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We present the first representation of the general term of the Rayleigh-Schrödinger series for quasidegenerate systems. Each term of the series is represented by a tree and there is a straightforward relation between the tree and the analytical expression of the corresponding term. The combinatorial and graphical techniques used in the proof of the series expansion allow us to derive various resummation formulas of the series. The relation with several combinatorial objects used for special cases (degenerate or non-degenerate systems) is established.

I. INTRODUCTION

Rayleigh-Schrödinger (RS) perturbation theory is a venerable technique to calculate the eigenvalues and eigenvectors of H = H 0 + V from those of H 0 . It was created in 1894 by Lord Rayleigh to describe the vibrations of a string [START_REF] Strutt | Theory of Sound[END_REF] and adapted to quantum mechanics by Schrödinger in 1926 [START_REF] Schrödinger | Quantisierung als Eigenwertproblem[END_REF]. RS perturbation theory has been used in all fields of quantum physics (particle, atomic, molecular, solid-state physics) and quantum chemistry.

In most textbooks, the RS series deals with the perturbation of a single nondegenerate initial state. However, in many practical applications, the initial state is either degenerate or quasidegenerate (i.e. several states are close in energy) and the basic RS approach breaks down. Quasidegenerate perturbation theory is widely used to set up effective Hamiltonians [START_REF] Lindgren | Atomic Many-Body Theory[END_REF], for example the spin Hamiltonians of molecular chemistry and solid state physics [START_REF] Moreira | A unified view of the theoretical description of magnetic coupling in molecular chemistry and solid state physics[END_REF][START_REF] Moreira | Derivation of spin Hamiltonians from the exact Hamiltonian: Application to systems with two unpaired electrons per magnetic site[END_REF], or to deal with the quantum electrodynamics of atoms [START_REF] Lindgren | QED procedure applied to the quasidegenerate fine-structure levels of He-like ions[END_REF][START_REF] Bigot | Contribution of the screened self-energy to the Lamb shift of quasidegenerate states[END_REF].

The terms of the RS series are notoriously complex. Even mathematical physicists of the stature of Reed and Simon admit that the terms of the RS series are "quite complicated" and that "the higher order RS coefficients are hard to compute" (see ref. 8, p. 8 and 18). Computer programs are available to build the terms of the RS series [START_REF] Barnett | Symbolic calculation in chemistry: Selected examples[END_REF][START_REF] Hirata | Symbolic algebra in quantum chemistry[END_REF][START_REF] Fritzsche | A computer-algebraic approach to the derivation of Feyman-Goldstone perturbation expansions for open-shell atoms and molecules[END_REF][START_REF] Derevianko | Post-Wick theorems for symbolic manipulation of second-quantized expressions in atomic many-body perturbation theory[END_REF][START_REF] Juršėnas | Application of symbolic programming for atomic many-body theory[END_REF], but their results are intricate expressions that do not exhibit any obvious structure and that can hardly be used to carry out resummations of the series.

In this paper, combinatorial physics is used to provide the first representation of the general term of the Rayleigh-Schrödinger (RS) perturbation theory for quasidegenerate systems. Each term is written as a tree that faithfully reflects its algebraic structure. In particular, trees illustrate the recursive structure of RS terms, that is used to prove properties of the RS series.

The purpose of this paper is to describe the general term of the RS series and to illustrate the power of our combinatorial approach by deriving a number of possible resummations of the RS series. Our aim is to set up the tools for performing such resummations and not to discuss when some resummations are more convenient than others. As a consequence, no numerical example is given.

When the system is not quasi-degenerate (i.e. when it is either fully degenerate or non-degenerate), several graphical representations of the terms of the RS series have been proposed. We give the bijection between these representations and our trees.

