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ON THE STRUCTURE OF (−β)-INTEGERS

WOLFGANG STEINER

Abstract. The (−β)-integers are natural generalisations of the β-integers, and thus of
the integers, for negative real bases. When β is a (−β)-number, which is the analogue of
a Parry number, we describe their structure by a fixed point of an anti-morphism.

1. Introduction

The aim of this paper is to study the structure of the set of real numbers having a digital
expansion of the form

n−1∑

k=0

ak (−β)k ,

where (−β) is a negative real base with β > 1, the digits ak ∈ Z satisfy certain conditions
specified below, and n ≥ 0. These numbers are called (−β)-integers, and have been recently
studied by Ambrož, Dombek, Masáková and Pelantová [1].

Before dealing with these numbers, we recall some facts about β-integers, which are the
real numbers of the form

±
n−1∑

k=0

ak β
k such that 0 ≤

m−1∑

k=0

ak β
k < βm for all 1 ≤ m ≤ n ,

i.e.,
∑n−1

k=0 ak β
k is a greedy β-expansion. Equivalently, we can define the set of β-integers as

Zβ = Z
+
β ∪ (−Z

+
β ) with Z

+
β =

⋃

n≥0

βn T−n
β (0) ,

where Tβ is the β-transformation, defined by

Tβ : [0, 1) → [0, 1) , x 7→ βx− ⌊βx⌋ .
This map and the corresponding β-expansions were first studied by Rényi [17].

The notion of β-integers was introduced in the domain of quasicrystallography, see for
instance [5], and the structure of the β-integers is very well understood now. We have
Zβ ⊆ β Zβ, the set of distances between consecutive elements of Zβ is

∆β = {T nβ (1−) | n ≥ 0} ,
where Tβ(x

−) = limy→x, y<x Tβ(y), and the sequence of distances between consecutive el-
ements of Z+

β is coded by the fixed point of a substition, see [8] for the case when ∆β

is a finite set, that is when β is a Parry number. We give short proofs of these facts in
Section 2. More detailed properties of this sequence can be found e.g. in [2, 3, 4, 10, 14].
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2 WOLFGANG STEINER

Closely related to Z
+
β are the sets

Sβ(x) =
⋃

n≥0

βn T−n
β (x) (x ∈ [0, 1)),

which were used by Thurston [18] to define (fractal) tilings of Rd−1 when β is a Pisot
number of degree d, i.e., a root of a polynomial xd + p1x

d−1 + · · · + pd ∈ Z[x] such that
all other roots have modulus < 1, and an algebraic unit, i.e., pd = ±1. These tilings allow
e.g. to determine the k-th digit ak of a number without knowing the other digits, see [13].

It is widely agreed that the greedy β-expansions are the natural representations of real
numbers in a real base β > 1. For the case of negative bases, the situation is not so clear.
Ito and Sadahiro [12] proposed recently to use the (−β)-transformation defined by

T−β :
[ −β
β+1

, 1
β+1

)
, x 7→ −βx−

⌊
− βx+ β

β+1

⌋
.

see also [9]. This transformation has the important property that T−β(−x/β) = x for all

x ∈
( −β
β+1

, 1
β+1

)
. Some instances are depicted in Figures 1, 3 and 4.
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0−2/3
−2/3

1/3

1/3

−1/6

0

0−1/β
−1/β

1/β2

1/β2

−1/β3

0

0−β
β+1

−β
β+1 1

β+1

1
β+1

−β−1

β+1

Figure 1. The (−β)-transformation for β = 2 (left), β = 1+
√
5

2
≈ 1.618

(middle), and β = 1
β
+ 1

β2 ≈ 1.325 (right).

The set of (−β)-integers is therefore defined by

Z−β =
⋃

n≥0

(−β)n T−n
−β (0) .

These are the numbers
n−1∑

k=0

ak (−β)k such that
−β
β + 1

≤
m−1∑

k=0

ak (−β)k−m <
1

β + 1
for all 1 ≤ m ≤ n .

Note that, in the case of β-integers, we have to add −Z
+
β to Z

+
β in order to obtain a set

resembling Z. In the case of (−β)-integers, this is not necessary because the (−β)-trans-
formation allows to represent positive and negative numbers.
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It is not difficult to see that Z−β = Z = Zβ when β ∈ Z, β ≥ 2. Some other properties

of Z−β can be found in [1], mainly for the case when T n−β
( −β
β+1

)
∈
[
1−⌊β⌋
β

, 0
]
for all n ≥ 1.

The set
V ′
β =

{
T n−β

( −β
β+1

)
| n ≥ 0

}

plays a similar role for (−β)-expansions as the set ∆β for β-expansions. Consequently, we
call β > 1 a (−β)-number if V ′

β is a finite set, recalling that Parry numbers were originally

called β-numbers in [16]. In Theorem 3, we describe, for any (−β)-number β ≥ (1+
√
5)/2,

the sequence of (−β)-integers in terms of a two-sided infinite word on a finite alphabet
which is a fixed point of an anti-morphism. Note that the orientation-reversing property
of the map x 7→ −βx imposes the use of an anti-morphism instead of a morphism. Anti-
morphisms were considered in a similar context by Enomoto [7].

For 1 < β < 1+
√
5

2
, we have Z−β = {0}, as already proved in [1]. However, our study

still makes sense for these bases (−β) because we can also describe the sets

S−β(x) = lim
n→∞

(−β)n T−n
−β (x)

(
x ∈

[ −β
β+1

, 1
β+1

))
,

where the limit set consists of the numbers lying in all but finitely many sets (−β)n T−n
−β (x),

n ≥ 0. The reason for taking the limit instead of the union over all n ≥ 0 is that

T 2
−β

(−β−1

β+1

)
6= −β

β+1
when β 6∈ Z, see Section 3. In [15], the (−β)-transformation is studied

in detail for these values of β.

2. β-integers

In this section, we consider the structure of β-integers. The results are not new, but it is
useful to state and prove them in order to understand the differences with (−β)-integers.

