
HAL Id: hal-00533288
https://hal.science/hal-00533288v1

Submitted on 7 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Generating VHDL source code from UML models of
embedded systems

Tomas G. Moreira, Marco A. Wehrmeister, Carlos Eduardo Pereira,
Jean-François Pétin, Eric Levrat

To cite this version:
Tomas G. Moreira, Marco A. Wehrmeister, Carlos Eduardo Pereira, Jean-François Pétin, Eric Levrat.
Generating VHDL source code from UML models of embedded systems. 7th IFIP TC 10 Working
Conference on Distributed, Parallel and Biologically Inspired Systems (DIPES) / 3rd IFIP TC 10
International Conference on Biologically-Inspired Collaborative Computing (BICC) / Held as Part of
World Computer Congress (WCC), Sep 2010, Brisbane, Australia. pp.125-136, �10.1007/978-3-642-
15234-4_13�. �hal-00533288�

https://hal.science/hal-00533288v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Generating VHDL Source Code from

UML Models of Embedded Systems

Tomás G. Moreira
1
, Marco A. Wehrmeister

2
, Carlos E. Pereira

3
,

Jean-François Pétin
4
, Eric Levrat

4
,

1 Informatics Institute, 2 Dept. Electical Engineering,

Federal University of Rio Grande do Sul – Porto Alegre, Brazil

tgmoreira@inf.ufrgs.br, cpereira@ece.ufrgs.br
3 Department. of Computer Science

Santa Catarina State University – Joinville, Brazil

marcow@joinville.udesc.br
4 Centre de Recherche en Automatique de Nancy

University of Nancy – Vandoeuvre-Lès-Nancy, France

{jean-francois.petin, eric.levrat}@cran.uhp-nancy.fr

Abstract. Embedded systems’ complexity and amount of distinct

functionalities have increased over the last years. To cope with such issues, the

projects’ abstraction level is being continuously raised, and, in addition, new

design techniques have also been used to shorten design time. In this context,

Model-Driven Engineering approaches that use UML models are interesting

options to design embedded systems, aiming at code generation of software and

hardware components. Source code generation from UML is already supported

by several commercial tools for software. However, there are only few tools

addressing generation code using hardware description languages, such as

VHDL. This work proposes an approach to generate automatically VHDL

source code from UML specifications. This approach is supported by the

GenERTiCA tool, which has been extended to support VHDL code generation.

To validate this work, a use case focused in maintenance systems attended by

embedded systems is presented.

Keywords: Embedded systems, system engineering, intelligent maintenance,

UML specification, VHDL code generation.

1 Introduction

Embedded systems are dedicated system designed to perform a small number of

functions. It contains predominantly digital components, consisting in a hardware

platform upon which software application execute [1]. Embedded systems’

functionalities can be distributed over different processing nodes. Distributed

Embedded Systems (DES) rely on a communication infrastructure constrained by

requirements/constraints of embedded systems domain, e.g. timing and energy

consumption requirements.

In the industrial domain, DES may be composed by several intelligent components,

which make decisions and perform their activities autonomously [2]. Industrial DES

support conventional or innovative functions. The former concerns to simple control

functions, whereas the later represents more elaborated functions, e.g. maintenance

and prognostic systems’ functions to perform Condition Monitoring (CM), Health

Assessment (HA), Prognostics (PR), etc. Components’ intelligence level is defined by

the amount of different services required by the end-user that are implemented as

component functions [3], [4]. As machines do not suddenly fail, they usually pass

through a measurable process of degradation before failing. Intelligent maintenance or

prognostics systems use information provided by sensors and computing components

embedded into equipments. Then, algorithms for health estimation and failure

prediction are applied to assess machines’ degradation level. Hence, embedded

sensors, intelligent actuators and processing elements play a fundamental role in the

development of intelligent maintenance systems.

The complexity of this scenario demands new tools and techniques. Increasing the

design’s abstraction level by using, for instance Model-Driven Engineering (MDE)

[6] techniques, is an interesting approach to deal with the mentioned issues [5].

Standard graphical languages, e.g. the Unified Modeling Language (UML)
1
, must be

used to facilitate the communication of design’s intentions to different teams, i.e.

software and hardware teams. UML is a high-level design language and is broad

enough in scope to model DES. Usually, UML-based MDE approach focus only in

the software part of embedded systems by defining a mapping between high-level

specification’s construction down to software construction using programming

languages (e.g. C/C++, Java, etc.). There are many academic works and commercial

tools (e.g. Rational Rose2 and Artisan Studio3) that can generate software code from

UML models. However, considering embedded systems’ hardware part, only few

works address the use of UML to produce Hardware Description Language (HDL)

descriptions, as in [9], [10]. In this sense, the transformation of UML models into

HDL code, e.g. using VHDL (Very High Speed Integrated Circuit HDL), is not yet

well diffused, opening room for research on this subject.

