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Based on the matching method, this work presents the transmittance probability for acoustic phonons which 
propagate along a 1D waveguide perturbed by the presence a one-dimensional mono atomic step considered as a 
reticular defect. It is shown that the transmittance exhibits Fano-like resonance features whose origin results 
from degeneracy of step localized mode and propagating continuum mode. In addition, the scattering by multiple 
steps induce interferences between diffused and reflected waves in the step regions which generate Fabry-Pérot 
oscillations. The transmittance spectra can thus be regarded as identifying features and may therefore be used for 
their characterization. The results could also be useful for controlling thermal conductance artificially and the 
design of phonon devices. 

1  Introduction 
The presence of reticular defects in a structure affects 

substantially its dynamic, thermodynamic and kinetic 
properties. To study this influence, we must elucidate the 
phonons-defect interaction problem [1-5]. Interference 
effects generated in the elastic waves scattering by the 
lattice defects found a considerable interest since they can 
give rise to the resonant features of inter-crystalline 
interfaces which can be observed experimentally.  

Based on the Landauer-Büttiker principle [2, 3], the 
matching method [6-8] to which we resort makes it possible 
to analyze the behaviour of the elastic waves through the 
defect perturbed region. We are interested, in particular, 
with the effects produced by this interaction on the phonons 
transmittance spectrum within the long-wave limit and low-
frequency [1, 7, 8]. The results obtained for the 1D model 
[9] coincide with that obtained for 3D one [12] with the 
precision up to the numerical factor. In this work, however, 
we consider the propagation and the diffusion of the 
phonons by the structural defect in a 1D atomic chain. In 
spite of their simplicity, the one dimensional models give a 
qualitative description of many physical phenomena 
observed in the real three-dimensional systems.  

2 Description of the model 
The considered model depicted in Fig. 1, is made of an 

infinite atomic nanowire assimilated to a perfect quantum 
waveguide, so as to form an isolated step according to the z 
direction. The mono-atomic step (defect region indicated by 
the grey area M) is treated as the perturbed interface 
between two single semi infinite atomic nanowires G (left) 
and D (right) occupying the half spaces on either side of the 
step. The implied interactions refer only to the bonding 
strengths between nearest and next nearest close 
neighbours. The bonding force between two close atoms of 
the nanowire is symbolized by a spring constant 1k ; the 
other additional constants as 1lvk  and 2lvk , are 
represented on the figure. There is experimental evidence 
that the frequencies of the localized vibrational states on the 
step can be either greater than the maximum frequency of 

the bulk phonon spectrum [13], or smaller than the 
frequency of the surface phonon mode [14] of the terraces. 
This has been modelled by attributing stiffened [15] or 
loosened [14] force constants in the neighbourhood of the 
step.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3 Matching method principle 
       Initiated by Feuchtwang in the sixties then revisited by 
Szeftel and al. in the eighties, the matching method returns 
account in a satisfactory way for the phonons dispersion 
curves [7-9] and for surface resonances. It gives also a more 
general definition of the resonance concept and allows a 
more transparent analysis of the displacements behaviour in 
the vicinity of the Van Hove singularities [16]. However, its 
execution requires the crystal subdivision in three distinct 
regions having all the same periodicity along the surface. 
The procedure was described in details in references [8]. 
We will just present the necessary stages to the 
comprehension of the results analysis.  

3.1 Dynamics of the perfect nanowire 

       For an atom occupying the site (l) confounded with the 
origin of the coordinates system and vibrating at the 
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Figure 1: Schematic representation of a 1D waveguide. 
The mono-atomic step is treated as the perturbed interface 
(grey area M) between two single semi infinite atomic 
nanowires G and D. 
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frequency ω , the equations of motion can be written, using 
the harmonic approximation framework [11], in the 
following form: 
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where m  indicates the atom mass; xu  the atomic 
displacement and 1k  symbolises the bonding strength 
constant between the two adjacent atoms  localized at sites 
(l) and (l’).  

Taking into account the symmetry of the problem [17] 
and while applying the scattering boundary conditions for  
which we get plane wave solutions, the perfect lattice atom 
equation of motion (1) rewrites itself in following form: 

0)1(22 =++−Ω ZZ ,                                                  (2)  

where 1
2 kmω=Ω  is the dimensionless frequency and 

Z  the phase factor of the plane wave.  
For aqieZ = , the resolution of the equation (2) 

determines the eigenfrequencies Ω  as well as the 
corresponding eigenvector xu

r
. When the real wavevector 

q  is running over the first Brillouin zone, one obtains the 
dispersion curve )(qΩ . Figure 2 shows the shape of this 
curve, symmetrical relatively to frequency axis in the case 
of a lattice parameter 1=a , 11 =k  and 1=m . Contrary to 
the electronic case where the curves are parallel sinusoids, 
we do not have here any hope to find a usable analytical 
expression. It will thus be necessary to resort to purely 
numerical methods to integrate this dispersion relation in 
the general problem in presence of defect. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The result indicates that the only chain mode of 
vibration is acoustic ( 0→Ω as 0→q ).  