Recall that ∆β = {T nβ (1−) | n ≥ 0}, and let ∆∗
β be the free monoid generated by ∆β .

Elements of ∆∗
β will be considered as words on the alphabet ∆β, and the operation is the

concatenation of words. The β-substitution is the morphism ϕβ : ∆∗
β → ∆∗

β, defined by

ϕβ(x) = 11 · · ·1︸ ︷︷ ︸
⌈βx⌉−1 times

Tβ(x
−) (x ∈ ∆β).

Here, 1 is an element of ∆β and not the identity element of ∆∗
β (which is the empty word).

Recall that, as ϕβ is a morphism, we have ϕβ(uv) = ϕβ(u)ϕβ(v) for all u, v ∈ ∆∗
β. Since

ϕn+1
β (1) = ϕnβ(ϕβ(1)) and ϕβ(1) starts with 1, ϕnβ(1) is a prefix of ϕn+1

β (1) for every n ≥ 0.

Theorem 1. For any β > 1, we have

Z
+
β = {zk | k ≥ 0} with zk =

k∑

j=1

uj ,

where u1u2 · · · is the infinite word with letters in ∆β which has ϕnβ(1) as prefix for all n ≥ 0.
The set of differences between consecutive β-integers is ∆β.

The main observation for the proof of the theorem is the following. We use the notation
|v| = k and L(v) =

∑k

j=1 vj for any v = v1 · · · vk ∈ ∆k
β , k ≥ 0.
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Lemma 1. For any n ≥ 0, 1 ≤ k ≤ |ϕnβ(1)|, we have

T nβ

([zk−1

βn
,
zk
βn

))
= [0, uk) ,

and z|ϕn
β
(1)| = L(ϕnβ(1)) = βn.

Proof. For n = 0, we have |ϕ0
β(1)| = 1, z0 = 0, z1 = 1, u1 = 1, thus the statements are

true. Suppose that they hold for n, and consider

u1u2 · · ·u|ϕn+1
β

(1)| = ϕn+1
β (1) = ϕβ(ϕ

n
β(1)) = ϕβ(u1)ϕβ(u2) · · ·ϕβ(u|ϕn

β
(1)|) .

Let 1 ≤ k ≤ |ϕn+1
β (1)|, and write u1 · · ·uk = ϕβ(u1 · · ·uj−1) v1 · · · vi with 1 ≤ j ≤ |ϕnβ(1)|,

1 ≤ i ≤ |ϕβ(uj)|, i.e., v1 · · · vi is a non-empty prefix of ϕβ(uj).
For any x ∈ (0, 1], we have Tβ(x

−) = βx− ⌈βx⌉ + 1, hence L(ϕβ(x)) = βx for x ∈ ∆β .
This yields that

zk = L(u1 · · ·uk) = β L(u1 · · ·uj−1) + L(v1 · · · vi) = βzj−1 + i− 1 + vi

and zk−1 = βzj−1 + i− 1, hence

[zk−1

β
,
zk
β

)
=

[
zj−1 +

i− 1

β
, zj−1 +

i− 1 + vi
β

)
⊆ [zj−1, zj−1 + uj) = [zj−1, zj) ,

T n+1
β

([ zk−1

βn+1
,
zk
βn+1

))
= Tβ

([i− 1

β
,
i− 1 + vi

β

))
= [0, vi) = [0, uk) .

Moreover, we have L(ϕn+1
β (1)) = β L(ϕnβ(1)) = βn+1, thus the statements hold for n+1. �

Proof of Theorem 1. By Lemma 1, we have z|ϕn
β
(1)| = βn for all n ≥ 0, thus [0, 1) is split

into the intervals [zk−1/β
n, zk/β

n), 1 ≤ k ≤ |ϕnβ(1)|. Therefore, Lemma 1 yields that

T−n
β (0) = {zk−1/β

n | 1 ≤ k ≤ |ϕnβ(1)|} ,
hence ⋃

n≥0

βn T−n
β (0) = {zk | k ≥ 0} .

Since uk ∈ ∆β for all k ≥ 1 and u|ϕn(1)| = T nβ (1
−) for all n ≥ 0, we have

{zk − zk−1 | k ≥ 1} = {uk | k ≥ 1} = ∆β . �

For the sets Sβ(x), Lemma 1 gives the following corollary.

Corollary 1. For any x ∈ [0, 1), we have

Sβ(x) = {zk + x | k ≥ 0, uk+1 > x} ⊆ x+ Sβ(0) .

Note that Sβ(x) is always the union of a sequence of nested sets because y ∈ [0, 1) implies
y/β ∈ [0, 1) and Tβ(y/β) = y, thus βn T−n

β (x) ⊆ βn+1 T−n−1
β (x) for all x ∈ [0, 1).
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3. (−β)-integers
We now turn to the discussion of (−β)-integers and sets S−β(x), x ∈

[ −β
β+1

, 1
β+1

)
. The first

technical problem comes from the fact (−β)n T−n
−β (x) ⊆ (−β)n+1 T−n−1

−β (x) is not always

true because −y
β

6∈
[ −β
β+1

, 1
β+1

)
for y = −β

β+1
. However, we have the following lemma.

Lemma 2. For any β > 1, x ∈
[ −β
β+1

, 1
β+1

)
, n ≥ 0, we have

T−n
−β (x) \

{ −β
β+1

}
⊆ (−β) T−n−1

−β (x) .

If T−β(x) = x, in particular if x = 0, then

T−n
−β (x) ⊆ β2 T−n−2

−β (x) .

Proof. For any y ∈
( −β
β+1

, 1
β+1

)
, we have T 2

−β(y/β
2) = T−β(−y/β) = y, which implies the

first inclusion and T−n
−β (x) \

{ −β
β+1

}
⊆ β2 T−n−2

−β (x). If T n−β
( −β
β+1

)
= x = T−β(x), then

T n+2
−β

(−β−1

β+1

)
= T n+1

−β
( −β
β+1

)
= T−β(x) = x ,

thus −β
β+1

∈ β2 T−n−2
−β (x) as well. �

The first two statements of the following proposition can also be found in [1].

