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ON THE STRUCTURE OF (—f)-INTEGERS
WOLFGANG STEINER

ABSTRACT. The (—/f)-integers are natural generalisations of the S-integers, and thus of
the integers, for negative real bases. When ( is the analogue of a Parry number, we
describe the structure of the set of (—/)-integers by a fixed point of an anti-morphism.

1. INTRODUCTION

The aim of this paper is to study the structure of the set of real numbers having a digital
expansion of the form
n—1
Z Qg (_ﬁ)k )
k=0

where (—f) is a negative real base with 5 > 1, the digits a; € Z satisfy certain conditions
specified below, and n > 0. These numbers are called (—f )-integers, and have been recently
studied by Ambroz, Dombek, Masdkova and Pelantova [I].

Before dealing with these numbers, we recall some facts about g-integers, which are the
real numbers of the form

3

n—1
i—Zakﬁk such that 0 < ap B < g™ foralll <m <mn,
k=0 0

B
Il

ie., ZZ;& a B* is a greedy f3-expansion. Equivalently, we can define the set of S-integers as
Zg =75 U(-Z}) with ZF=|]p"T;"(0),
n>0
where T is the B-transformation, defined by
Tz:1[0,1) = [0,1), =z~ px—|Bz].

This map and the corresponding [-expansions were first studied by Rényi [20].

The notion of S-integers was introduced in the domain of quasicrystallography, see for
instance [60], and the structure of the [-integers is very well understood now. We have
BZsz C Zg, the set of distances between consecutive elements of Zg is

Ap ={Tg(17) [n =0},

where Tg(z~) = lim, ., T§(y), and the sequence of distances between consecutive ele-
ments of ZE is coded by the fixed point of a substition, see [9] for the case when Ag is a
finite set, that is when (3 is a Parry number. We give short proofs of these facts in Section 2

More detailed properties of this sequence can be found e.g. in [2, [3] 4, 1T}, 16].
1
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Closely related to ZE are the sets
Sp(w) = B"T;"(x)  (z€0,1)),

n>0

which were used by Thurston [21I] to define (fractal) tilings of R*"! when f is a Pisot
number of degree d, i.e., a root > 1 of a polynomial 2%+ p;z¢~1 + - - - 4 pg € Z[x] such that
all other roots have modulus < 1, and an algebraic unit, i.e., p; = +1. These tilings allow
e.g. to determine the k-th digit aj of a number without knowing the other digits, see [15].

It is widely agreed that the greedy [-expansions are the natural representations of real
numbers in a real base 5 > 1. For the case of negative bases, the situation is not so clear.
Ito and Sadahiro [14] proposed recently to use the (—f)-transformation defined by

T 5: [%’ﬁ)v x = —pr — L%—Bﬂ,

see also [10]. This transformation has the important property that T_s(—x/3) = x for all
T € (_—ﬁ %) Some instances are depicted in Figures [ B 4] and Bl

+17 g+
1
1/3 1/82 G
0 0 0
1/ B
- § s s L
2/3)2/3 “i/60  1/3 Y8 -yg 0 1/ B T 0 Bl

FIGURE 1. The (—p)-transformation for g = 2 (left), 8 = 1+—2*/5 ~ 1.618
(middle), and = % + % ~ 1.325 (right).
The set of (—f)-integers is therefore defined by

Zg=J(=B)"T3(0).

n>0
These are the numbers
n—1 _5 m—1 1
;ak (—B)*  such that B+1 < 2 a (=B)F" < 771 forall1<m <mn.

Note that, in the case of -integers, we have to add —ZE to Zg in order to obtain a set
resembling Z. In the case of (—/f)-integers, this is not necessary because the (—f)-trans-
formation allows to represent positive and negative numbers.
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It is not difficult to see that Z_g = Z = Z when € Z, B > 2. Some other properties of

Z_z can be found in [I], mainly for the case when 7" (B_Jrl) < 0 and T2" 1(Bfl) > I_BLBJ
for allm > 1. (Note that 7™ (ﬁ) € (ﬁ —%, 1_6LBJ) U( o1 0) implies Tf;l(ﬁ—fl) > 0.)
The set
Ve ={T%(575) | n 2 0}

plays a similar role for (—f3)-expansions as the set {7%(17) | n > 0} for S-expansions. If
Vj is a finite set, then we call > 1 an Yrrap number. Note that these numbers are called
Ito-Sadahiro numbers in [18], in reference to [14]. However, as the generalised ﬁ transfor-
mations in [I3] with £ = (1,...,1) are, up to conjugation by the map z ﬁ+1 — x, the
same as our (—/f)-transformations, these numbers were already considered by Goéra and
perhaps by other authors. Therefore, the neutral but intricate name (—f)-numbers was
chosen in [17], referring to the original name S-numbers for Parry numbers [19]. The name
Yrrap number, used in the present paper, refers to the connection with Parry numbers and
to the fact that 7_g is (locally) orientation-reversing.

