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Propagation of P and SV waves in an elastic solid containing randomly distributed inclusions in a half-
space is investigated. The approach is based on a multiple scattering analysis similar to the one proposed
by Waterman and Truell for scalar waves. The characteristic equation, the solution of which yields the
effective wave numbers of coherent elastic waves, is obtained. Formulae are derived for the effective wave
numbers in a dilute random distribution of identical scatterers. They generalize the formula obtained by
Waterman and Truell for scalar coherent waves. It is shown that P and SV waves are coupled for non
circular cylinders but uncoupled for circular cylinders.

1 Introduction

We consider the problem of elastic wave propagation
in heterogeneous solids containing distributions of inho-
mogeneities. The results have applications in geophysi-
cal exploration and ultrasonic evaluation of composite
materials or biological tissues. Typically, the inhomo-
geneities can be hard grains, inclusions, micro-cracks,
fibers, pores, or contrast agents, for instance.

We focus attention on the coherent wave propaga-
tion, which is the statistical average of the dynamics
corresponding to all possible configurations of the scat-
terers. It is well-known that the coherent motion makes
each heterogeneous medium appear as a dissipative ho-
mogeneous material, and propagation is governed by a
complex effective wave number that is frequency de-
pendent. The real part of the wave number is related
to the velocity, and the imaginary part represents the
attenuation.

The method developed here starts from an explicit
multiple scattering formulation in which the field scatte-
red from any particular scatterer is expressed as a mul-
tipole (far-field) expansion. In the case of scalar waves,
this is a classical topic with a large literature [1, 2, 3, 4].
In comparison with the numerous studies of the scalar
situation, multiple scattering of elastic waves involving
both compressional (P) and shear waves (SV) has re-
ceived relatively little attention. Varadan et al. [5] and
Yang & Mal [6] have considered this problem using mul-
tipole expansions. Their analysis is mainly focused on
the low-frequency limit (Rayleigh limit) which predicts
dynamic effective mechanical properties of particulate
composites that are in agreement with Hashin and Ro-
sen’s bounds [7]. The Generalized Self Consistent Me-
thod (GSCM) [6] is derived by using a self consistent
scheme applied to Waterman and Truell’s formula [8].
However, this formula, which is valid for scalar waves,
is applied to P and SV waves separately [6], and mode

conversions between P and SV waves are therefore ne-
glected. In contrast to the GSCM, the theory develo-
ped in [5] takes mode conversions into account, but the
equations that involve P and SV waves are uncoupled by
invoking additional hypotheses above and beyond those
for the QCA used in most of the papers previously cited.
This is not necessary and it can be avoided by ensuring
that the equations faithfully and accurately describe the
coupling between the P and SV waves, as done in this
paper. More precisely, we derive equations for P and
SV waves in the spirit of the paper by Waterman and
Truell [8], and effective wave numbers are then obtai-
ned in the limit as the scatterer size tends to zero. From
this point of view, our results can be considered as a
generalization of the work of Waterman and Truell for
scalar waves to the elastic case. As the present approach
is based on multipole expansions, scatterers with non-
circular shapes can be handle. The T-matrix method
provides a convenient tool to calculate such multipole
expansions [9].

2 Multiple scattering formula-
tion

Suppose that time-harmonic P or SV waves are pro-
pagating perpendicular to N parallel cylinders located in
an elastic solid and that kL and kT are the wave num-
bers of the P and SV waves. We assume the Helmholtz
decomposition of the displacement in the form

~u = ~∇ψL + ~∇× (ψT ~ez) (1)

where ~ez is the unit vector parallel to the cylinders and
ψL and ψT represent potentials for the longitudinal (P)
and transverse (SV) components of the waves. Under
the influence of the incident waves ψL

inc(~r) = exp(ikLx)
and ψT

inc(~r) = exp(ikTx), both L and T scattered waves



ψL
S (~r;~rk) and ψT

S (~r;~rk) are generated by the kth scat-
terer, so that(

ψL(~r)
ψT (~r)

)
=
(
ψL

inc(~r)
ψT

inc(~r)

)
+

N∑
k=1

(
ψL

S (~r;~rk)
ψT

S (~r;~rk)

)
. (2)

Here, the first vector argument ~r = (x, y) specifies the
observation point, while ~rk is the location of the kth
scatterer. The scatters are assumed to be identical in
composition and orientation and the properties of a
single scatterer are assumed to be known, so that a rule
is available that relates the scattered waves ψα

S(~r;~rk)
and the exciting fields ψα

E(~r;~rk) acting on the kth scatte-
rer (α = L, T ). This rule defines a linear scattering ope-
rator T (~rk), with components Tαβ(~rk) (α, β ∈ {L, T}),
by the relations [9](

ψL
S (~r;~rk)

ψT
S (~r;~rk)

)
=
[
TLL(~rk) TTL(~rk)
TLT (~rk) TTT (~rk)

](
ψL

E(~r;~rk)
ψT

E(~r;~rk)

)
.