The treatment of the scattering problem in presence of 
defects imposes the simultaneous knowledge of the 
propagating part ( 1=Z ) defined previously and the 

evanescent one ( 1<Z ) of the perfect 1D waveguide. In 
other words, for a given frequency, all solutions are 
necessary even those whose module is lower than unity. 
The solution which can be obtained by inversing the 

dispersion relation yields the functional behaviour of the  
vibrating eigenmode shown in Figure 3. The projection of 
the curves on the complex Z  plane shows that propagating 
mode solution follow the circle of unity radius equal to the 
module of the phase factor Z ; this solution is identified to 
the dispersion curve of Figure 2. The evanescent solution 
( 1<Z ) corresponds to the curve contained inside the unit 
circle. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2 Coherent phonons scattering at the step edge 

Since the perfect waveguides do not couple between 
different eigenmodes, we can treat the scattering problem 
for each vibratory eigenmode separately. Generalization to 
every combination of these modes does not pose a 
particular problem. For an incidental wave inV  coming 
from the left of figure 1 in the eigenmode ν , 
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where Z  is the phase factor of the entering mode, u
r  its 

eigenvector. The superscript )1( −≤i  indicates the site 
occupied by the atom relatively to the direction of 
propagation. 

The resulting scattered waves, due to an elastic 
scattering by the defect, are composed of reflected and 
transmitted parts which generate vibrational fields in the 
two unperturbed half spaces G and D (Figure1). The 
Cartesian displacement components of an atom pertaining 
to these areas can be obtained by using the matching 
method [7]. For such a site, the displacement components 
are expressed as a superposition of the perfect waveguide 
eigenmodes at the same frequency, i.e.: 

[ ] ( ) )1,1(,.. 11 −−≤= liuu Z
i

Z
i
r

rr
ξ ,                             (4) 

[ ] ( ) )3,(,.. liZuZu ii
t ≥=

rr
η ,                                       (5) 

where ξ  and η  indicate the reflection and transmission 
probabilities. The normalization of these coefficients with 
respect to the group velocity of the plane wave gives 
transmittance Vgη=Λ  and reflectance Vgξχ = . In this 
case, we obtain unitarity of the scattering matrix.  
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Figure 2: Dispersion of the propagating mode of the perfect 
atomic nanowire. 

Figure 3: Functional behaviour )(ZΩ  of the vibrating 
mode characterizing the perfect lattice atomic nanowire.  
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      By isolating the terms describing the incidental wave by 
using the relations (4) and (5), the inhomogeneous system 
of linear equations is finally put in the form: 

[ ][ ] [ ] inlvlvlvlv VkkDXRkkD
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2121 Ω−=Ω ,             (6)  

where [ ]),,(~
21 lvlv kkD Ω  represents the dynamical matrix of 

the defect, inV
r

 the incidental vector and X
r

 the vector 
gathering all the problem unknowns: the atomic 
displacements xu  of the defect atoms as well as the  
reflectance and the transmittance coefficients. These are 
necessary for the determination of atomic displacements in 
the boundaries as in the unperturbed areas G and D of the 
perfect waveguide. 

As example, for the isolated step of Figure 1 we obtain a 

dynamical matrix [ ]86~
×D ; from where a matching 

matrix [ ]68×R  is deduced. Then the vector X
r

 will be 
composed of six unknowns including the four vibrational 
displacements )(lu x  of the step irreducible atoms and two 
transmittance and reflectance probabilities,  
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4 Results and discussion 

4.1 Scattering at the single surface step 

Phonons scattered by the step are analyzed relatively to 
an incidental wave coming from the left in figure 1, with 
unit amplitude and a zero phase on the border atom (-1) 
located just at the site near the defect region M. Calculation 
is carried out for 11 =k , 2.11 =lvk  and 8.02 =lvk . The 
numerical results obtained for the transmittance and 
reflectance probabilities in terms of the dimensionless 
frequency are consigned in Figure 4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We notice that the presence of the step leads to a general 

decrease of the probability. As expected, the influence of 
the defect is relatively small in the acoustical regime 
because of the low implied frequencies. For 0→Ω  we 

get 0→Λ  in addition to the pronounced typical Fano-like 
resonance structure. This asymmetric resonance can be 
attributed to the presence of defect-induced resonant state, 
whose frequency depends on the value of the bonding 
forces in the step region. 

This generalized behaviour is also observed when 
backscattering becomes more significant for wavevectors 
near the zone boundary where the transmittance probability 
tend towards zero. Lastly the well known theoretical 
relation translating the conservation of energy principle,  

( ) 1=+Λ χ ,                                                                 (7) 

is fortunately satisfied and always checked for each 
frequency. Besides, this condition constitutes an effective 
control method of the results.  
    Otherwise the spectrum is much more affected in the case 
of loosened force constants. In addition to resonance, this 
influence is translated by a less amplitude compared to the 
stiffened constants values. 