Proposition 1. For any β > 1, we have Z−β ⊆ (−β)Z−β.

If β < (1 +
√
5)/2, then Z−β = {0}.

If β ≥ (1 +
√
5)/2, then

Z−β ∩ (−β)n [−β, 1] =
{
(−β)n, (−β)n+1

}
∪ (−β)n+2

(
T−n−2
−β (0) ∩

(−1
β
, 1
β2

))

for all n ≥ 0, in particular

Z−β ∩ [−β, 1] =
{

{−β,−β + 1, . . . ,−β + ⌊β⌋, 0, 1} if β2 ≥ ⌊β⌋(β + 1),

{−β,−β + 1, . . . ,−β + ⌊β⌋ − 1, 0, 1} if β2 < ⌊β⌋(β + 1).

Proof. For any β > 1, we have T−β(0) = 0, thus T−n−1
−β (0) ⊆ T−n

−β (0). This means that

(−β)n+1 T−n−1
−β (0) ⊆ −β

(
(−β)n T−n

−β (0)
)
, hence Z−β ⊆ (−β)Z−β.

If β < 1+
√
5

2
, then −1

β
< −β

β+1
, hence T−1

−β (0) = {0} and Z−β = {0}, see Figure 1 (right).

If β ≥ 1+
√
5

2
, then −1

β
∈ T−1

−β (0) implies 1 ∈ Z−β , thus (−β)n ∈ Z−β for all n ≥ 0. Clearly,

(−β)n+2
(
T−n−2
−β (0) ∩

(−1
β
, 1
β2

))
⊆ Z−β ∩ (−β)n (−β, 1) .

To show the other inclusion, let z ∈ (−β)m T−m
−β (0) ∩ (−β)n (−β, 1) for some m ≥ 0. If

m < n + 2, then Lemma 2 yields that z ∈ (−β)n+2 T−n−2
−β (0), since (−1)n z < βn ≤ βn+2

β+1

implies z 6= (−β)n+2

β+1
. If m > n+2, then

(−1
β
, 1
β2

)
⊆

( −β
β+1

, 1
β+1

)
implies that T n+2

−β
(

z
(−β)n+2

)
=

Tm−β
(

z
(−β)m

)
= 0, thus we also have z ∈ (−β)n+2

(
T−n−2
−β (0) ∩ (−β)n (−β, 1)

)
.

Consider now n = 0, then

Z−β ∩ [−β, 1] = {−β, 1} ∪ {z ∈ (−β, 1) | T 2
−β(z/β

2) = 0} .
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Since −⌊β⌋
β

≥ −β
β+1

if and only if β2 ≥ ⌊β⌋(β + 1), we obtain

(−β) T−1
−β (0) =

{
{0, 1, . . . , ⌊β⌋} if β2 ≥ ⌊β⌋(β + 1),

{0, 1, . . . , ⌊β⌋ − 1} if β2 < ⌊β⌋(β + 1).

If T 2
−β(z/β

2) = 0, then z = −a1β + a0 with a0 ∈ (−β) T−1
−β (0), a1 ∈ {0, 1, . . . , ⌊β⌋}, and

Z−β ∩ [−β, 1] consists of those numbers −a1β + a0 lying in [−β, 1]. �

This shows in particular that the maximal difference between consecutive (−β)-integers
exceeds 1 whenever β2 < ⌊β⌋(β + 1), i.e., T−β

( −β
β+1

)
< 0. This was already shown for an

example in [1]. Example 3 shows that the distance between two consecutive (−β)-integers
can be even greater than 2, and the structure of Z−β can be quite complicated. Therefore,
we adapt a slightly different strategy as for Zβ .

In the following, we always assume that the set

Vβ = V ′
β ∪ {0} =

{
T n−β

( −β
β+1

)
| n ≥ 0

}
∪ {0}

is finite, i.e., β is a (−β)-number, and let β be fixed. For x ∈ Vβ, let

rx = min
{
y ∈ Vβ ∪

{
1

β+1

}
| y > x

}
, x̂ = x+rx

2
, Jx = {x} and Jx̂ = (x, rx) .

Then {Ja | a ∈ Aβ} forms a partition of
[ −β
β+1

, 1
β+1

)
, where

Aβ = Vβ ∪ V̂β , with V̂β = {x̂ | x ∈ Vβ} .
We have T−β(Jx) = JT−β(x) for every x ∈ Vβ, and the following lemma shows that the image
of every Jx̂, x ∈ Vβ, is a union of intervals Ja, a ∈ Aβ.

Lemma 3. Let x ∈ Vβ and

Jx̂ ∩ T−1
−β (Vβ) = {y1, . . . , ym} , x = y0 < y1 < · · · < ym < ym+1 = rx .

For any 0 ≤ i ≤ m, we have

T−β
(
(yi, yi+1)

)
= Jx̂i with xi = limy→yi+1, y<yi+1

T−β(y) , i.e., x̂i = T−β
(
yi+yi+1

2

)
,

and β(yi+1 − yi) = λ(Jx̂i), where λ denotes the Lebesgue measure.

Proof. Since T−β maps no point in (yi, yi+1) to −β
β+1

∈ Vβ, the map is continuous on this

interval and λ(T−β((yi, yi+1))) = β(yi+1−yi). We have xi ∈ Vβ since xi = T−β(yi+1) in case

yi+1 <
1

β+1
, and xi =

−β
β+1

in case yi+1 =
1

β+1
. Since yi = max{y ∈ T−1

−β (Vβ) | y < yi+1}, we
obtain that rxi = limy→yi, y>yi T−β(y), thus T−β((yi, yi+1)) = (xi, rxi). �

Therefore, we define an anti-morphism ψβ : A∗
β → A∗

β by

ψβ(x) = T−β(x) and ψβ(x̂) = x̂m T−β(ym) · · · x̂1 T−β(y1) x̂0 (x ∈ Vβ),

with m, xi and yi as in Lemma 3. Here, anti-morphism means that ψβ(uv) = ψβ(v)ψβ(u)

for all u, v ∈ A∗
β. Now, the last letter of ψβ(0̂) is t̂, t = max{x ∈ Vβ | x < 0}, and the first

letter of ψβ(t̂ ) is 0̂. Therefore, ψ
2n
β (0̂) is a prefix of ψ2n+2

β (0̂) = ψ2n
β (ψ2

β(0̂)) and ψ
2n+1
β (0̂) is

a suffix of ψ2n+3
β (0̂) for every n ≥ 0.