For any Yrrap number 3 > (1 + v/5)/2, we describe the sequence of (—/3)-integers in
terms of a two-sided infinite word on a finite alphabet which is a fixed point of an anti-
morphism (Theorem [3]). Note that the orientation-reversing property of the map x — —fz
imposes the use of an anti-morphism instead of a morphism, and that anti-morphisms were

considered in a similar context by Enomoto [§].
For 1 < 8 < 1+—2\/5, we have Z_z = {0}, as already proved in [1]. However, our study
still makes sense for these bases (—) because we can also describe the sets

S_p(a) = lim (=B)" T3 (x) (v € [575 77)):

where the limit set consists of the numbers lying in all but finitely many sets (—3)" T~5 (z),
n > 0. Taking the limit instead of the union over all n > 0 implies that every y € R lies in

exactly one set S_g(x), x € [ﬁ_—fp #), see Lemma 2l Note that 72 (_ﬁJrl ) #+ = m when

B & 7Z. Other properties of the (—f)-transformation for 1 < § < L4Y5 are exhibited in [17].
2

2. B-INTEGERS

In this section, we consider the structure of S-integers. The results are not new, but it is
useful to state and prove them in order to understand the differences with (—f)-integers.

Recall that Ag = {T§(17) | n > 0}, and let A} be the free monoid generated by Ag.
Elements of A% will be considered as words on the alphabet Ag, and the operation is the
concatenation of words. The S-substitution is the morphism g : Aj — Aj, defined by

QOB(SL’) = 111T5(SL’_) (SL’GAﬁ).
[Bz]—1 times
Here, 1 is an element of Ag and not the identity element of A% (which is the empty word).

Recall that, as ¢ is a morphism, we have @g(uv) = wg(u)ps(v) for all u,v € Aj. Since

gpgﬂ(l) = pi(pp(1)) and @g(1) starts with 1, (1) is a prefix of gp"“( ) for every n > 0.
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Theorem 1. For any 8 > 1, the set of non-negative B-integers takes the form

k
Zi =A{z | k>0} with zk:ZuJ—,
j=1
where uyuy - - - is the infinite word with letters in Ag which has ©(1) as prefiz for alln > 0.
The set of differences between consecutive 3-integers is Ag.
The main observation for the proof of the theorem is the following. We use the notation
lv| =k and L(v) = Z?Zlvj for any v =v; .- v, € A% k> 0.

Lemma 1. For anyn >0, 1 <k < [pj(1)], we have

Tﬁ([zg;l’ %)) = [0, ux),
and Zgn ) = L(pp(1)) = B

Proof. For n = 0, we have \@%(1)\ =1,20 =0, 21 = 1, uy = 1, thus the statements are
true. Suppose that they hold for n, and consider

untty e gy = @5 (1) = 0a(95(1) = a(u) @a(ua) -+ @a(ugn))

Let 1 <k < |<pg+1(1)|, and write uy - up = pg(ur - ujoq) vr v with 1< 5 < (1))
1 <i<|ps(uy)|, i-e., v1---v; is a non-empty prefix of ¢z(u;).

For any = € (0, 1], we have T3(z~) = fx — [Bx] + 1, hence L(pg(x)) = Sz for x € Ag.
This yields that

Zp = L(uluk) :ﬁL(Ul"'Uj_l)—FL(Ul"'UZ') :,BZj_1+i—1+Ui
and z;_; = Bz;_1 + ¢ — 1, hence

[7, E> = [zj—l + % Zj1+ H%) C [2j-1, 251 +u5) = [2j-1, 25)

) 1 i— 14
([ 2)) = (S5 ) = 00 = ).
Moreover, we have L(¢3*" (1)) = 8 L(¢}(1)) = 5™*", thus the statements hold for n+1. [

Proof of Theorem[l. By Lemma [I, we have Zlpn(y = B for all n > 0, thus [0,1) is split
into the intervals [2;,1/8", z,/8"), 1 < k < |¢}(1)]. Therefore, Lemma [l yields that

T5m(0) = {z1/B" | 1 <k < |pp(1)]},

hence
B 757(0) = {2 | k > 0}
n>0
Since uy, € Ag for all k£ > 1 and ujgn) = Tg(l_) for all n > 0, we have
{zk—zk_l|k21}:{uk|k521}:A5. ]

For the sets Sz(z), Lemma [l gives the following corollary.
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Corollary 1. For any x € [0, 1), we have
Sp(x) ={z+2 | k>0, upp1 >} S+ 55(0).

In particular, we have Sz(z) —z = Ss(y) —y for all z,y € [0,1) with (z,y] N Az = 0.
From the definition of Sg(z) and since z € 8T Y(z), we also get that

Se(x)= |J BSsy) (zel0,1).
eTgl(x)

This shows that Sz(x) is the solution of a graph-directed iterated function system (GIFS)
when [ is a Parry number, cf. [15, Section 3.2].