4.3 Isolated double step  

The surface-surface phonon scattering is now 
considered for a double step, schematized in top of Figure 
5, where the two step edges are sufficiently far apart to 
justify decoupling the dynamics of the two edges. However, 
there exists a domain where the two edges are still 
sufficiently close (δ  corresponds to a distance smaller than 
the surface phonon coherent length) where the two steps 
interact by exchanging coherent surface phonons.  

Figure 5 gives the example of two identical steps 
separated by a plateau of variable length δ  and the 
transmittance probabilities they produce. 

The effects described previously in the case of isolated 
step appear, but they are even more difficult to isolate 
because of the biggest number of peak-dip structures near in 
frequencies. It is why we are not going to study in details 
these regions. On the other hand, we will limit ourselves to 
present a more global change of the transmission curves, 
provoked by the Fabry-Pérot oscillations issued from 
interferences between the multiple scattering of propagating 
states in the perturbed region. 

The distance δ  represents always a whole multiple of 
network parameters a . It can be seen in Figure 6 that the 
transmittance curves structure became richer of several 
peaks. We observe also a drastic δ  dependence of Fabry-
Pérot oscillations. However, the number of main dips 
remained the same corresponding to the number of steps ; 
but each of them divides in several secondary peaks that 
provide the total number of lattice parameter a  contained 
in horizontal distance δ .  

The fact that their number seems to be lower on the 
figure is simply related to a resolution problem in the 
implied frequency range. Same results are observed by V. 
Pouthier and al. [18] on the transmittance spectrum of a 
nanowire containing a set of linear clusters separated by 
different spacings. Some rapid oscillations in the boundary 
are due to the simultaneous presence of Fabry Pérot 
interferences which become more and more important with 
the increase of δ . The transmission spectrum displays 
more complex oscillation behaviours especially for higher 
frequency. Otherwise, the upper level of the Fabry Pérot 
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Figure 4: Phonon transmittance Λ and reflectance χ as a 
function of scattering frequency for an isolated monatomic 
step in the case of stiffened force constants in the 
neighbourhood of the step. 
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oscillation can merge with the Fano-resonance peak. It 
should be noted that on average the global shape of the 
transmission curves is quite similar to that obtained in the 
case of an isolated step (in dotted line on the figure). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3 Interaction of several steps 

The increase of the sample defect region doesn't bring 
anything of qualitatively new in relation to the case of the 
isolated step. The addition of steps results solely in the 
increase of the size of the linear system (6), but the 

matrix D~  keeps its structure. The supplementary blocks 
have the same shape as those characterizing a lonely 
isolated step. Naturally, we can be interested by a 
disposition of consecutive steps forming a staircase. We 
have limited our study to only fifteen steps which already 
generates a ( 3634× ) defect matrix dimension. In Figure 6, 
we investigate the dependence of the transmittance 
probabilities on the dimensionless frequency for different 
staircases. The dotted lines refer to a single isolated step. 
The transmission curves are turned into a number of peak-
dip structures, the reason is that the modes will interfere 
with each other due to the multiple reflections of the 
phonon waves in the perturbed region. In general, the 
multiple interferences in the perturbed waveguide imply the 
more complex transmittance spectra, especially for higher 
frequencies. These interferences between multiply scattered 
waves result in Fabry–Pérot oscillations of increasing 
amplitudes with the frequency and whose number depends 
intimately of the number N of steps that the staircase 
includes. Similar results are obtained in the study of 
adatomic defects [9, 12, 19-20] and substitutional defect 
columns [8] in the perturbed double quantum chain. Defects 
are separated by different spacings in both configurations. 

An interesting feature is that the dips which correspond 
to positions of transmission zero, shown in the middle 
frequency interval broaden with the increase of the step 
number and develop gradually into a stop frequency gap at 
which all phonons are reflected by the defect quantum 
waveguide.  Note that on average, the transmission curves 

follow a shape globally similar to that of the isolated step in 
both vibrating modes. 

5 Conclusion 
The undulatory behaviour of an elastic wave which 
propagates through a quantum waveguide containing 
geometric defects (steps) was analyzed while resorting to 
the matching procedure based on the Landauer-Büttiker 
approach. The scattering is considered for different defect 
configurations. In both cases, strong asymmetrical 
resonances are observed in the transmittance spectra; these 
structures are allotted to the coupling discrete continuum-
states induced by the step region. The position and width of 
the resonance peaks are determined by the longitudinal 
length of the perturbed region M. Moreover, the 
transmittance spectrum is characterized by other 
oscillations of Fabry-Pérot type due to the interferences 
between transmitted ant reflected waves in the perturbed 
region. Their number depends closely of the plateau or 
staircase dimensions.   

 The transmittance spectra can thus be used for 
identifying defects of specific structures and then being 
used for their characterization. We hope that these findings 
can be verified in an easily realisable set of experiments. 
Such systems can find some useful applications in the 
designing of transducers and noise control devices 
(ultrasonic filters) [21] whereas resonances are commonly 
used to build frequency filters [22]. The results could also 
be useful for controlling thermal conductance artificially 
and the design of phonon devices. 
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