ON THE STRUCTURE OF (−β)-INTEGERS 7

Theorem 2. For any (−β)-number β ≥ (1 +
√
5)/2, we have

Z−β = {zk | k ∈ Z, uk = 0} with zk =

{ ∑k

j=1 λ(Juj ) if k ≥ 0 ,

−
∑|k|

j=1 λ(Ju−j
) if k ≤ 0 ,

where · · ·u−1u0u1 · · · is the two-sided infinite word on the finite alphabet Aβ such that

u0 = 0, ψ2n
β (0̂) is a prefix of u1u2 · · · and ψ2n+1

β (0̂) is a suffix of · · ·u−2u−1 for all n ≥ 0.

Since ψβ(u0) = u0, the word · · ·u−1u0u1 · · · can be seen as a fixed point of ψβ .

The following lemma is the analogue of Lemma 1. Note that u2k ∈ Vβ and u2k+1 ∈ V̂β
for all k ∈ Z, thus z2k = z2k−1 and z−2k = z1−2k for all k ≥ 1. We use the notation

L(v) =

k∑

j=1

λ(Jvj ) if v = v1 · · · vk ∈ Akβ .

Lemma 4. For any n ≥ 0, 0 ≤ k < |ψnβ (0̂)|/2, we have

T n−β

(z(−1)n2k

(−β)n
)
= u(−1)n2k , T n−β

((z(−1)n2k

(−β)n ,
z(−1)n(2k+1)

(−β)n
))

= Ju(−1)n(2k+1)
,

and z(−1)n|ψn
β
(0̂)| = (−1)n L

(
ψnβ (0̂)

)
= r0 (−β)n.

Proof. The statements are true for n = 0 since |ψ0
β(0̂)| = 1, z0 = 0, z1 = λ(J0̂) = r0.

Suppose that they hold for even n, and consider

u−|ψn+1
β

(0̂)| · · ·u−2u−1 = ψn+1
β (0̂) = ψβ

(
ψnβ (0̂)

)
= ψβ(u|ψn

β
(0̂)|) · · ·ψβ(u2)ψβ(u1) .

Let 0 ≤ k < |ψn+1
β (0̂)|/2, and write

u−2k−1 · · ·u−1 = v−2i−1 · · · v−1 ψβ(u1 · · ·u2j)
with 0 ≤ j < |ψnβ (0̂)|/2, 0 ≤ i < |ψβ(u2j+1)|/2, i.e., u−2i−1 · · ·u−1 is a suffix of ψβ(u2j+1).

By Lemma 3, we have L(ψβ(x̂)) = β λ(Jx̂) for any x ∈ Vβ. This yields that

−z−2k−1 = β L(u1 · · ·u2j) + L(v−2i−1 · · · v−1) = β z2j + L(v−2i−1 · · · v−1)

and −z−2k = β z2j + L(v−2i · · · v−1). With x̂ = u2j+1 and yi as in Lemma 3, we obtain

T n+1
−β

( z−2k

(−β)n+1

)
= T n+1

−β

(
z2j

(−β)n − L(v−2i · · · v−1)

(−β)n+1

)

=

{
T−β(u2j) = ψβ(u2j) = u−2k if i = 0,

T−β
(
x+ L(v−2i · · · v−1)/β

)
= T−β(yi) = v−2i = u−2k if i ≥ 1,

and

T n+1
−β

(( z−2k

(−β)n+1
,
z−2k−1

(−β)n+1

))
= T−β

(
(yi, yi+1)

)
= Jv−2i−1

= Ju−2k−1
.

Moreover, we have L(ψn+1
β (0̂)) = β L(ψnβ (0̂)) = r0β

n+1, thus the statements hold for n+1.
The proof for odd n runs along the same lines and is therefore omitted. �
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Proof of Theorem 2. By Lemma 4, we have z(−1)n|ψn
β
(0̂)| = r0 (−β)n for all n ≥ 0, thus [0, r0)

splits into the intervals
(
z(−1)n2k(−β)−n, z(−1)n(2k+1)(−β)−n

)
and points z(−1)n2k(−β)−n,

0 ≤ k < |ψnβ (0̂)|/2, hence

T−n
−β (0) ∩ [0, r0) =

{
z(−1)n2k(−β)−n | 0 ≤ k < |ψnβ(0̂)|/2, u(−1)n2k = 0

}
.

Let m ≥ 1 be such that β2mr0 >
1

β+1
. Then we have

[ −β
β+1

, 1
β+1

)
⊂ (−β2m+1r0, β

2mr0), and

Lemma 2 yields that

T−n
−β (0) ⊆ β2m

(
T−n−2m
−β (0) ∩ [0, r0)

)
∪ (−β)2m+1

(
T−n−2m−1
−β (0) ∩ [0, r0)

)
,

thus
⋃

n≥0

(−β)n T−n
−β (0) =

⋃

n≥0

(−β)n
(
T−n
−β (0) ∩ [0, r0)

)
= {z2k | k ∈ Z, u2k = 0} . �

As in the case of positive bases, the word · · ·u−1u0u1 · · · also describes the sets

S−β(x) = lim
n→∞

(−β)n T−n
−β (x) =

⋃

n≥0

(−β)n
(
T−n
−β (x) \

{ −β
β+1

}) (
x ∈

[ −β
β+1

, 1
β+1

))
,

where the second equality follows from Lemma 2. It is already indicated in the Introduction
that S−β(x) can differ from

⋃
n≥0(−β)n T−n

−β (x). Indeed, if T
n
−β

( −β
β+1

)
= x 6= T−β(x), then

T n+2
−β

(−β−1

β+1

)
= T n+1

−β
( −β
β+1

)
= T−β(x) 6= x ,

thus (−β)n+1

β+1
∈ (−β)m T−m

−β (x) if and only if m = n.
Theorem 2 and Lemma 4 give the following corollary.