II. RAYLEIGH-SCHR ÖDINGER SERIES

In the most general setting, we consider a model space M spanned by N eigenstates |i of H 0 , with energies e i . We assume that all e i of the model space are separated from the rest of the spectrum of H 0 by a finite gap. The projector onto the model space M is P = i |i i|, where i runs over the basis states of M . The wave operator Ω transforms N states |φ i of M into eigenstates |Φ i = Ω|φ i of H: HΩ|φ i = E i Ω|φ i . We recently described [START_REF] Ch | Tree expansions in time-dependent perturbation theory[END_REF] the way to choose the states |φ i .

We assume that P Ω = P and ΩP = Ω. Then, the eigenvalues of the effective Hamiltonian H eff = P HΩ are the eigenvalues E i of H. In other words, eigenvalues of H can be obtained by diagonalizing the M × M matrix H eff . Lindgren and Kvasnička showed [START_REF] Lindgren | The Rayleigh-Schrödinger perturbation and the linked-diagram theorem for a multi-configurational model space[END_REF][START_REF] Kvasnička | Construction of model Hamiltonians in framework of Rayleigh-Schrödinger perturbation theory[END_REF] that [Ω, H 0 ] = V Ω -ΩV Ω.

(1)

The recursive solution of this equation gives a series expansion for Ω which is the RS series for the wavefunction. However, it is not obvious that eq. ( 1) has a recursive solution. Indeed, we must be able to solve the equation [X, H 0 ] = C for X. In general, the operator Sylvester equation AX -XB = C, where A and B are self-adjoint, has a unique solution if and only if A and B have no common eigenvalue [START_REF] Rutherford | On the solution of the matrix equation AX + XB =[END_REF][START_REF] Albeverio | Bounds on variation of spectral subspaces under J-self-adjoint perturbations[END_REF]. Clearly, this is not the case if A = B = H 0 , so we recast the equation by defining χ = Ω -P , where χ = QχP , with Q = 1 -P . Thus, eq. ( 1) becomes an equation for χ:

[χ, H 0 ] = QV P + QV χ -χV P -χV χ. ( 2 
)
This equation is a matrix Riccati equation, for which various solution methods have been proposed in the literature [START_REF] Albeverio | Bounds on variation of spectral subspaces under J-self-adjoint perturbations[END_REF][START_REF] Nair | An iterative procedure for solving the Riccati equation A2R -RA1 = A3 + RA4R[END_REF][START_REF] Kostrykin | The adiabatic theorem of quantum mechanics and the Riccati equation[END_REF][START_REF] Fujii | Riccati diagonalization of Hermitian matrices[END_REF]. Solutions exist also for its time-dependent form [START_REF] Common | Solution of the Riccati equation and their relation to the Toda lattice[END_REF][START_REF] Common | Continued-fraction solutions to the Riccati equation and integrable lattice systems[END_REF]. Now, [χ, H 0 ] = χH 0 -H 0 χ = χP H 0 -QH 0 χ, because P and Q commute with H 0 . We obtain a Sylvester equation with A = QH 0 and B = P H 0 and its solution is unique because we assumed that there is a finite gap between the states of the model space and the rest of the spectrum.