3. (—/)-INTEGERS

We now turn to the discussion of (—f)-integers and sets S_g(x), « € [Bfl’ ﬁ)

Lemma 2. Forany > 1, x € [ﬁfl,ﬁﬂ), we have

Sp(@) = A" (5@ {FE) = U (-8 55).

n20 yeT 5 (x)

For any y € R, there exists a unique x € [5 5 ,ﬁ%) such that y € S_g(x).

If T p(z) = x, then S_p(x) = U, 5o(=B8)" T4 (z), in particular S_5(0) = Z_g.

Proof. If y € S_g(x), then we have = B) € T 4(x) for all sufficiently large n, thus y €
(=B)" (T3 (x) \ {B_fl}) for some n > 0. On the other hand, y € (—=8)" (T§ (x) \ {B_—fl})
for some n > 0 implies that 7™ (( by =) =T1" (( By =) =« for all m > n, thus y € S_g(z).

This shows the first equation. Since x € (ﬁfl : B+1) implies that x € (—f (T__ﬁ1 (a:)\{ﬁ_—fl },

we obtain that S_z(z) = UyeT*g(x)(_ﬁ) S_p(y) for all x € [Bfl’ ﬁil)

For any y € R, we have y € S_ ( fﬁ((_ﬁ )) for all n > 0 such that ) € (B_—Jrﬁl’ ﬁ),
thus y € S_g(x) for some x € [ﬁ—fl, B%) To show that this z is unique, let y € S_g(z) and
y € S_g(a') for some z,2’' € [6__451’ B%) Then we have y € (=)™ (T_§(x) \ {B+1}) and

ye (=0 (T25 )\ {B_fl}) for some m,n > 0, thus z = T" (( oG ) = T%(#) =1
If Tfﬁ(ﬁ_—i-l) = o = T_g(x), then T"F*( BBH ) = ngl(ﬁﬂ) = T_p(x) = x yields that
(=B)™ B+1 € S_g(w), which shows that S_s(z) = ,5,(=8)" T4 (z) when T g(z) = z. [

The first two statements of the following proposition can also be found in [1J.

Proposition 1. For any § > 1, we have (=) Z_5 C Z_z.
If B < (1++/5)/2, then Z_z = {0}.
If 8> (14 +v/5)/2, then

Zog N (=B)" [=5,1] = {(=B)", (=B)""} U (=B)""* (T3 7*(0) N (F )

kB
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for allm >0, in particular
g1 = { {-B.=B+1,.... =B+ 81,01} i B> [Bl(B+1),
{-B,—B+1,....,—B+|8] —1,0,1} B> < [B](B+1).
Proof. The inclusion (—ﬁ) Z C Z_p is a consequence of Lemma 2] and 0 € T_‘B(O).
If g < H\/_ , then = L < hence T ( ) ={0} and Z_p = {0}, see Figure [ (right).

g
If 6> 1+2f7 then _Bl € T_ﬁ(O) implies 1 € Z_g, thus (—8)" € Z_g for all n > 0. Clearly,

(=B (T72(0) N (F 52)) S ZsN(=6)" (=5,1).
To show the other inclusion, let z € (=)™ T__Bm( )N (=B)" (—p5,1) for some m > 0. If
2z # (—=B)" =L, then —— € (_—B =) and —w € (7 5—12) C (_ﬁ L) imply that

B+1° (=8)m B+10 B+l B+10 B+l
n+2 z m z .
53 () = T () = 0 IfZ—(—ﬁ) 1,then
n+2 z n2(5)m"1_m2—ﬁ71 m+1
T—+ ((—ﬁ)"+2> i ( B+1 )_T—ﬁ+ (ﬁ+1) T—ﬁ+ (5+1> T5(0) =0,
where we have used that )n —E € (ﬁ_T’ #) implies m < n. Therefore, we have z €

1
(=8)" 2 T-57%(0) for all 2 e Z_gN (=B)"(=5,1).
Consider now n = 0, then

ng[ A ={-8.13U{z € (=8,1) | T24(z/5%) = 0}.
Since = > B+1 if and only if 8% > |3|(8 + 1), we obtain that

B
o {0,1,.... 18]} B> [B(B+1)
AT5(0) = { {0,1,...,18] — 1} it 82 < [B](B+1).

If T2,(z/6%) = 0, then z = —a13 + ag with ag € (=) T4(0), a1 € {0,1,..., (53]}, and
_p N [—05,1] consists of those numbers —a, 5 + a¢ lying in [—/, 1]. O

Proposition [l shows that the maximal difference between consecutive (—f)-integers ex-

ceeds 1 whenever 5% < |B|(B+1),ie., T_ (ﬁ+1> < 0. For an example, this was also proved

in [I]. In ExamplesBand[] we see that the distance between two consecutive (—f)-integers
can be even greater than 2, and the structure of Z_g can be quite complicated. Therefore,
we adapt a slightly different strategy as for Zg.

In the following, we always assume that the set
Vi =VaU{0} = {T"s(55) [ n >0} U {0}
is finite, i.e., 8 is an Yrrap number, and let 5 be fixed. For x € V), let
re=min{y € V;U{zg} ly>2}, T=2= T ={z} and J;=(z,7).