This works presents an extension to our aspect-oriented MDE approach for DES

named Aspect-Oriented Model-Driven Engineering for Real-Time systems (AMoDE-

RT) [7]. This work’s main contribution is to support automatic generation of VHDL

descriptions from UML models. In other words, this work extends AMoDE-RT’s

supporting tool GenERTiCA (Generation of Embedded Real-Time Code based on

Aspects) [12], aiming at automatic generation of VHDL descriptions from UML

models. The generated VHDL code is intended to be used in FPGA (Field

Programmable Gate Array) systems. Thus, the proposed approach allows the behavior

of the required system to be described (modeled) and verified (simulated) before

synthesis tools translate the design into real hardware (gates and wires).

Additionally, this work proposes an engineering process, which covers from

requirements analysis and UML modeling phases to VHDL code generation. The

focus is to generate VHDL source code for the logical functions of an embedded

system, which so far has only been implemented in software. To validate this work,

this paper presents a use case focused on a distributed embedded system (i.e. DES)

1 UML 2.2 Specification. Object Management Group, http://www.omg.org/ spec/UML/2.2/
2 http://www.ibm.com/software/rational/
3 http://www.artisansoftwaretools.com

used for maintenance systems (intelligent components), which integrates both

conventional and innovative functions.

This paper is organized as follows: Section 2 provides an overview of the proposed

approach to map UML specifications into VHDL source code, whereas Section 3

presents the developed mapping rules. The case study of a valve component system is

presented in Section 4. Section 5 provides a review of works related. Finally,

conclusion and directions for future work are presented in Section 6

2 Overview of the Proposed Approach

The proposed approach follows the flow proposed by the Aspect-oriented Model-

Driven Engineering for Real-Time systems (AMoDE-RT) [7], [15] (see Fig. 1), which

uses MDE techniques combined with AO concepts to design DES. AMoDE-RT is

supported by GenERTiCA [12] code generation, which uses mapping rules scripts to

produce source code files for a given target platform from UML models annotated

with the MARTE profile4. Therefore, GenERTiCA is capable of generating code for

many distinct languages (Java, C/C++, etc.), since there are mapping rules for the

target platforms. The process is the same to generate code for different languages and

therefore it is considered generic. This work proposes an extension for the

GenERTiCA tool in terms of a new set of mapping rules to map UML meta-model

elements into VHDL constructs.

Fig. 1. General overview on the whole process.

Following, a brief description of each step of AMoDE-RT design flow is presented.

4 UML Profile for Modeling and Analysis of Real-time and Embedded Systems (MARTE),

http://www.omg.org/spec/MARTE/1.0

1. Requirements Analysis and Identification

In the first phase, requirements and constraints of the distributed embedded real-time

system are gathered. To accomplish this, the RT-FRIDA [13] requirements analysis is

performed, resulting in a set of documents describing system’s requirements,

functionalities and constraints. Afterwards, use case diagrams are created, depicting

all expected functionalities of the distributed embedded real time system, and also the

external elements that interact with the system.

2. Modeling

The next step is to specify the elements to handle the functional and non-functional

requirements gathered in the previous phase. To model functional requirements,

designers use class diagrams to describe the structure, and sequence diagrams to

describe the methods behavior. Other behavioral and structural diagrams, such as

activity or state diagrams, or composite structure or deployment diagrams, can also be

used. However the class and sequence diagrams are mandatory to describe the

structure and behavior of all system with correctness. These UML diagrams are

annotated with the stereotype of the MARTE profile to specify real-time

characteristics of (some) DES’ elements. During this phase, the non-functional

requirements handling are specified using aspects from the Distributed Embedded

Real-Time Aspects Framework (DERAF) [12]. These aspects are modeled in the

Aspects Crosscutting Overview Diagram (ACOD) [15], and the points (in the UML

model) in which DERAF aspects perform adaptations are specified using Join Point

Designation Diagrams (JPDD).

