t 3 , B = 0 t 2 t 0 t 0 t 1 t 3 , C = 0 t 2 t 0 t 2 t 0 t 0 t 1 t 3 , D = 0 t 2 t 0 t 2 t 0 t 0 t 1 t 2 t 0 t 0 t 1 t 3 , E = 0 t 2 t 0 t 2 t 0 t 0 t 1 t 0 t 1 t 3 , and Z -β is described by the anti-morphism ϕ -β : R * β → R * β given by ϕ -β : A → AB , B → AC , C → AD , D → AED , E → ABD .
The (-β)-integers in [-β 3 , β 4 ] are represented in Figure 4, and we have

L(A) = 1, L(B) = β -1, L(C) = β 2 -β -1, L(D) = β 2 -β ≈ 2.659, L(E) = β.
Note that L(D) > β > 2. Moreover, the cardinality of ∆ -β is larger than that of V β , which in turn is larger than the algebraic degree β+1 . We have t 5 = -1 β+1 = t 6 . The anti-morphism

d of β (#∆ -β = 5, #V β = 4, d = 3). 0 0 t 0 t 0 1 β+1 1 β+1 t 3 t 1 t 1 t 2 t 2 t 3 J t 0 J t 1 J t 3 J 0 J t 2 -β 3 -β 3 +1 -β 3 +β 2 -β -β 3 +β 2 -β +1 -β 3 +β 2 -β 3 +β 2 +1 -β -β +1 0 1 β 2 -β β 2 -β +1 β 2 β 2 +1 β 4 -2β 3 +β 2 +1 β 4 -β 3 -β β 4 -β 3 -β +1 β 4 -β 3 β 4 -β 3 +1 β 4 -β 3 +β 2 -β β 4 -β 3 +β 2 -β +1 β 4 -β 3 +β 2 β 4 -β 3 +β 2 +1 β 4 -β β 4 -β +1 β 4 A C A B A D A B A C A B A E D A B A C A B A D A B
ψ β : V ′ β * → V ′ β * is therefore given by ψ β : t 0 → t 3 t 5 , t 2 → t 4 t 0 t 2 , t 3 → t 5 t 1 0 t 4 t 0 t 2 t 3 t 5 t 1 0 , t 5 → t 2 t 3 , t 1 → 0 t 4 t 0 , 0 → t 5 t 1 , t 4 → t 0 t 2 t 3 .
In order to deal with shorter words, we group the letters forming the words

a = 0 t 4 , b = t 0 t 2 t 3 t 5 t 1 , c = t 0 t 2 t 3 t 5 , d = t 2 t 3 t 5 t 1 , e = t 0 t 2 , f = t 4 , g = t 0 t 2 t 3 , h = t 5 t 1 ,
which correspond to the intervals J a = 0, 1 β+1 , J b = (t 0 , 0), J c = (t 0 , t 1 ), J d = (t 2 , 0), J e = (t 0 , t 3 ), J f = t 4 , 1 β+1 , J g = (t 0 , t 5 ), J h = (t 5 , 0), occurring in iterated images of J a . The anti-morphism ψ β acts on these words by 

ψ β : a → b , b → ababac , c → dabac , d → ababae , e → f c , f → g , g → habac , h → ag .
J t 0 J t 2 J t 3 J t 5 J t 1 J 0 J t 4 -β -β +1 -β +2 0 1 2 β 2 -3β +1 β 2 -3β +2 β 2 -2β β 2 -2β +1 β 2 -2β +2 β 2 -β β 2 -β +1 β 2 -β +2 β 2 A A B A A C A B A A B A A B

Conclusions

With every Yrrap number β ≥ (1 + √ 5)/2, we have associated an anti-morphism ϕ -β on a finite alphabet. The distances between consecutive (-β)-integers are described by a fixed point of ϕ -β . In [START_REF] Ambrož | Numbers with integer expansion in the numeration system with negative base[END_REF], the anti-morphism is described explicitely for each β > 1 such that T n -β -β β+1 ≤ 0 and T 2n-1 -β -β β+1 ≥ 1-⌊β⌋ β for all n ≥ 1. Examples 3 and 4 show that the situation can be quite complicated when this condition is not fulfilled. Although ϕ -β can be obtained by a simple algorithm, it seems to be difficult to find a priori bounds for the number of different distances between consecutive (-β)-integers or for their maximal value. Only the case of quadratic Pisot numbers β is completely solved; here, we know from [START_REF] Ito | Beta-expansions with negative bases[END_REF][START_REF] Ambrož | Numbers with integer expansion in the numeration system with negative base[END_REF] that #V β = #∆ -β = 2.

Recall that the maximal distance between consecutive β-integers is 1, and the number of different distances is equal to the cardinality of the set {T n β (1 -) | n ≥ 0}. Example 3 shows that the (-β)-integers do not satisfy similar properties. By generalising Example 4 to β > 1 with β 6 = (m+1)β 5 +mβ 4 +mβ 3 +β 2 -mβ -1, m ≥ 2, one sees that the maximal distance can be arbitrarily close to 4 for algebraic integers of degree 6 and #V β = 6.

In a forthcoming paper, we associate anti-morphisms ϕ -β on infinite alphabets with non-Yrrap numbers β, by considering the intervals occurring in the iterated T -β -images of 0, 1 β+1 , cf. Example 4, and we show that the distances between consecutive (-β)-integers can be unbounded, e.g. for β > 1 satisfying -β β+1 = ∞ k=1 a k (-β) -k where a 1 a 2 • • • = 31232 1 2 31232 2 • • • is a fixed point of the morphism 3 → 31232, 2 → 2, 1 → 1. For Yrrap numbers β, this implies that there is no bound for the distance between consecutive (-β)-integers which is independent of β. However, large distances occur probably only far away from 0 and when #V β is large, and it would be interesting to quantify these relations.

Another topic that is worth investigating is the structure of the sets S -β (x) for x = 0, and of the corresponding tilings when β is a Pisot unit. A related question is whether Z -β can be given by a cut and project scheme, cf. [START_REF] Berthé | Tilings associated with beta-numeration and substitutions[END_REF][START_REF] Gazeau | Geometric study of the beta-integers for a Perron number and mathematical quasicrystals[END_REF].
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 0 only occurs at the beginning of a, the return words of 0 with their ψ β -images are ab → ab ab acb , aed → ab ab aef cb , acb → ab ab acd ab acb , aef cb → ab ab acd ab acgf cb , acd → ab ab aed ab acb , acgf cb → ab ab acd ab acgh = acb ab acd ab acb .Therefore, Z -β is described by the anti-morphism ϕ -β : R * β → R * β which is defined byϕ -β : A → AAB , L(A) = 1 , B → AACAB , L(B) = β -2 ≈ 1.695 , C → AADAB , L(C) = β 2 -3β -1 ≈ 1.569 , D → AAE , L(D) = β 3 -3β 2 -2β -1 ≈ 1.104 , E → AACAF , L(E) = β 4 -3β 3 -2β 2β -2 ≈ 2.081 , F → AACABACAB , L(F ) = β 5 -3β 4 -2β 3 -2β
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 5 Figure 5. The (-β)-transformation and Z -β ∩ [-β, β 2 ] from Example 4.
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