Then {J, | a € Ag} forms a partition of [ where

B—i—l’ﬁ—i—l)
AngB'UVﬁ’, with Vé:{fﬂ x € Vy}.
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We have T 5(J;) = Jr_, () for every x € Vi, and the following lemma shows that the image
of every Jz, ¥ € Vj, is a union of intervals J,, a € Ag.

Lemma 3. Let x € Vé and write
JﬂT (VB)_{ybaym}? with T=Yo <N < <Yn <Yny1 =Tz

For any 0 <1 < m, we have
T_g((yi,yi+1)) =Jz with x;= lim T 5(y), ie, T; :T_ﬁ(w),

Y—=Yi+1— 2

and B(yir1 — yi) = M(Jgz), where X denotes the Lebesgue measure.

X4

Proof. Since T_5 maps no point in (y;, yi+1) to ﬁ S VB/’ the map is continuous on this

interval and )\(T_ ((Ys, Yix1))) = B(Yiz1 — ) We have x; € Vj since r; = T 3(y;41) in case
Yir1 < ﬁ, and z; = B_—fl in case y; 1 = ﬁ . Since y; = max{y € T~ (Vﬁ) |y < yit1}, we

obtain that r,, = lim, .. T 5(y), thus 7T_ ((y,, Yir1)) = (Ti, 72, ). O
In view of Lemma [3| we define an anti-morphism g : Ah — Aj by
vp(x) =T-p(x) and (7)) = G Top(ym) - 01 Tp(y1) To (x € V),
with m, z; and y; as in Lemma [3l Here, anti-morphism means that ¢z(uv) = 9g(v)s(u)
for all u,v € Aj. Now, the last letter of ¥5(0) is t, with t = max{z € V; | = < 0}, and

the first letter of ¢g(t) is 0. Therefore, ¢§"( ) is a prefix of ¢2n+2( ) = Y22 (0)) and
w2n+1( ) is a suffix of ¢2"+3( ) for every n > 0.

Theorem 2. For any Yrrap number 3 > (1 ++/5)/2, we have
Y i Ay, ) k0,
= M) RSO,

where - -u_yuguy - -+ s the two-sided infinite word on the finite alphabet Az such that
uog =0, 3(0) is a prefix of uyus--- and @DQ"H( ) is a suffiz of -+ -u_ou_y for alln > 0.

Z—B = {Zk | ke Z> Uk = O} with  z, = {

Note that - --u_jupu; - - - is a fixed point of ¥g, with u being mapped to .
The following lemma is the analogue of Lemma [I We use the notation

k
:ZA(JUJ.) ifv:vy-mkeAg.

Note that sy, € V} and ugis1 € V} for all k € Z, thus A(J,

U2k

) =0 for all k € Z.

Lemma 4. For anyn >0,0<k < |1/16( )|/2, we have

n (2 Aok A0 )Y
T_B<(_5)"> RGN B<<( —B)m >) Jucaynrin o

and 2y un @)z = (D" LWE0) = A(Jp) (- ) ro (—B)".
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Proof. The statements are true for n = 0 since |¢2(6)| =1,2=0, 21 = A(Jg) = 0.
Suppose that they hold for even n, and consider

U jyrt1 @) " U2l 1-—‘¢n+1() ¢%(¢%( » ::wﬂ(uwﬁqbﬁ"'¢%(U2)¢B(U1)-
Let 0 <k < W"H( )|/2, and write

U_9k—1"" U1 =V_2i—1"" V1 ¢6(U1 e 'U2j)

with 0 < j < \1#5(6)\/2, 0<1< |¢Q(U2j+1)|/2, i.e., U_gi_1*-U_71 1S a suffix of wg(U2j+1).
By Lemma [3 we have L(13(7)) = B A(Jz) for any z € V3. This yields that

—2_p1 =P L(uy -+ ugy) + L(v_gi—q---v_1) =B zj + L(v_gi_q1---v_1)
and —z_y = f2; + L(v_g; - - -v_1). By the induction hypothesis, we obtain that

. _ ; . L(v_si---v_1)
i () =7 (- S )
_ ) Tosluzg) = vp(uzg) = u-n if i =0,
T—B (ZE + L(U_gi c "U_l)/ﬁ) = T_B(yi) = V_9; = U_2k if ¢ Z 1,

where the y;’s are the numbers from Lemma [l for ¥ = ugj4,, and

(e o)) = i) = e =

Moreover, we have L(qﬁ”“( ) =0 L(¢g(6)) = 19", thus the statements hold for n + 1.
The proof for odd n runs along the same lines and is therefore omitted. O

Proof of Theorem[4. By Lemma [, we have 2y @)1)2 = T0 (—=B)" for all n > 0, thus
[0, 7o) splits into the intervals (z(_l)nk(—ﬁ)_", z(_l)n(k+1)(—5)_") and points 21y (—=3)7",
0 <k < [¢3(0)]/2, hence

T20)N1[0,70) = {znk(=8) " | 0 < k < [WAO)I/2, ug-ayeas = 0}

Let m > 1 be such that 52’”7’0 Then we have (52, 727) C (—8%"*1ry, 82™ry), and

B+1 B+17 B+1
O\ {75} S (=) (TZ57>™(0) N [0,70)) U (=B)* ™ (T5~>"1(0) N [0.79)) ,
thus
UEam (@3N {4} = JEB" (T750)n[0,70)) = {2 | k € Z, ugy, = 0}
n>0 n>0
Together with Lemma 2 this proves the theorem. O
As in the case of positive bases, the word - - - u_juguy - - - also describes the sets S_g(z).