Corollary 2. For any x ∈ Vβ, we have

S−β(x) = {zk | k ∈ Z, uk = x}
and, for any y ∈ Jx̂,

S−β(y) = {zk + y − x | k ≥ 0, uk+1 = x̂} ∪ {zk + y − x | k < 0, uk = x̂} .

Recall that our main goal is to understand the structure of Z−β (in case β ≥ (1+
√
5)/2),

i.e., to describe the occurrences of 0 in the word · · ·u−1u0u1 · · · defined in Theorem 2 and
the words between two successive occurrences. Let

Rβ = {ukuk+1 · · ·us(k)−1 | k ∈ Z, uk = 0} with s(k) = min{j ∈ Z | uj = 0, j > k}
be the set of return words of 0 in · · ·u−1u0u1 · · · . Note that s(k) is defined for all k ∈ Z

since (−β)n ∈ Z−β for all n ≥ 0 by Proposition 1.
For any w ∈ Rβ, ψβ(w0) is a factor of · · ·u−1u0u1 · · · starting and ending with 0, thus

we can write ψβ(w0) = w1 · · ·wm0 with wj ∈ Rβ, 1 ≤ j ≤ m, and set

ϕ−β(w) = w1 · · ·wm .
This defines an anti-morphism ϕ−β : R∗

β → R∗
β, which plays the role of the β-substitution.
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Since · · ·u−1u0u1 · · · is generated by u1 = 0̂, we consider wβ = u0u1 · · ·us(0)−1. We have

[0, 1] =
[
0, 1

β+1

)
∪
[

1
β+1

, 1
]
, T−β

(
(−β)−1

[
1

β+1
, 1
])

=
[ −β
β+1

, 0
]
,

thus L(wβ) = 1 and

wβ = 0 0̂x1 x̂1 · · · xm x̂m x−ℓ x̂−ℓ · · ·x−1 x̂−1 ,

with Vβ = {x−ℓ, . . . , x−1, 0, x1, . . . , xm}, x−ℓ < · · · < x−1 < 0 < x1 < · · · < xm.

Theorem 3. For any (−β)-number β ≥ (1 +
√
5)/2, we have

Z−β = {z′k | k ∈ Z} with z′k =

{ ∑k

j=1L(u
′
j) if k ≥ 0 ,

−
∑|k|

j=1 L(u
′
−j) if k ≤ 0 ,

where · · ·u′−2u
′
−1u

′
1u

′
2 · · · is the two-sided infinite word on the finite alphabet Rβ such that

ϕ2n
−β(wβ) is a prefix of u′1u

′
2 · · · and ϕ2n+1

−β (wβ) is a suffix of · · ·u′−2u
′
−1 for all n ≥ 0.

The set of distances between consecutive (−β)-integers is
∆−β = {z′k+1 − z′k | k ∈ Z} = {L(w) | w ∈ Rβ} .

Note that the index 0 is omitted in · · ·u′−2u
′
−1u

′
1u

′
2 · · · for reasons of symmetry.

Proof. The definitions of · · ·u−1u0u1 · · · in Theorem 2 and of ϕ−β imply that · · ·u′−2u
′
−1

u′1u
′
2 · · · is the derived word of · · ·u−1u0u1 · · · with respect to Rβ , that is

u′k = u|u′1···u′k−1| · · ·u|u′1···u′k|−1 , u′−k = u−|u′
−k

···u′
−1| · · ·u−|u′1−k

···u′
−1|−1 (k ≥ 1)

with
{|u′1 · · ·u′k−1| | k ≥ 1} ∪ {−|u′−k · · ·u′−1| | k ≥ 1} = {k ∈ Z | uk = 0} .

Here, for any v ∈ R∗
β , |v| denotes the length of v as a word in A∗

β, not in R
∗
β . Since

z′k =

k∑

j=1

L(u′j) =

|u′1···u′k|−1∑

j=0

λ(Juj) =

|u′1···u′k|∑

j=1

λ(Juj ) , z′−k = −
k∑

j=1

L(u′−j) = −
|u′

−k
···u′

−1|∑

j=1

λ(Ju−j
)

for all k ≥ 0, Theorem 2 yields that {z′k | k ∈ Z} = Z−β.
It follows from the definition of Rβ that ∆−β = {L(w) | w ∈ Rβ}.
It remains to show that Rβ is a finite set. We first show that the restriction of ψβ to V̂β

is primitive, which means that there exists some m ≥ 1 such that, for every x ∈ Vβ, ψ
m
β (x̂)

contains all elements of V̂β. The proof is taken from [11, Proposition 8]. If β > 2, then the
largest connected pieces of images of Jx̂ under T−β grow until they cover two consecutive
discontinuity points 1

β+1
− a+1

β
, 1
β+1

− a
β
of T−β, and the next image covers all intervals Jŷ,

y ∈ Vβ. If 1+
√
5

2
< β ≤ 2, then β2 > 2 implies that the largest connected pieces of images

of Jx̂ under T 2
−β grow until they cover two consecutive discontinuity points of T 2

−β . Since

T 2
−β

(( −β
β+1

, β
−2

β+1
− 1

β

))
=

(−β3+β2+β
β+1

, 1
β+1

)
, T 2

−β
((

β−2

β+1
− 1

β
, −β

−1

β+1

))
=

( −β
β+1

, β
2−β−1
β+1

)
,

T 2
−β

((−β−1

β+1
, β

−2

β+1

))
=

( −β
β+1

, 1
β+1

)
, T 2

−β
((

β−2

β+1
, 1
β+1

))
=

( −β
β+1

, β
2−β−1
β+1

)
,
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the next image covers the fixed point 0, and further images grow until after a finite number

of steps they cover all intervals Jŷ, y ∈ Vβ. The case β = 1+
√
5

2
is treated in Example 1.