The exciting field acting on the kth scatterer is the sum
of the incident waves and the scattered waves from all
scatterers other than the kth. It follows that(

ψL
E(~r;~rk)

ψT
E(~r;~rk)

)
=
(
ψL

inc(~r)
ψT

inc(~r)

)
+
∑
j 6=k

[
TLL(~rj) TTL(~rj)
TLT (~rj) TTT (~rj)

](
ψL

E(~r;~rj)
ψT

E(~r;~rj)

)
. (3)

Equations (2) to (3) are the multiple scattering equa-
tions that generalize those obtained for the scalar case
(cf. eqs. (2.9-10) in [8]).

3 Modal equations

In order to derive the equations governing the co-
herent motion, we use the method initially developed
by Foldy [11] to average over all possible configurations
of cylinders. This method is very well documented [2],
and it includes as a special case the quasi-crystalline
approximation (QCA). Performing the configurational
average transforms eq. (3) into(

〈ψL
E(~r;~r1)〉

〈ψT
E(~r;~r1)〉

)
=
(
ψL

inc(~r)
ψT

inc(~r)

)
+
∫
d~rj n(~rj , ~r1)[

TLL(~rj) TTL(~rj)
TLT (~rj) TTT (~rj)

](
〈ψL

E(~r;~rj)〉
〈ψT

E(~r;~rj)〉

)
. (4)

In these equations, ~r1 is the location of one of the cylin-
ders, 〈ψα

E(~r;~rj)〉 (α ∈ {L, T}) are the average coherent
fields acting on the j th scatterer, n(~r, ~rj) the conditio-
nal number density of scatterers at ~r if a scatterer is
known to be at ~rj , and the integral is taken over the
whole surface accessible to scatterers.

In the same way as ψL,T
E (~r;~rj), the effective poten-

tials 〈ψL,T
E (~r;~rj)〉 satisfy the Helmholtz equation and

are regular functions at the point ~rj , they can therefore
be expressed (α ∈ {L, T})

〈ψα
E(~r;~rj)〉 =

∑
n

Aα
n(~rj) Jn(kαρj)einθ(~ρj), (5)

with ~ρj = ~r−~rj , θ(~ρj) = arg(~ρj) and ρj = |~ρj |. As usual
with the T-matrix approach [9], the transition operators

are defined by (α, β ∈ {L, T})

Tαβ(~rj)Jn(kαρj)einθ(~ρj) = Tαβ
n H(1)

n (kαρj)einθ(~ρj), (6)

and the corresponding far-field scattering amplitudes of
the different interactions are given by

Tαβ(~0)eikαx =
∑

n

Tαβ
n H(1)

n (kαr)einθ (7)

'
√

2
πkαr

ei(kαr−π
4 ) fαβ(θ) (r →∞)

with ~r = (r cos θ, r sin θ). The far-field scattering func-
tions fαβ(θ) are therefore Fourier series with coeffi-
cients equal to the modal scattering amplitudes Tαβ

n ,
i.e. (α, β ∈ {L, T})

fαβ(θ) =
∑

n

Tαβ
n einθ. (8)

Modal coefficients Tαβ
n can be calculated numerically

[9, 10]. For circular cylinders, they are the components of
the T-matrix and satisfy the symmetry relation Tαβ

−n =
Tαβ

n . For non circular cylinders, they are expressed in
terms of the T-matrix components that depend on the
orientation of the scatterer, so that in general Tαβ

−n 6=
Tαβ

n .
As we seek coherent waves that propagate in the

equivalent homogeneous medium, we assume that the
solutions of eqs. (4), taking eqs. (5-6) into account, may
be written in the form(

AL
n(~rj)

AT
n (~rj)

)
= in

[
AL

n BL
n

AT
n BT

n

](
eiξxj

eiξ
′
xj

)
. (9)

Here ξ and ξ
′
are the effective wave numbers of coherent

waves that propagate in the direction of the x−axis, and
the coefficients AL

n and BL
n are at this stage unknown.