3. UML-to-DERCS Transformation

At this point GenERTiCA transforms the system specification, i.e. the UML model,

into another model called DERCS (Distributed Embedded Compact Specification)

[12], which represents an embedded system PIM free of information overlapping
5
. A

UML specification can contain several model elements, representing the same

element that hinders the code generation process. Thus these ambiguous elements of

UML model are mapped in a single DERCS element, eliminating such ambiguities

that could result in code with errors. When an inconsistency is detected, the UML-to-

DERCS transformation algorithm stops and GenERTiCA informs this occurrence to

the designer, requesting his/her intervention to solve the issue. Interested readers are

referred to [12] to have more details on this UML-to-DERCS model transformation.

4. Code Generation

In this phase the code generation process executes a set of scripts (i.e. mapping rules),

which guide the GenERTiCA tool to perform the model-to-text transformation from

DERCS elements to constructions in the target platform. Furthermore, the code

generation process also performs the aspects weaving. If the element under evaluation

5 Information overlapping in UML models means the same feature of the target system, which has been

specified using distinct diagrams depicting different viewpoints of the same structural/behavioral

characteristic.

is affected by an aspect, the aspects weaving process modifies the generated code

fragments according to aspects adaptations described in the mapping rules.

3 Mapping UML to VHDL

As previously mentioned, to generate code from the UML model, GenERTiCA adopts

a script-based approach, in which small scripts define how to map model elements

into target platform constructions, generating source code fragments that are merged

to produce source code files. The script-based code generation process improves

separation of concerns in mapping rules specification, as each script is concerned with

the transformation of a single model element (or few of them) into source code

fragment.

Table 1. Concepts Mapping.

UML Element VHDL Element

Class Entity-Architecture pair

Public attribute Entity Ports

Private attribute Signals

Methods Processes

Events and Message exchange Entity Ports

Associations between classes Entity Ports

Inheritance VHDL key word “new”

Static polymorphism Configuration structure

Objects instantiation Component structure

In this sense, this work has proposed a set of mapping rules to allow VHDL code

generation from UML models, following GenERTiCA’s approach. Table 1 shows the

mapping from UML concepts into VHDL ones. Scripts to accomplish these

transformations have been developed and inserted in an eXtensible Markup Language

(XML)
6
 file, which guide GenERTiCA in the code generation process. Details on the

created mapping rules are provided in the following sub-sections.

Classes are mapped into VHDL entity-architecture pairs. The class parameters are

mapped to VHDL generic statements, while public attributes to VHDL entity ports

and private attributes to VHDL signals. The methods are mapped to VHDL processes.

The composition relationship, which describes the composition of a system from

components, is mapped to a VHDL port map statements. Objects are instantiated as

component structures into other entities. Events and Messages exchanges are

implemented as entities ports that allow the communication between different entities

and their processes (methods). Associations between classes are similar to the

approach used to messages exchange, however component structures representing

each associated-class (i.e. entities) are instantiated into the pair-class to accomplish

the association by the mapping of signals between these two classes. Inheritance is

6 eXtensible Markup Language (XML) 1.0 (Fifth Edition). http://www.w3.org/TR/2008/REC-xml-

20081126/

obtained making the entity or architecture declaration with the VHDL key word

“tagged”, which means that the declaration is valid but still incomplete. Then, we

declare a new entity/architecture using the VHDL key word “new”, with the desired

modifications. Static polymorphism is obtained using the VHDL configuration

structure to bind the same VHDL component to different entities or architectures.

3.1 Mapping Rules

Mapping rules are specified as small scripts that create source code fragments

(representing target platform constructions) from DERCS model elements. Source

code files are made up from these generated code fragments. Scripts are stored and

organized in one mapping rules file specified using the XML format. This XML file

has a portable format allowing the specification of self-described content organized in

a tree structure. XML tree organization facilitates scripts storage in terms of platform

mapping rules repositories. It allows scripts to be reused in further projects that use

the same target platform. Hence, the design effort to derive system implementation

from an UML model is decreased.

Scripts are located in the leaf nodes of the tree. The correct script is selected based

on which element is being accessed by the code generation algorithm (i.e. the leaf

node must match with the DERCS element). The code generation algorithm first

identifies the type of the element. Afterwards, it tries to find the tree’s leaf that better

represents the type of such element being evaluated. Then, it executes the script

contained within the found node (i.e. leaf), which will create a VHDL code fragment

to that element being evaluated.

The language used to describe the scripts is the well-known open source scripting

framework called Velocity7, which defines the Velocity Template Language (VTL)

that provides all functionalities required to assist the code generation approach

implementation. VTL is a Java-like scripting language, which returns a string as result

of script execution. Thus, the generated source code fragment is obtained by means of

accessing model information through DERCS API.