A. Combinatorial analysis

Because of its importance, the basic RS series has been dealt with in hundreds of papers. As a starting point to discover the proper combinatorial structure of the RS series, we enumerate the number of its terms: it has one term of order 0, one term of order 1, then 2, 5, 14, 42, 132, 429 terms of order 2, 3, 4, 5, 6 and 7, respectively. The number of terms of order n is the Catalan number C n = (2n)! n!(n+1)! . The Catalan sequence is well-know in combinatorics: "The Catalan sequence is probably the most frequently encountered sequence that is still obscure enough to cause mathematicians [. . . ] to expend inordinate amounts of energy re-discovering formulas that were worked out long ago." [START_REF] Gardner | Catalan numbers: an integer sequence that materializes in unexpected places[END_REF]. An entire book is devoted to Catalan numbers [START_REF] Koshy | Catalan Numbers with Applications[END_REF]. They enumerate over 200 combinatorial objects [START_REF] Stanley | Enumerative Combinatorics[END_REF] and in the physics literature, several of these objects were used to represent the general term of the RS series: Dyck paths [START_REF] Bloch | Sur la théorie des perturbations des états liés[END_REF], non-crossing partitions [START_REF] Olszewski | Combinatorial analysis of the Rayleigh-Schrödinger perturbation theory based on a circular scale of time[END_REF], bracketings [START_REF] Lindgren | The Rayleigh-Schrödinger perturbation and the linked-diagram theorem for a multi-configurational model space[END_REF][START_REF] Huby | Formulae for non-degenerate Rayleigh-Schrödinger perturbation theory in any order[END_REF][START_REF] Tong | On Huby's rules for non-degenerate Rayleigh-Schrödinger perturbation theory in any order[END_REF], labelled diagrams [START_REF] Salzman | Diagrammatic derivation and representation of Rayleigh-Schrödinger perturbation theory[END_REF] and sequences of integers [START_REF] Bloch | Sur la théorie des perturbations des états liés[END_REF][START_REF] Silverstone | Explicit formula in degenerate Rayleigh-Schrödinger perturbation theory for the energy and wavefunction, based on a formula of Lagrange[END_REF][START_REF] Suzuki | General structure of effective interaction in degenerate perturbation theory[END_REF]. However, these approaches could not be generalized to quasi-degenerate systems because they dealt with denominators (e 0 -e j ) n with n > 1, whereas more complex denominators occur in the quasi-degenerate case. Moreover, they could not be used to discover efficient resummations because they do not capture the recursive structure of the RS series.

To find out which combinatorial object is best suited to deal with the RS series, we had to use a rather elaborate algebraic analysis of the time-dependent perturbation theory [START_REF] Ch | Tree expansions in time-dependent perturbation theory[END_REF][START_REF] Ch | Hyperoctahedral Chen calculus for effective Hamiltonians[END_REF]. It turned out in the end that planar binary trees provide the most faithful representation. As we shall see, the relation beween a tree and the corresponding term of RS series is straightforward and the recursive structure of the terms is transparent. The faithfulness is demonstrated by the easiness of the proofs and by the relation between geometrical properties of the trees and analytical properties of the terms, for instance for resummation.

B. Binary trees

We first give examples of the planar binary trees that we use. We denote by Y n the set of planar binary trees with n inner vertices. A tree is called binary if each vertex has either zero or two children. It is called planar if two trees are different when they can be deduced one from the other by moving one edge over another one. For example, the two planar trees and are different. There is a single tree with zero inner vertex: Y 0 = { }. There is one tree with one inner vertex Y 1 = { }, two trees with two inner vertices Y 2 = { , }, five trees with three inner vertices

Y 3 = { , , , , } 
and fourteen with four inner vertices Y 4 = { , , , , , , , , , , , , , }. The vertical line of a tree is called the root. The trees of Y n (with n > 0) can be built from smaller trees by the following relation

Y n = {t 1 ∨ t 2 : t 1 ∈ Y k , t 2 ∈ Y n-k-1 , k = 0, . . . , n -1},
where t 1 ∨ t 2 is the grafting of trees t 1 and t 2 , by which the roots of t 1 and t 2 are brought together and a new root is grown from their juncture. Pictorially:

s ∨ t = s t .
For example, ∨ = , ∨ = , ∨ = . Except in figure 1, the vertices are not drawn explicitly for notational convenience. The inner vertices of a tree are the vertices to which three edges (or two edges and the root) are incident, its leaves are its vertices to which a single edge is incident. A leaf is oriented either to the left or to the right. Each tree of Y n has n inner vertices and n + 1 leaves. The order |t| of a tree t is the number of its inner vertices. If C n denotes the number of elements of Y n , the recursive definition of Y n implies that C 0 = 1 and

C n = n-1 k=0 C k C n-k-1
, so that C n is a Catalan number. The recursive definition of planar binary trees make them very easy to generate with a computer.