If T n−β
( −β
β+1

)
6= 0 for all n ≥ 0, then uk = 0 is equivalent with uk+1 = 0̂, see Proposition 2

below, thus we can consider the return words of 0̂ in · · ·u−1u0u1 · · · instead of the return
words of 0. Since ψmβ (x̂0 x1 x̂2) has at least two occurrences of 0̂ for all x0, x1, x2 ∈ Vβ, there

are only finitely many such return words, cf. [6]. If T n−β
( −β
β+1

)
= 0, then ψnβ (x0 x̂1 x2) starts

and ends with 0 for all x0, x1, x2 ∈ Vβ, hence Rβ is finite as well. �

We remark that, for practical reasons, the set Rβ can be obtained from the set R = {wβ}
by adding to R iteratively all return words of 0 which appear in ϕ−β(w) for some w ∈ R
until R stabilises. The final set R is equal to Rβ .

Now, we apply the theorems in the case of two quadratic examples.

Example 1. Let β = 1+
√
5

2
, i.e., β2 = β + 1, and t = −β

β+1
= −1

β
. We have Vβ = {t, 0}. Since

Jt̂ = (t, 0) =
(
t, −1

β3

)
∪
{−1
β3

}
∪
(−1
β3 , 0

)
, Jt̂ =

(
0, 1

β2

)
,

see Figure 1 (middle), the anti-morphism ψβ on A∗
β is defined by

ψβ : t 7→ 0 , t̂ 7→ 0̂ t t̂ , 0 7→ 0 , 0̂ 7→ t̂ .

Its two-sided fixed point · · ·u−1u0u1 · · · is

· · · 0︸︷︷︸
ψβ(0)

0̂ t t̂︸︷︷︸
ψβ(t̂ )

0︸︷︷︸
ψβ(t)

t̂︸︷︷︸
ψβ(0̂)

0︸︷︷︸
ψβ(0)

0̂ t t̂︸︷︷︸
ψβ(t̂ )

0︸︷︷︸
ψβ(t)

t̂︸︷︷︸
ψβ(0̂)

0̇︸︷︷︸
ψβ(0̇)

0̂ t t̂︸︷︷︸
ψβ(t̂ )

0︸︷︷︸
ψβ(0)

0̂ t t̂︸︷︷︸
ψβ(t̂ )

0︸︷︷︸
ψβ(t)

t̂︸︷︷︸
ψβ(0̂)

0︸︷︷︸
ψβ(0)

t̂︸︷︷︸
ψβ(0̂)

0︸︷︷︸
ψβ(0)

· · · ,

where 0̇ marks the central letter u0. The ψβ-images of the complete return words of 0 are

ψβ : 0 0̂ t t̂ 0 7→ 0 0̂ t t̂ 0 t̂ 0 , 0 t̂ 0 7→ 0 0̂ t t̂ 0 ,

thus Rβ = {A,B} with A = 0 0̂ t t̂, B = 0 t̂. The anti-morphism

ϕ−β : A 7→ AB , B 7→ A ,

has the two-sided fixed point

· · ·u′−2u
′
−1̇ u

′
1u

′
2 · · · = · · ·AABAABAABAB ˙AABAABABAABABAABB · · · .

We have λ(J0̂) =
1
β2 , λ(Jt̂) =

1
β
, thus L(A) = 1, L(B) = 1

β
= β−1, and some (−β)-integers

are shown in Figure 2. Note that (−β)n can also be represented as (−β)n+2 + (−β)n+1.

−β3

−β3 + β2 − β
−β3 + β2 − β + 1

−β −β + 1 0 1 β2 − β + 1
β2

β4 − β3 + β2 − β

β4 − β3 + β2 − β + 1
β4 − β3 + β2

β4 − β + 1

β4

A A B A B A A B A A B A B

Figure 2. The (−β)-integers in [−β3, β4], β = (1 +
√
5)/2.
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Example 2. Let β = 3+
√
5

2
, i.e., β2 = 3β − 1, then the (−β)-transformation is depicted

in Figure 3, where t0 = −β
β+1

, t1 = T−β(t0) = β2

β+1
− 2 = −β−1

β+1
, T−β(t1) = 1

β+1
− 1 = t0.

Therefore, Vβ = {t0, t1, 0} and the anti-morphism ψβ : A∗
β → A∗

β is defined by

ψβ : t0 7→ t1 , t̂0 7→ t̂0 t1t̂1 0 0̂ t0 t̂0 , t1 7→ t0 , t̂1 7→ 0̂ , 0 7→ 0 , 0̂ 7→ t̂0 t1 t̂1 ,

which has the two-sided fixed point

· · · 0︸︷︷︸
ψβ(0)

0̂︸︷︷︸
ψβ(t̂1)

t0︸︷︷︸
ψβ(t1)

t̂0 t1t̂1 0 0̂ t0 t̂0︸ ︷︷ ︸
ψβ(t̂0)

t1︸︷︷︸
ψβ(t0)

t̂0 t1 t̂1︸ ︷︷ ︸
ψβ(0̂)

0̇︸︷︷︸
ψβ(0)

0̂︸︷︷︸
ψβ(t̂1)

t0︸︷︷︸
ψβ(t1)

t̂0 t1t̂1 0 0̂ t0 t̂0︸ ︷︷ ︸
ψβ(t̂0)

· · · ,

where 0̇ marks the central letter u0. The ψβ-images of the complete return words of 0 are

ψβ : 0 0̂ t0 t̂0 t1 t̂1 0 7→ 0 0̂ t0 t̂0 t1 t̂1 0 0̂ t0 t̂0 t1 t̂0 t1 t̂1 0 ,

0 0̂ t0 t̂0 t1 t̂0 t1 t̂1 0 7→ 0 0̂ t0 t̂0 t1 t̂1 0 0̂ t0 t̂0 t0 t̂0 t1 t̂1 0 0̂ t0 t̂0 t1 t̂0 t1 t̂1 0 ,

0 0̂ t0 t̂0 t0 t̂0 t1 t̂1 0 7→ 0 0̂ t0 t̂0 t1 t̂1 0 0̂ t0 t̂0 t1 t̂0 t1 t̂1 0 0̂ t0 t̂0 t1 t̂0 t1 t̂1 0 .