To illustrate what is a script an example is given above. This script is responsible

for the code generation to the classes’ methods. It generates one VHDL process for

each method in the classes.

01 #if ($Message.Name != $Class.Name)
02 \n${Message.Name}: process(
03 #if ($Message.Name == "run")
04 clock,
05 reset,
06 #end
07 #if ($Message.ParametersCount > 0)
08 #foreach($param in $Message.Parameters)
09 #if ($velocityCount > 1), #end
10 $param.Name
11 #end
12 #end
13)
14 \n$Options.BlockStart
15 #if ($Message.Name == "run")
16 \n

7 http://velocity.apache.org

17 \nif (reset='1') then
18 \n-- variables initialization
19 \n
20 \nelsif (clock'EVENT and clock='1') then
21 #end
22 \n$CodeGenerator.getVariablesDeclaration(0)
23 \n$CodeGenerator.getActionsCode(1)
24 #if ($Message.Name == "run")
25 \n
26 \nend if;
27 #end
28 \n$Options.BlockEnd process;
29 \n
30 #end

3.2 Concepts

The concepts used in this work to the transformation of UML structures into VHDL

code are based in [9] and [14]. These works gave us some ideas on how to represent

in VHDL the structure of classes, attributes, methods, association between classes,

events and messages exchange, inheritance, and polymorphism.

UML Model is object-oriented, while the VHDL code is structured. This semantic

gap between abstraction levels hinders the mapping between these two languages. It

may be one of the main reasons why it is very rare, until the present days, to find

works addressing to VHDL code generation from UML models and/or any

commercial tool.

From these concepts some rules have been developed and tested to this version of

the VHDL mapping rules. They represent the first version of the mapping rules to

provide the VHDL code generation through GenERTiCA tool. Up to now, it has been

developed and tested mapping rules to generate VHDL code from UML classes,

attributes and behaviors. Their feasibility is shown in the case study of next section.

The concepts of inheritance, polymorphism, associations between classes, etc, are

being be implemented in the next version of this work.

4 Case Study

This section shows an example of automatic VHDL code generation from a UML

model. The system under evaluation is composed by an automatic valve and the

sensors that give information about the valve’s states. This valve is used to regulate

the water flow and is part of CISPI (Conduite de grands systèmes industriels à risque)

experimental platform located at CRAN (Centre de Recherche en Automatique de

Nancy - France). By applying the proposed approach, we intend to integrate new

functionalities supported by a FPGA in this valve, leading to an implementation of an

intelligent component. This intelligent component is part of a mechatronic system

which also contains other mechanical, electronics and computational parts. The

electronics and computational parts represent the control system, which is composed

of logical functions executing in a hardware platform. Logical functions represent

components’ behavior and are usually implemented in software. This work aims at

implementing these logical functions as hardware. Thus the system has been specified

in UML and its implementation has been generated as VHDL code. The generated

code represent the hardware description of the logical and the control system parts

(logical functions), which is executed inside of a FPGA (hardware platform).

The development of this case study was compliant with the AMoDE-RT approach

defined in the section III. Then, the first step was to gather the requirements and

create a use case diagram to identify system’s services and the actors that interact

with the system. Only two actors were considered. The “User” actor request services

to open and close the valve, while the “Maintenance Operator” actor requests services

to know the number of times the valve performed opening and closing actions.

Information about these numbers is used for assessing the component physical heath.

The second step was to create class and sequence diagrams. The class diagram has

been built from the knowledge acquired in the use case. It represents the system’s

structure. All services have been modeled as classes. These classes work together to

provide the system’s services. They are enclosed by a main class responsible for all

system. No DERAF aspects have been used to deal with non-functional requirements,

and hence, no ACOD and JPDD diagrams have been created.

Services are modeled as sequences of actions in sequence diagrams. Sequence

diagrams represent the exchange of messages between the objects that compose the

system in order to represent the expected system behavior. Each service demanded by

the actors results in the execution of one or many sequence diagrams. Fig. 2 depicts a

part of the main sequence diagram of valve’s system related to the service

solicitations.

Fig. 2. Sequence diagram of the main function in the valve’s system.

The rule implementing the association between classes was not developed in this

first version of the mapping rules. Thus, all this case study was re-modeled as just one

class and one method. From these new diagrams the feasibility of the system could be

tested and the 3rd and 4th steps performed. The mapping has transformed the UML

class and sequence diagrams into one single VHDL file, which contains an entity-

architecture pair declaration. The UML class is represented by the entity-architecture

pair, while the UML behavior (method) is represented by a VHDL process inside of

the architecture.