C. Recursive relation between trees and RS terms

In ref. [START_REF] Ch | Tree expansions in time-dependent perturbation theory[END_REF], we showed that the wave operator can be written as the sum

Ω = P + ∞ n=1 t∈Yn Ω t , (3) 
where

Ω t = ij |i ω ij t j|, (4) 
with |j an eigenstate of H 0 in the model space and |i out of it (i.e. P |j = |j and P |i = 0). The scalars ω ij t are defined by an exceedingly simple recursive relation: for any tree t different from , there are two trees t 1 and t 2 such that t = t 1 ∨ t 2 . Then,

ω ij t = - k,l ω ik t1 k|V |l ω lj t2 e j -e i , (5) 
with the special cases ω ik t1 = -δ i,k if t 1 = and ω lj t2 = +δ l,j if t 2 = . It is clear from the definition that Ω t is built from a product of |t| matrix elements of V . Note that, when t 1 = , both i and k in ω ik t1 correspond to eigenstates outside the model space, while when t 2 = , both i and k in ω ik t1 correspond to eigenstates in the model space. We now prove that the expansion χ = t =| Ω t is a solution of eq. ( 2). First notice that taking the commutator [Ω t , H 0 ] amounts to multiply ω ij t by e j -e i . Let t = t 1 ∨ t 2 . Then, [Ω t , H 0 ] is equal to QV P , or QV Ω t2 or -Ω t1 V P or -Ω t1 V Ω t2 , respectively, according to whether t 1 = t 2 = |, or t 1 = | and t 2 = |, or t 1 = | and t 2 = |, or t 1 = | and t 2 = |, respectively. The result follows by summing over all trees t 1 and t 2 .

This very simple proof illustrates the fact that non trivial results can be easily obtained because trees encapsulate the recursive structure of the RS series.

A more explicit version of the recursive relation [START_REF] Moreira | Derivation of spin Hamiltonians from the exact Hamiltonian: Application to systems with two unpaired electrons per magnetic site[END_REF] will sometimes be needed. For t = t 1 ∨ t 2 , we define equivalently Ω t by

Ω t = ij |i Q i Q |V |j P j P | e j -e i if t 1 = and t 2 = , (6) 
Ω t = ij |i Q i Q |V Q Ω t2 |j P j P | e j -e i if t 1 = and t 2 = , (7) 
Ω t = - ij |i Q i Q |Ω t1 P V |j P j P | e j -e i if t 1 = and t 2 = , (8) 
Ω t = - ij |i Q i Q |Ω t1 P V Q Ω t2 |j P j P | e j -e i if t 1 = and t 2 = , (9) 
where the exponent of |j P and |i Q means that state |j is a basis state of M and |i a basis state of the complementary of M .

D. Examples

As examples, we give all Ω t for |t|=2 and 3, the value of Ω t for |t| = 1 (i.e. t = ) being given by eq. ( 6)).

Ω t = - i1,i2,i3 |i Q 1 i Q 1 |V |i P 2 i P 2 |V |i P 3 i P 3 | (e i2 -e i1 )(e i3 -e i1 )
for t = ,

Ω t = i1,i2,i3 |i Q 1 i Q 1 |V |i Q 2 i Q 2 |V |i P 3 i P 3 | (e i3 -e i2 )(e i3 -e i1 )
for t = ,

Ω t = i1,i2,i3,i4 |i Q 1 i Q 1 |V |i P 2 i P 2 |V |i P 3 i P 3 |V |i P 4 i P 4 | (e i2 -e i1 )(e i3 -e i1 )(e i4 -e i1 )
for t = ,

Ω t = - i1,i2,i3,i4 |i Q 1 i Q 1 |V |i Q 2 i Q 2 |V |i P 3 i P 3 |V |i P 4 i P 4 | (e i3 -e i1 )(e i3 -e i2 )(e i4 -e i1 )
for t = ,