Theorem 2] and Lemma [ give the following corollary.

Corollary 2. For any x € VB’, y € Jz, we have
S_glx)={z |k €Z, uy =2} and S_g(y)={z+y—2x|k€EZ, ugpy1 =7}.
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Lemma [2 and Corollary 2 imply that S_g(x) is the solution of a GIFS for any Yrrap
number 3 > (14 V5)/2, z € [75 —# ), cf. the end of Section 2

BT Bl
Recall that our main goal is to understand the structure of Z_g (in case 8 > (1++/5)/2),
i.e., to describe the occurrences of 0 in the word - - - u_juguq - - - defined in Theorem [2] and

the words between two successive occurrences. Let
Rﬁ = {uzku%ﬂ CU2s(k)—1 ‘ ke Z, Ul = O} with 8(]{7) = mm{j eZ | Ugj = 0, j > ]{3}

be the set of return words of 0 in ---u_jugu; - --. Note that s(k) is defined for all k € Z
since (—p)" € Z_g for all n > 0 by Proposition [Il

For any w € Rpg, the word 13(w0) is a factor of ---u_jugu; - -- starting and ending
with 0, thus we can write ¢z(w0) = w; - - - w,,0 with w; € Rg, 1 < j < m, and set

(W) = wy -y
This defines an anti-morphism ¢_g : Rj — Rj, which plays the role of the S-substitution.

Since - - -u_juguy - - - is generated by u; = 0, as described in Theorem 2] we consider
Wg = Uglly * * * Us(0 We have

[0, 1] = [0, o) Ulan 1], Ts((-87" 5 1]) = [35.0],
thus L(wg) = 1 and
wg = 002, T+ Ton Ton Tt T X T,

where the z; are defined by Vg = {z_4,..., 2 1,0,21,...,Zp}, 7o < - <23 <0 <
T < o < Ty

Theorem 3. For any Yrrap number > (14 +/5)/2, we have
Y L)) if k>0,
—S M L) ifk <0,

where - - -u_yu’ ujul - -+ is the two-sided infinite word on the finite alphabet Rg such that
¥ (wg) is a prefiz of ujuh -+ and ¥ (wp) is a suffiz of - -u' yu'y for alln > 0.
The set of distances between consecutive (—[3)-integers is

Ay ={zhp — 24 |k €L} = {L(w) | w € Ry}.

Zg=A{z|keZ} with z,;:{

Note that the index 0 is omitted in - - - u’ yu’ jujul - -+ for reasons of symmetry.

Proof. The definitions of - --u_juguy - - - in Theorem 2 and of ¢_g imply that ---u’ ,u’
ujul - - - is the derived word of - - - u_juguy - - - with respect to Rg, that is

! ! .
Up = Up o, | Ul |15 Uy = Ul ot |7 Uit -1 (B 2>1)

with
[yl [ k= 1 U=y | k= 1) = {k € 2 | ug = 0}.
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Here, for any v € Rj, |v| denotes the length of v as a word in Aj, not in Rj. Since

k |u1 up|—1 [y -y | k ul_j--uly |
Z Z AMJy) = S M), ==Y L) ==Y A(,)
J=1 J=0 J=1 Jj=1 j=1

for all k > 0, Theorem 2 yields that {2 | k € Z} = Z_3.
It follows from the definition of Rg that A_z = {L(w) | w € Rga}.

It remains to show that Rg is a finite set. We first show that the restriction of 15 to ‘76/
is primitive, which means that there exists some m > 1 such that, for every x € Vi, ¥7'(7)

contains all elements of 175 The proof is taken from [13, Proposition 8]. If 8 > 2, then the
largest connected pieces of images of J; under T_g grow until they cover two consecutive
at1 1

discontinuity points s} +1 — 4 3§ of T_g, and the next image covers all intervals J,

yeVy If HT*[ < B <2, then %2 > 2 1mp11es that the largest connected pieces of images
of Jz under T2 5 grow until they cover two consecutive discontinuity points of T2 - Since

(7 b — ) = (i mh), (-5 30) = G 5D,

2 B~ B2\ (=8 _1 2 B2 _1 _ (=B B*=p-1
1" ((ﬁ+1 ’ﬁ+1)) - (m’m)’ T= ((5+175+1)) - (ﬁv B+1 )v
the next image covers the fixed point 0, and further images grow until after a finite number

of steps they cover all intervals J3, y € V. The case 8 = 1+_\/5 is treated in Example [l