The code that appears in fig. 3 is the result of the automatic code generation

performed by the mapping rules proposed in this work. This first test generated code

for only one embedded component. For this component have been automatically

generated 80 lines of VHDL code, covering 100% of the needed code for the

application. This component is simple and its model was developed on only one UML

class, however the results are encouraging for future works.

The real feasibility of the VHDL code can be tested quickly, since this code can be

synthesized in the resulting bitstream uploaded in a FPGA development platform,

such as Virtex-II PRO (V2-Pro) development system by Digilent8.

Fig. 3. VHDL code representing the architecture declaration and run method initial part.

5 Related Works

This section discusses some projects and commercial tools that propose

transformations from UML specifications to source code VHDL. Among these works

different approaches to generate source code from UML models have been found.

Some use only one diagram (e.g. class diagram) to generate code, while others use a

combination of distinct diagrams (e.g. class and state diagrams, sequence and/or

8 Digilent Inc. www.digilentinc.com

activities diagrams) [8]. Thus the presented related works generate code ranging from

classes skeletons to code containing system elements behavior.

In [9], a framework has been developed to derive VHDL specifications from

UML’s class and state diagrams. They use homomorphic mappings between

dissimilar structures while preserving metamodel class associations in a way that

resembles MDA technique. However, their generated VHDL code focuses on

simulation and verification of UML models rather than on hardware synthesis.

An interesting work has been developed in [10], in which the MODCO tool is

presented. It uses MDA techniques to define high-level model-based system

descriptions that can be implemented in either hardware or software. Thus it can

transform UML state diagrams directly into synthesizable VHDL. State machines in

UML are used to describe the behavior of a part of a system. However, the complete

code is generated for the behavior. Functional requirements are mapped to UML

component, class, use case and state diagrams. Non-functional requirements are

specified as UML annotations that describe performance constraints using property-

value pairs defined by UML profiles. However, the authors targeted flat state-

transition diagrams without supporting hierarchy and concurrency, and also only

covering a small subset of UML state diagram constructs.

In [11], they have developed a framework for deriving VHDL specifications from

UML state diagrams, and also a set of rules, which enable automated generation of

synthesizable VHDL code from UML. Their engineering process is based on meta-

models. Concepts of the UML state diagram metamodel are mapped onto concepts of

the VHDL metamodel. There are two transformations between models, happening in

the following way: the first transformation converts the main UML model into state

diagram models; and the second one maps the state diagram models onto concepts in

the VHDL language. A model-to-text transformation is used to generate synthesizable

VHDL code from the VHDL model.

Two commercial tools to generate VHDL code could also be found. StateCAD9 by

Xilinx is a graphical entry tool for digital design that has its own graphical notation to

represent state diagrams as bubble diagrams. StateCAD automatically generates HDL

(VHDL and Verilog) code, for simulation and also synthesis, directly from these state

diagrams. The other tool is Simulink HDL Coder10 by MathWorks, which generates

synthesizable VHDL and Verilog code from simulink models, stateflow charts, and

embedded Matlab code. Simulink HDL Coder also generates simulation and synthesis

scripts, enabling to simulate and synthesize quickly the developed design. These

commercial tools do not generate VHDL code from UML specifications.

The approach proposed in [11] realizes the mapping between models, similarly to

other MDE techniques. In [10], there is a separation of the functional and non-

functional requirements in the modeling stage using distinct UML diagrams. These

mentioned works are limited, because they cover a specific subset of the UML

structures, and also use only the UML state diagrams. By using GenERTiCA the

designer can use distinct UML diagrams, combining them to specify the full

functionality in terms of structure, behavior and non-functional requirements

handling, since some guidelines are followed. These guidelines are simple and

9 http://www.xilinx.com/
10 http://www.mathworks.com/products/slhdlcoder/

intuitive, allowing designers to separate the functional and non-functional

requirements. Moreover, by using the extension proposed in this work, it is possible

to generate code for VHDL and also for the Java and C++ languages from the same

model.

6 Conclusions

This work addresses the problem of generating HDL descriptions from UML models.

It presented the initial set of mapping rules to generate VHDL code from class and

sequence diagrams, using GenERTiCA tool. To achieve this goal, is has been

proposed a mapping from object-oriented concepts supported in UML into concepts

used by VHDL. Then, a set of mapping rules (used by GenERTiCA to generate

VHDL code) has been developed. These rules extend the functionality of

GenERTiCA tool, allowing it to generate HDL code in addition to software source

code. Besides, this paper has described all steps of the proposed approach that must

be followed to generate automatically VHDL descriptions.