Here, two coherent waves with ξ and ξ
′

as wave num-
bers are assumed to propagate, which is a natural hy-
pothesis for scarce concentrations of scatterers. In such
situations the homogeneous medium looks like an elas-
tic medium in which the two waves that propagate are
predominantly P or SV waves.

The Waterman and Truell approximation assumes
a pair correlation function with the following property
[2, 8]

n(~r, ~rj) = n0 for |x− xj | > η (10)

n(~r, ~rj) = 0 for |x− xj | < η (11)

for η → 0 with ~r = (x, y) and ~rj = (xj , yj). In this limit
eqs. (4) are improper integrals in the sense of Cauchy
principal value, which can be calculated as in [8]. Having
used the Lorentz-Lorenz law, we find

AL
n−

2n0

ikL

∑
p

(
TLL

p AL
p +TTL

p AT
p

)[ 1
ξ − kL

− (−1)n+p

ξ + kL

]
= 0,

(12)

AT
n−

2n0

ikT

∑
p

(
TTT

p AT
p +TLT

p AL
p

)[ 1
ξ − kT

− (−1)n+p

ξ + kT

]
= 0,

(13)



and
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∑
p

(
TLL

p BL
p +TTL

p BT
p

)[ 1
ξ′ − kL

− (−1)n+p

ξ′ + kL

]
= 0,

(14)

BT
n−

2n0

ikT

∑
p

(
TTT

p BT
p +TLT

p BL
p

)[ 1
ξ′ − kT

− (−1)n+p

ξ′ + kT

]
= 0.

(15)
Eqs. (12,13) and eqs. (14,15) provide two identical
homogeneous systems of linear algebraic equations
which involve either the unknowns {AL

p , A
T
p } with ξ

or {BL
p , B

T
p } with ξ

′
. The existence of nontrivial solu-

tions of the homogeneous system determines the effec-
tive wave numbers ξ and ξ

′
. These are looked for in the

next section.

4 The Waterman & Truell for-
mula for an elastic medium

Let us consider the coupled systems of infinite equa-
tions eqs. (12,13), for example, it can still be written

AL
n + PLT + (−1)nQLT = 0, (16)

AT
n + PTL + (−1)nQTL = 0, (17)

with

PLT = PL

∑
p

(
TLL

p AL
p + TTL

p AT
p

)
, (18)

QLT = QL

∑
p

(−1)p
(
TLL

p AL
p + TTL

p AT
p

)
,

PTL = PT

∑
p

(
TTT

p AT
p + TLT

p AL
p

)
,

QTL = QT

∑
p

(−1)p
(
TTT

p AT
p + TLT

p AL
p

)
,

and (α = {L, T})

Pα =
2n0

ikα

1
kα − ξ

, Qα =
2n0

ikα

1
kα + ξ

. (19)

The structure of eqs. (16,17) implies the identities

AL,T
−n = AL,T

n and AL,T
n+2 = AL,T

n . (20)

Consequently, the problem reduces from calculating an
infinite set of unknowns to one with eight unknowns :
PLT , PTL, QLT , QTL and AL,T

0,1 satisfying a system of
eight homogeneous linear equations. Note that although
PLT , . . . , QTL can be expressed in terms of AL,T

0,1 , the
calculations are simpler with PLT , . . . , QTL considered
as unknowns. The first four equations are obtained by
setting n = 0 and n = 1 in eqs. (16,17). Then, we per-
form an iteration on eqs. (16,17) using the identities eqs.
(20), with the result

AL
n −

[
fLL(0)PL + (−1)nfLL(π)QL

]
PLT (21)

−
[
fLL(π)PL + (−1)nfLL(0)QL

]
QLT

−
[
fTL(0)PL + (−1)nfTL(π)QL

]
PTL

−
[
fTL(π)PL + (−1)nfTL(0)QL

]
QTL = 0,

AT
n −

[
fTT (0)PT + (−1)nfTT (π)QT

]
PTL (22)

−
[
fTT (π)PT + (−1)nfTT (0)QT

]
QTL

−
[
fLT (0)PT + (−1)nfLT (π)QT

]
PLT

−
[
fLT (π)PT + (−1)nfLT (0)QT

]
QLT = 0.