It (B_H) # 0 for all n > 0, then T4 is continuous at all points = € (Bfl’ B+1) with

T"s(x) = 0, thus ugy, = 0 is equivalent to usy1 = 0 (see also Proposition [2 below). Hence

we can consider the return words of 0 in - - “U_qUgUq - - - instead of the return words of 0.
Since 95" (Zg 71 T2) has at least two occurrences of 0 for all xg, x1, 72 € V3, there are only
finitely many such return words. If 7", (B_—fl) = 0, then 95 (o 1 72) starts and ends with 0
for all g, 21,29 € Vg, hence R is finite as well. O

For details on derived words of primitive substitutive words, we refer to [7].

We remark that, for practical reasons, the set R can be obtained from the set R = {ws}
by adding to R iteratively all return words of 0 which appear in 1g(w0) for some w € R
until R stabilises. The final set R is equal to Rg.

Now, we apply the theorems in the case of two quadratic examples.

Example 1. Let 8 = Jie, B2 =p+1,andt = m = _71, then Vs =V = {,0}. Since

Ty = (taO) =) U{mV(E0, b=037),
see Figure [I] (middle), the anti-morphism 5 on A} is defined by
g t— 0, ?HﬁttA, 0—0, 07
Its two—sided ﬁxed point cee U 1u0u1 <.- s
¥p(0) g(t) ¥8(t) 15(0 )W(O) Pa(t) ¥s(t) ¢ (

=
2
<
™
C
<
o)
5
<
=
=
<
o)
5
<
o)
=
<
=
)
<
=
=
<
=
B
<
=
=
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where 0 marks the cAentAralAletter 1. The return word of 0 startiIAlg at ug is wp = 06@ TAhe
image ¢3(wg0) = 00¢¢ 0 ¢ 0 contains the return words wg and 0. Since 3(0 tg) =00tt0,
there are no other return words of 0, i.e., Rg = {A, B} with A =00t¢, B = 0t. Therefore,
coeul gul ujul -+ - is a two-sided fixed point of the anti-morphism
o3 A—AB, B— A,
with
u gl vy ubh = AABAABABAABAB AABAABABAABAABABAABAB .

We have A\(J5) = %, A ) = %, thus L(A) =1, L(B) = % = f—1, and some (—[3)-integers

are shown in Figure 2l Note that (—3)" can also be represented as (—£)"*2 + (—3)" .

A A B A B A A B A A B A B

—B° =F+p2=p B —p+10 1 =B+l p1=p+p°-p pi-p>+p2 B
—p2 452 B+1 g B4+l BB+

FIGURE 2. The (—f3)-integers in [—3%, 8%], 8 = (1 +/5)/2.

Example 2. Let 8 = 3+\/g’ i.e., 32 = 38 — 1, then the (—f)-transformation is depicted

2
. . _ 2 _np—1
in Figure B where tm = =2, t; = T 5(ty) = % -2 = %, T 5(t1) = ﬁ — 1 = t.

B+1
Therefore, Vg = {to, 1,0} and the anti-morphism 5 : A% — Aj is defined by

Yg: torrt, fo— ittt 00tote, timrty, fi—0, 00, 0—fotit,
which has the two-sided fixed point
-+ 0 OA to tot1t100ttg t1 tot1t1_ O OA to tot1t100%gtg- - -,
¥p(0) g (tr) va(ts) Y (o) Upto) 4g(0) ¥8(0) vs(i1) vs(tr) Y (o)

where 0 marks the central letter uy. We have wg = Oﬁtoa]tlt: and
Yy : 00tototi 1000ty toti 1100ttty tot1, 0,
00tofotitotit1 000 to tot1 £ 00t to o t1 11 00tgto ty oty 0,
00tototolotit1 000ty totit, 00toty ty tot1E100t0te ty toti1 11 0.

Note that 06t0 tAO t tAo t tAl and 061&0 tAo to tAo t1 tAl differ only by a letter in Vﬁ’, and correspond
therefore to intervals of the same length. Since the letters ¢y and t; are never mapped to 0,
we identify these two return words. This means that Rz = {A, B} with A = 00¢, ot t1,

B =00tyt {to,t1} o t1 t1, and
oo gu' | wuby--=--- ABBABABBABBAB ABBABABBABBAB - -
is a two-sided fixed point of the anti-morphism
w_g: A—AB, B~ ABB.
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We have L(A) =1, L(B) = —1 > 1, and some (—/f)-integers are shown in Figure B

1

A1
0
t1
t
%t O
A
A B B A B A B B A B B A B A B B A B
—ﬁ3 —53+52—B —53+52+1 —ﬁ3+252—ﬁ+1 G101 B-2811 32
—BP4+p2-28+1 -+ 42875 -p B8
—B34+1 34241 —B34+282-26+1 —28+1 B2—B+1

FIGURE 3. The (—f)-transformation and Z_5 N [-3%, 3%, B8 = (3 + v/5)/2.