To demonstrate the proposed approach, a case study has been presented. It showed

a small part of a maintenance system, i.e. automatic control of a valve implemented as

a Smart Component. As mentioned mapping rules have been implemented and tested

to produce VHDL code from UML’s classes, attributes and behavior. Results shown

that, for developing simple systems, 100% of the necessary code could be generated.

Hence, despite the case study’s size, the results are considered satisfactory since we

see great potential to scale the approach to more complex systems.

To continue this work the following direction will be pursued: to complete the

rules needed for the code generation of VHDL structures. The concepts of

inheritance, polymorphism, associations between classes are very important to be able

the modeling of complex systems; to develop the rules for the non-functional

requirements implemented by aspects; to test and to prove the new rules; to perform

more tests with FPGA boards; to apply the proposed approach in a complex real

system, such as an industrial maintenance and prognostic systems.

References

1. Micheli, D., Gupta, R. K.: Hardware/Software Co-design. In: Proceedings of the IEEE, vol.

85, no. 3, pp 349--365 (1997).

2. Pereira, C. E., Carro, L.: Distributed real-time embedded systems: Recent advances, future

trends and their impact in manufacturing plant control. In: Annual Reviews in Control, vol.

31, pp 81--92 (2007).

3. Iung, B., Neunreuther, E., Morel, G.: Engineering process of integrated-distributed shop

floor architecture based on interoperable field components. International Journal of

Computer Integrated Manufacturing, vol. 14, no. 3, pp 246--262 (2001).

4. Pétin, J-F., Iung, B., Morel, G.: Distributed intelligent actuation and measurement (IAM)

system within an integrated shop-floor organization. Computers in Industry, vol. 37, pp.

197--211 (1998).

5. Sangiovanni-Vincentelli, A.: The tides of EDA. IEEE Design & Test of Computers, vol. 20,

no. 6, pp. 59--75 (2003).

6. Mellor, S. J., Clark, A.N. Futagami, T.: Guest Editors' Introduction: Model-Driven

Development. IEEE Software, vol. 20, no. 5, pp. 14--18 (2003).

7. Wehrmeister, M. A.: An Aspect-Oriented Model-Driven Engineering Approach for

Distributed Embedded Real-Time Systems. PhD Thesis, Federal University of Rio Grande

do Sul, Brazil, Apr. 2009,

http://lisha.ufsc.br/~marcow/publications/wehrmeister_thesis_final.pdf

8. Long, Q. et al.: Consistent Code Generation from UML Models. In: Australian Software

Engineering Conference, Los Alamitos (2005).

9. McUmber, W. E., Cheng, B. H.: UML-Based Analysis of Embedded Systems Using a

Mapping to VHDL. In: 4th IEEE International Symposium on High-Assurance Systems

Engineering, Washington D.C. (1999).

10. Coyle, F., Thornton, M.: From UML to HDL: a Model-Driven Architectural approach to

hardware-software co-design. In: Information Systems: New Generations Conference

(ISNG), Las Vegas (2005).

11. Wood, S. K., et al.: A Model-Driven development Approach to Mapping UML State

Diagrams to Synthesizable VHDL. IEEE Transactions on Computers, vol. 57, no. 10, pp.

1357--1371 (2008).

12. Wehrmeister, M. A., Freitas, E. P., Pereira, C. E., Ramming, F.: GenERTiCA: A Tool for

Code Generation and Aspects Weaving. In: 11th IEEE Symposium on Object Oriented

Real-Time Distributed Computing (ISORC), Orlando (2008).

13. Freitas, E.P., et al.: DERAF: A high-level Aspects Framework for Distributed Embedded

Real-Time Systems Design. Early Aspects: Current Challenges and Future Directions

(Lecture Notes in Computer Science), pp. 55--74, Springer (2007).

14. Ecker, W.: An object-oriented view of structural VHDL description. In: Proceedings of

VHDL International Users Forum Spring ’96 Conference, Santa Clara (1996).

15.Wehrmeister, M. A., Freitas, E. P., Pereira, C. E., Wagner, F.: An Aspect-Oriented

Approach for Dealing with Non-Functional Requirements in Model-Driven Development of

Distributed Embedded Real-Time Systems. In: 10th IEEE Symposium on Object Oriented

Real-Time Distributed Computing, pp. 428--432 (2007).