Four equations are obtained from eqs. (21,22) by consi-
dering the two possibilities for (−1)n, corresponding to
n = 0 and n = 1. The second set of four equations
follow from eqs. (18) combined with the identities eqs.
(20). Eliminating AL,T

0,1 from the eight equations results
in the following four equations for the four unknowns
PLT , PTL, QLT , QTL,[

1 + fLL(0)PL ± fLL(π)QL

]
PLT (23)

±
[
1± fLL(π)PL + fLL(0)QL

]
QLT

+
[
fTL(0)PL ± fTL(π)QL

]
PTL

+
[
fTL(π)PL ± fTL(0)QL

]
QTL = 0,

[
1 + fTT (0)PT ± fTT (π)QT

]
PTL (24)

±
[
1± fTT (π)PT + fTT (0)QT

]
QTL

+
[
fLT (0)PT ± fLT (π)QT

]
PLT

+
[
fLT (π)PT ± fLT (0)QT

]
QLT = 0.

The homogeneous linear system of equations eqs. (23,24)
has nontrivial solutions if the associated determinant
vanishes. Thus, the modal equation is

det
[
ALL ATL

ALT ATT

]
= 0. (25)

with

ALL =
(

1 + fLL(0)PL fLL(π)PL

fLL(π)QL 1 + fLL(0)QL

)
, (26)

ATT =
(

1 + fTT (0)PT fTT (π)PT

fTT (π)QT 1 + fTT (0)QT

)
, (27)

ATL =
(
fTL(0)PL fTL(π)PL

fTL(π)QL fTL(0)QL

)
, (28)

and

ALT =
(
fLT (0)PT fLT (π)PT

fLT (π)QT fLT (0)QT

)
. (29)

The formula given by eq. (25) generalizes the identity
of Waterman & Truell for acoustic waves in the case
of cylindrical coordinates. Equation (25) is a bi-squared
equation which has ξ and ξ

′
for solutions.

5 Formulae for circular cylinders

The mode converted forward scattering and back-
scattering amplitudes, fLT (0), fTL(0) and fLT (π),
fTL(π) respectively, are identically zero if the funda-
mental scatterer has sufficient geometrical symmetry.
This is the case for circular cylinders, and occurs gene-
rally for cylinders with reflection symmetry about the
x−axis. When fLT (0) = fTL(0) = fLT (π) = fTL(π) =
0, instead of eq. (25), the condition for satisfaction of the



four equations eqs. (23,24) becomes two simpler equa-
tions [

1 + fLL(0)PL

][
1 + fLL(0)QL

]
(30)

−
[
fLL(π)

]2
PLQL = 0

and [
1 + fTT (0)PT

][
1 + fTT (0)QT

]
(31)

−
[
fTT (π)

]2
PTQT = 0.

These provide uncoupled modal equations for the P and
SV waves. Substituting eqs. (19) into eqs. (30,31), we
obtain the well known Waterman & Truell formulae

ξ2 =
[
kL −

2in0

kL
fLL(0)

]2 − [2in0

kL
fLL(π)

]2 (32)

and

(ξ′)2 =
[
kT −

2in0

kT
fTT (0)

]2 − [2in0

kT
fTT (π)

]2 (33)

associated to P and SV waves respectively.

6 Other results

Similar formulae have been obtained for poro-elastic
media obeying Biot’s theory [12]. Three coherent waves
may propagate in such media : a shear wave, a fast lon-
gitudinal wave, and a slow longitudinal one. While the
shear coherent wave propagates uncoupled, the two lon-
gitudinal waves are coupled via the scattering by each
single circular cylinder. Using Twersky’s theory [13],
which is less general than the one of Waterman & Truell,
the same dispersion equation was found for the shear
wave (cf. eqs. (31,33)), and a bi-squared coupled one for
the fast and slow waves, bi-squared equation which is
similar to eqs. (25).

7 Conclusion

Formulae have been derived for the effective wave
numbers in a dilute random distribution of identical
scatterers embedded in a solid. They generalize the for-
mula obtained by Waterman and Truell for scalar co-
herent waves. It is shown that P and SV coherent waves
are coupled for non circular cylinders but uncoupled for
circular cylinders.

However, this result depends on the theory which is
used. It has been shown that P and SV coherent waves
can be coupled even for circular cylinders when using a
more general theory based on the Fikioris & Waterman
approach [14].
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