Ω t = - i1,i2,i3,i4 |i Q 1 i Q 1 |V |i P 2 i P 2 |V |i Q 3 i Q 3 |V |i P 4 i P 4 | (e i2 -e i1 )(e i4 -e i3 )(e i4 -e i1 )
for t = ,

Ω t = - i1,i2,i3,i4 |i Q 1 i Q 1 |V |i Q 2 i Q 2 |V |i P 3 i P 3 |V |i P 4 i P 4 | (e i3 -e i2 )(e i4 -e i2 )(e i4 -e i1 )
for t = ,

Ω t = i1,i2,i3,i4 |i Q 1 i Q 1 |V |i Q 2 i Q 2 |V |i Q 3 i Q 3 |V |i P 4 i P 4 | (e i4 -e i3 )(e i4 -e i2 )(e i4 -e i1 )
for t = .

By looking at these examples, one may wonder whether some denominators could take the value zero. We show now by induction that this never happens. In other words, Ω t is never singular. This is true for t = because, in eq. ( 6), |i belongs to M and |j does not belong to M . Thus, |e i -e j | is greater than the gap between the model space and the rest of the spectrum. Assume now that no Ω t is singular for trees with |t| ≤ n. Take a tree t with |t| = n + 1. Then, t = t 1 ∨ t 2 , with |t 1 | ≤ n and |t 2 | ≤ n. Assume that neither t 1 nor t 2 is equal to the root . Then, eq. ( 9) and the previous remark about |e i -e j | shows that Ω t is not singular. The same is true if t 1 or t 2 is equal to the root. Thus, the denominator Ω t can never take the value 0. Again, the proof is made very simple by the recursive structure of Ω t .

E. Direct relation between trees and RS terms

The recursive relation ( 5) is very useful to derive proofs, but we also need a non-recursive expression for the terms of the RS series. We now give an explicit relation between t and Ω t [START_REF] Ch | Tree expansions in time-dependent perturbation theory[END_REF]. This construction can be followed in figure 1 for t = . Consider a tree t with |t| = n and number its leaves from 1 for the leftmost leaf to n + 1 for the rightmost one. The numerators in the expansion of Ω t are |i

1 i 1 |V |i 2 . . . i n |V |i n+1 i n+1 |. The state |i k belongs to M (i.e. is |i P k ) if leaf k is oriented to the right and does not belong to M (i.e. is |i Q k ) if leaf k is oriented to the left. In the example of fig. 1, the denominator is |i Q 1 i Q 1 |V |i P 2 i P 2 |V |i P 3 i P 3 |V |i Q 4 i Q 4 |V |i P 5 i P 5 |
Then, for each inner vertex v of t, take the subtree t v for which v is just above the root. In other words, t v is obtained by chopping the edge below v and considering the edge dangling from v as the root of t v . In the example of fig. 1, we have four inner vertices labelled a, b, c, d. For vertex a, the subtree t a is the full tree t. For the other inner vertices the subtrees are proper (i.e. different from t) and are given in fig. 1. For each tree t v , denote by l(v) the index of its leftmost leaf and by r(v) that of its rightmost leaf. Then, the denominator is the product of e i r(v) -e i l(v) , where v runs over the n inner vertices of the tree. In the example of fig. 1, t a gives the denominator (e i5 -e i1 ), t b gives (e i3 -e i1 ), t c gives (e i2 -e i1 ) and t d gives (e i5 -e i4 ). Finally, the whole fraction is summed over i 1 . . . i n+1 and multiplied by (-1) d-1 , where d is the number of leaves pointing to the right. It can be easily proved that the above construction satisfies the recursive equation ( 5). If we take the example of the tree t of fig. 1 and consider for example the inner vertex labelled by b, we get a contribution (e i3 -e i1 ) to the denominator. The total term is

Ω t = (-1) 2 i1i2i3i4i5 |i Q 1 i Q 1 |V |i P 2 i P 2 |V |i P 3 i P 3 |V |i Q 4 i Q 4 |V |i P 5 i P 5 | (e i5 -e i1 )(e i2 -e i1 )(e i3 -e i1 )(e i5 -e i4 )
. As far as we know, this tree representation provides the first description of the general term of the RS series for quasidegenerate systems.