Note that 0 0̂ t0 t̂0 t1 t̂0 t1 t̂1 and 0 0̂ t0 t̂0 t0 t̂0 t1 t̂1 differ only by a letter in Vβ, and correspond
therefore to intervals of same length. Since the letters t0 and t1 are never mapped to 0,
we identify these two return words. Then we have Rβ = {A,B} with A = 0 0̂ t0 t̂0 t1 t̂1,

B = 0 0̂ t0 t̂0 {t0, t1} t̂0 t1 t̂1. The anti-morphism

ϕ−β : A 7→ AB , B 7→ ABB ,

has the two-sided fixed point

· · ·ABBABABBABBAB ˙ABBABABBABBAB · · · .
We have L(A) = 1, L(B) = β − 1 > 1, and some (−β)-integers are shown in Figure 3.

We remark that it is in general sufficient to consider the elements of V̂β when one is only
interested in Z−β . This is made precise in the following proposition.

Proposition 2. Let β and · · ·u−1u0u1 · · · be as in Theorem 2, t = max{x ∈ Vβ | x < 0}.
If 0 6∈ V ′

β or the size of V ′
β is odd, then uk = 0 is equivalent with uk+1 = 0̂ for all k ∈ Z.

If 0 6∈ V ′
β or the size of V ′

β is even, then uk = 0 is equivalent with uk−1 = t̂ for all k ∈ Z.

Proof. Let k ∈ Z and m ≥ 0 such that z2k/β
2m ∈

( −β
β+1

, 1
β+1

)
. Then we have

• u2k = 0 if and only if T 2m
−β (z2k/β

2m) = 0,

• u2k+1 = 0̂ if and only if limy→z2k, y>z2k T
2m
−β (y/β

2m) = 0,

• u2k−1 = t̂ if and only if limy→z2k, y<z2k T
2m
−β (y/β

2m) = 0.

Recall that u2k ∈ Vβ and u2k+1 ∈ V̂β for all k ∈ Z. If z2k/β
2m is a point of discontinuity

of T 2m
−β , then we must have T ℓ−β(z2k/β

2m) = −β
β+1

for some 1 ≤ ℓ ≤ 2m.

If 0 6∈ V ′
β =

{
T n−β

( −β
β+1

)
| n ≥ 0

}
, then T ℓ−β(z2k/β

2m) = −β
β+1

is not possible when

T 2m
−β (z2k/β

2m) = 0, thus u2k−1 = t̂, u2k = 0 and u2k+1 = 0̂ are equivalent.
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0

0t0
t0 1

β+1

1
β+1

t1

t1

Jt̂0 Jt̂1 J0̂

−β3

−β3 + 1
−β3 + β2 − 2β + 1

−β3 + β2 − β
−β3 + β2 − β + 1

−β3 + β2
−β3 + β2 + 1

−β3 + 2β2 − 2β + 1
−β3 + 2β2 − β

−β3 + 2β2 − β + 1

−2β + 1
−β
−β + 1 0 1

β2 − 2β + 1
β2 − β
β2 − β + 1

β2

A B B A B A B B A B B A B A B B A B

Figure 3. The (−β)-transformation and Z−β ∩ [−β3, β2], β = (3 +
√
5)/2.

Let now T ℓ−β(z2k/β
2m) = −β

β+1
and T 2m

−β (z2k/β
2m) = 0, thus 0 ∈ V ′

β. Then the size of V ′
β is

the minimal n ≥ 2 such that T n−1
−β

( −β
β+1

)
= 0. Moreover, T j−β(z2k/β

2m) 6= −β
β+1

for all j 6= ℓ.

If ℓ is even, then limy→z2k, y>z2k T
ℓ
−β(y/β

2m) = −β
β+1

, thus limy→z2k, y>z2k T
2m
−β (y/β

2m) = 0.

From below, limy→z2k, y<z2k T
ℓ
−β(y/β

2m) = 1
β+1

and limy→z2k , y<z2k T
ℓ+1
−β (y/β2m) = −β

β+1
, thus

limy→z2k , y<z2k T
2m
−β (y/β

2m) = T 2m−ℓ−1
−β

( −β
β+1

)
. By the definition of n, we have 2m−ℓ ≥ n−1.

If n is even, then we also have 2m− ℓ− 1 ≥ n− 1, thus limy→z2k, y<z2k T
2m
−β (y/β

2m) = 0.

If ℓ is odd, then the roles of y > z2k and y < z2k change, thus limy→z2k, y<z2k T
2m
−β (y/β

2m) =

0, limy→z2k, y>z2k T
ℓ+1
−β (y/β2m) = −β

β+1
. Now, limy→z2k , y>z2k T

2m
−β (y/β

2m) = 0 if n is odd.

Therefore, T 2m
−β (z2k/β

2m) = 0 is equivalent with limy→z2k, y>z2k T
2m
−β (y/β

2m) = 0 if the size

of V ′
β is odd, and T 2m

−β (z2k/β
2m) = 0 is equivalent with limy→z2k, y<z2k T

2m
−β (y/β

2m) = 0 if the
size of V ′

β is even. �

By Proposition 2, it suffices to consider the anti-morphism ψ̂β : V̂ ∗
β → V̂ ∗

β defined by

ψ̂β(x̂) = x̂m · · · x̂1 x̂0 when ψ̂β(x̂) = x̂m T−β(ym) · · · x̂1 T−β(y1) x̂0 (x ∈ Vβ).