We remark that it is sufficient to consider the elements of ‘76/ when one is only interested
in Z_g. This is made precise in the following proposition.

Proposition 2. Let 8 and ---u_yuguy - - - be as in Theorem[3, t = max{z € V3 | z < 0}.
For any k € Z, ug, = 0 1s equwalent to ugp_1 = =1 or Ugkt1 = 0.
If 0 & Vs or the size of Vg is even, then ug, = 0 is equivalent to ug,_1 =t.

~

If 0 & Vs or the size of Vi is odd, then ug, = 0 is equivalent to ugk1 = 0.

Proof. Let k € Z and m > 0 such that Zk/52m c (Bfl’ B+1) Then we have
e uy, = 0 if and only if 7?7 (2,/5°™) = 0,
e Ug,_y = 1 if and only if lim,_,,, — Tffg(y/ﬁm) =0,
® Uil = 0 if and only if lim,_,,, | TE’E(y/ﬁQm) =0.
Thus sy = 0, use_1 = ¢ and us.q = 0 are equivalent when T?% is continuous at z/3*™.

Assume from now on that z, /5™ is a discontinuity point of 723". Then T* ;(z,/3*™) = B_—fl
for some 1 < ¢ < 2m and, if £ is minimal with this property,

lim T2L5/2J+1( /52m) — =B and lim T2[€/2]( /ﬁzm) = B_—-i-ﬁl

Y=z — A y—zp+

Hence, if 0 ¢ V3, we cannot have wug, = 0, ugp—1 = t or Uy = 0 at a discontinuity point,

which proves the proposition in this case. If 0 € Vj, then T#VB ! (m) = 0, thus
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o 17 4(z/B*™) =0 if and only if j > €+ #Vj — 1,

. hmy_mk_T B(y/ﬁzm) =0 if and only if j > 2|¢/2] + #V3,

o lim, ,, | T_ (y/B*™) =0 if and only if j > 2[¢/2] + #V5 — 1.
Since 2[¢/2] > ¢ — 1 and 2[¢/2] > ¢, we obtain ug, = 0 whenever ug,_; = t or Ugks1 = 0.
If #Vjs is even, then ug, = 0 implies that ugp_; = ¢ since 2m > ¢ 4+ #V3 — 1 implies
that 2m > 2[0/2] + #Vs. If #Vj is odd, then ug, = 0 implies that ug; = 0 since
2m > ( + #Vz — 1 implies that 2m > 2[¢/2] + #Vj — 1. This proves the proposition. [

By Proposition 2 it suffices to consider the anti-morphism 1/1ﬁ V’ * V’ * defined by

V(@) = B By when (@) = 80 Toplym) - B Toply) & (x € V).

Then A_g is given by the set }A%B which consists of the return words of 0 when 0 & Vg or
the size of V3 is odd. When 0 € V3 and the size of Vj is even, as in Example [ then R
consists of the words wt such that tw is a return word of ¢.

Ezample 3. Let 3 > 1 with 8% =282+ 1, i.e., § ~ 2.206, and let ¢, = T (_ ) for n > 0.
Then we have

o=, th=L-—2=E2 t2:—25_1—1—ﬁ ts=L2, ty=

1 _
B+1 N B+ =ga 1=t

see Figuredl The anti-morphism @bg — VB’* is therefore defined by

wg' t0|—>t2t0, t1>—)t0t1t30 t3>—)0t2, 0>—)t3, tA2>—>tA0t1

AN AN A~

AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AA A A A A A A A A~ AA AN A A AA A A A A ASAA A A A AN A AN A A A~

NN AN AN AN NN AN AN AN A AN A AN A AN A A

/\/\/\/\/\/\/\/\/\/\/\/\ AN A A A A A A A A

D = 0tatgtatototy tgAtO to tlAtg, E = 0tatotatototitotits, and Z_g is described by the
anti-morphism @z : Rj — Rj given by
$.5: Aw— AB, Bw AC, Cw AD, Dws AED, Ew ABD.
The (—f)-integers in [—32, 1] are represented in Figure [, and we have
L(A)=1, L(B)=p-1, LIC)=p"-3—1, L(D)=p>—-pB~2659, L(E)=2,.

Note that L(D) > > 2. Moreover, the cardinality of A_z is larger than that of Vj, which
in turn is larger than the algebraic degree d of 8 (#A_g =5, #V3 =4, d = 3).
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B+1
ta
0
l3
t
t
te 1 ts 0ty g
I5 J5 Js S s
A C ABA D ABXAXC ABA E D lAlBlAlClAlBlAl D XAXBJ
_ﬁf} —,83 ,82 01 52_1_1 64_53 54—ﬁ3+ﬁ2 54
—B3+p2-p+1 B+l pE-p  pr-2p%3+ 241 BB+l B-pR4p+1
B+ P e L I R e B
—F+1 BB+ B BBl BB G B

FIGURE 4. The (—f)-transformation and Z_z N [—3%, 8] from Example Bl

Example 4. Let B> 1 with 8% =38° +28* +28% + 32 — 28 — 1, i.e., B ~ 3.695, then the
(—B)-transformation is depicted in Figure[d], where t,, = T ( ) +1) We have t5 = — = t;.