Then, ∆−β is given by the set R̂β which consists of the return words of 0̂ when 0 6∈ V ′
β

or the size of V ′
β is odd. When 0 ∈ V ′

β and the size of V ′
β is even, then R̂β consists of the

words w t̂ such that t̂ w is a return word of t̂.
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Example 3. Let β > 1 with β6 = 3β5 + 2β4 + 2β3 + β2 − 2β − 1, i.e., β ≈ 3.695, then the
(−β)-transformation is depicted in Figure 4, where tn = T n−β

( −β
β+1

)
. We have t5 =

−1
β+1

= t6.

0

0t0
t0 1

β+1

1
β+1

t1

t1

t2

t2

t3

t3

t4

t4

t5

t5

Jt̂0 Jt̂2 Jt̂3 Jt̂5 Jt̂1 J0̂ Jt̂4

−β
−β + 1

−β + 2 0 1 2 β2 − 3β + 1
β2 − 3β + 2

β2 − 2β
β2 − 2β + 1

β2 − 2β + 2
β2 − β

β2 − β + 1
β2 − β + 2

β2

A A B A A C A B A A B A A B

Figure 4. The (−β)-transformation and Z−β ∩ [−β, β2] from Example 3.

The anti-morphism ψ̂β : V̂ ∗
β → V̂ ∗

β is therefore defined by

ψ̂β : t̂0 7→ t̂3 t̂5 , t̂2 7→ t̂4 t̂0 t̂2 , t̂3 7→ t̂5 t̂1 0̂ t̂4 t̂0 t̂2 t̂3 t̂5 t̂1 0̂ ,

t̂5 7→ t̂2 t̂3 , t̂1 7→ 0̂ t̂4 t̂0 , 0̂ 7→ t̂5 t̂1 , t̂4 7→ t̂0 t̂2 t̂3 .

It is convenient to group to letters forming the words

a = 0̂ t̂4 , b = t̂0 t̂2 t̂3 t̂5 t̂1 , c = t̂0 t̂2 t̂3 t̂5 , d = t̂2 t̂3 t̂5 t̂1 ,

e = t̂0 t̂2 , f = t̂4 , g = t̂0 t̂2 t̂3 , h = t̂5 t̂1 ,

which correspond to the intervals

Ja =
(
0, 1

β+1

)
, Jb = (t0, 0) , Jc = (t0, t1) , Jd = (t2, 0) ,

Je = (t0, t3) , Jf =
(
t4,

1
β+1

)
, Jg = (t0, t5) , Jh = (t5, 0) .



14 WOLFGANG STEINER

The anti-morphism ψ̂β acts on these words by

ψ̂β : a 7→ b , b 7→ ababac , c 7→ dabac , d 7→ ababae ,

e 7→ fc , f 7→ g , g 7→ habac , h 7→ ag .

Since 0̂ only occurs at the beginning of a, the return words of 0̂ with their ψ̂β-images are

ab 7→ ab ab acb , aed 7→ ab ab aefcb ,

acb 7→ ab ab acd ab acb , aefcb 7→ ab ab acd ab acgfcb ,

acd 7→ ab ab aed ab acb , acgfcb 7→ ab ab acd ab acgh︸︷︷︸
=acb

ab acd ab acb .

Then Z−β is described by the anti-morphism ϕ̂−β : R̂∗
β → R̂∗

β which is defined by

ϕ̂−β : A 7→ AAB , L(A) = 1 ,

B 7→ AACAB , L(B) = β − 2 ≈ 1.695 ,

C 7→ AADAB , L(C) = β2 − 3β − 1 ≈ 1.569 ,

D 7→ AAE , L(D) = β3 − 3β2 − 2β − 1 ≈ 1.104 ,

E 7→ AACAF , L(E) = β4 − 3β3 − 2β2 − β − 2 ≈ 2.081 ,

F 7→ AACABACAB , L(F ) = β5 − 3β4 − 2β3 − 2β2 + β − 2 ≈ 3.12 .

Some (−β)-integers are represented in Figure 4, and the two-sided fixed point is

· · · AACAB AABAADABAABAAB ˙AACAB AABAAB · · · .

Note that grouping the letters as in Example 3 is always possible. It is usually a good
idea to start directly with the corresponding intervals, and this is even possible when β is
not a (−β)-number. The drawback of this method is that the involved intervals can be a

bit complicated to describe in the general case, e.g. t1 <
1

β+1
− ⌊β⌋

β
implies that (t0, t1) is

mapped to (t2, t1), an interval which does not occur in Example 3. Determining the return
words is also a bit more complicated since J0̂ can be contained in several intervals, and it
should be taken care of the fact that the union of two intervals can be another interval
(minus one point), as for Jg ∪ Jh = Jb \ {t5} in Example 3. Therefore, we do not give a
general account of this method here.

4. Conclusions and open questions

With every (−β)-number β ≥ (1+
√
5)/2, we have associated an anti-morphism ϕ−β on

a finite alphabet. The distances between consecutive (−β)-integers are described by a fixed
point of ϕ−β, and ϕ−β is given by a simple algorithm. In a forthcoming version of [1], the

anti-morphism will be described explicitely for any β > 1 such that T n−β
( −β
β+1

)
∈
[
1−⌊β⌋
β

, 0
]

for all n ≥ 1. Example 3 shows that the situation is more complicated when this condition
is not fulfilled. It would be interesting to have a reasonably simple description of ϕ−β in
the general case as well.
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It is well known that the maximal distance between consecutive β-integers is bounded
by 1. We have seen that this is not true for (−β)-integers. Since the set ∆−β is finite for

any (−β)-number β ≥ (1 +
√
5)/2, it is bounded. It is an open question whether there

is a uniform bound on ∆−β . Another open question is whether ∆−β is bounded when β
is not a (−β)-number. It is possible that these questions can be answered only when the
structure of Z−β is well understood in general.

Another topic which is probably worth investigating is the structure of the sets S−β(x)
for x 6= 0, and the corresponding tilings when β is a Pisot unit.
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