The anti-morphism wﬁ V’ * Vﬁ’* is therefore given by

-~ ~ ~ o~ A~~~ AAAS A A AN A A A

wgi tog — 135, t2|—>t4t0t2, t3>—)t5t10t4t0t2t3t5t10

1%!—)1?2{;,, t1|—>0t4t0, O|—>t5t1, t4'—>t0t2tg.
In order to deal with shorter words, we group the letters forming the words
a =08y, b="totatstst, c=tfotatsts, d=tatststy, e = fota, f=1s, g =tolats, h =511,

which correspond to the intervals J, = (0, ﬁ), Jy = (t0,0), J. = (to,t1), Ja = (t2,0),
Je = (to, t3), Jr = (t4, ﬁ), Jy = (to,t5), Jn = (t5,0), occurring in iterated images of J,.

The anti-morphism Q//J\g acts on these words by

Jﬁ : a—b, b — ababac , ¢ — dabac, d — ababae ,
e fe, f—aq, g — habac, h+— ag.
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Since 0 only occurs at the beginning of a, the return words of 0 with their ﬂg—images are

ab — ab ab ach

acb — ab ab acd ab ach ,
acd — ab ab aed ab acbh,

aed — ab ab aefch,
aefcb — ab ab acd ab acgfch,

acgfchb— ab ab acd ab acgh ab acd ab ach .
——

=ach

Therefore, Z_g is described by the anti-morphism @_z : ﬁ}; — ﬁ; which is defined by

P_5: A AAB, L(A) =1,
B AACAB, L(B)=53—2~1.695,
C — AADAB, L(C)=p*—-38—1=~1.569,
D — AAE L(D)=p*—-33*—-28—-1~1.104,
E — AACAF, L(E)=p*-3p>-28* -5 -2~ 2081,
F s AACABACAB, L(F)=p"—-3p"-28%-28>+53—-2~3.12.
1
B+1
ty
0
ty
t5
t3
to
to
tO tQ t3 t5 tl 0t4 ﬂ
Je Jg Jg Je Jeds Jg
\AlAlBlAlAlclAlBlAlAlBXAXAXBJ
- —B+2 0 1 2 p2-36+1 B*—28 B*—-24+2 B2—pB+1 B
—B+1 B2-36+2  [*-28+1 -5 *—p+2

FIGURE 5. The (—f)-transformation and Z_z N [—/3, 3] from Example [
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4. CONCLUSIONS

With every Yrrap number 3 > (1 + +/5)/2, we have associated an anti-morphism ¢_4
on a finite alphabet. The distances between consecutive (—[()-integers are described by a
fixed point of p_g. In [I], the anti-morphism is described explicitely for each 5 > 1 such

that Tfﬁ(ﬁ_——i—ﬁl) <0 and Tf’é_l (ﬁ_—fl) > 1—/3LBJ for all n > 1. Examples [3] and 4] show that the
situation can be quite complicated when this condition is not fulfilled. Although ¢_gs can
be obtained by a simple algorithm, it seems to be difficult to find a priori bounds for the
number of different distances between consecutive (—3)-integers or for their maximal value.
Only the case of quadratic Pisot numbers [ is completely solved; here, we know from [14, [I]
that #Vs = #A_5 = 2.

Recall that the maximal distance between consecutive (S-integers is 1, and the number
of different distances is equal to the cardinality of the set {T3(17) | n > 0}. Example
shows that the (—f)-integers do not satisfy similar properties. By generalising Example []
to 8 > 1 with 8% = (m+1)8°+mpB*+mpB*+ 52 —mpB—1, m > 2, one sees that the maximal
distance can be arbitrarily close to 4 for algebraic integers of degree 6 and #Vj = 6.

In a forthcoming paper, we associate anti-morphisms ¢_g on infinite alphabets with
non- Yrrap numbers 3, by considering the intervals occurring in the iterated 7_s-images of

(0, ﬁ), cf. Example [, and we show that the distances between consecutive (—f)-integers

can be unbounded, e.g. for § > 1 satisfying B_—fl = >0 a(—B)7% where ajay- - =
3123212312322 --- is a fixed point of the morphism 3 — 31232, 2 +— 2, 1 — 1. For
Yrrap numbers (3, this implies that there is no bound for the distance between consecutive
(—()-integers which is independent of 3. However, large distances occur probably only far
away from 0 and when #V} is large, and it would be interesting to quantify these relations.

Another topic that is worth investigating is the structure of the sets S_g(z) for x # 0,
and of the corresponding tilings when f is a Pisot unit. A related question is whether Z_z
can be given by a cut and project scheme, cf. [5, 12].
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