III. RESUMMATIONS

The tree representation is useful, not only to prove properties of the RS series, but also to derive new resummations of it. Indeed, any way to write the set of trees as a composition of subtrees gives rise to a resummation of the RS series.

A. Summation over left combs

For any tree t, we define the sequence t n by t 0 = t, t n+1 = t n ∨ |. For example, if t = , we have t 1 = , t 2 = . For any integer n, t n is obtained by grafting t on the leftmost leaf of a tree that has a single leaf oriented to the left and n leaves oriented to the right (such a tree is called a left comb whereas t n , n > 0 is called a left comb grafting. Notice the uniqueness rewriting property: an arbitray tree u can be rewritten uniquely as t n , where t = | or t = v ∨ |. The sum over graftings on left combs is made by defining

Ω ′ t = Ω t + ∞ n=1 Ω tn .
We can now calculate Ω ′ t in terms of Ω t . We first define

G 0 P (z) = P (H 0 -z) -1 P = j |j P j P | e j -z .
Then, we use Kvasnička's trick and denote by

Q i = |i Q i Q | the
projector onto the eigenspace of H 0 with eigenvalue e i outside the model space, so that Q = i Q i and eq. ( 8) can be rewritten

Ω t1 = -i Q i Ω t P V G 0 P (e i ).
By repeating this argument we obtain

Ω ′ t = i Q i Ω t P -P V G 0 P (e i ) + P V G 0 P (e i )P V G 0 P (e i ) -. . . = i Q i Ω t P + P V G 0 P (e i ) -1
.

The map P + P V G 0 P (e i ) goes from the model space to itself and the inverse is taken within the model space. The dimension of the model space is generally small and the numerical calculation of the inverse is fast. We transform

P + P V G 0 P (e i ) -1
= (H 0 P -e i P + P V P )G 0 P (e i )

-1

= (H 0 P -e i P )(P HP -e i P ) -1 ,

where P HP = P (H 0 + V )P and the inverse is again from M to M . To conclude, we assume that t = u ∨ v, where u and v are different from . Then,

Ω ′ t = i Q i Ω u V Ω v G 0 P (e i )(P H 0 -e i P )(P HP -e i P ) -1 = i Q i Ω u V Ω v (P HP -e i P ) -1 = ij |i i|Ω u V Ω v |j j| e j -e i ,
where |j and e j are the eigenstates and eigenvalues of P HP , so that P = j |j j|. In other words, summing over all left combs amounts to replacing the eigenstates of P H 0 P by the eigenstates of P HP .

B. Accelerarated summation over left combs

The formula we obtained for Ω ′ t suggests to look for another expansion of the RS series involving only the eigenstates and eigenvalues of P (H 0 + V )P . The uniqueness rewriting property implies that Ω = P + Ω ′ + t Ω ′ t , where the sum is over all trees t with two or more inner vertices and such that t = u ∨ |, but this resummation can still be improved.

We rewrite the Kvasnička-Lindgren equation.

[χ,

H 0 ] = i Q i χH 0 -H 0 i Q i χ = i Q i χ(H 0 -e i ).
Thus, eq. ( 2) becomes i Q i χ(H 0 -e i ) = QV P + QV χ -χV P -χV χ that is,

i Q i χP (H 0 -e i + V )P = QV P + QV χ -χV χ, (10) 
or, for all the eigenvalues e i of H 0 outside the model space:

Q i χP = Q i V G P (e i ) + Q i V χG P (e i ) -Q i χV χG P (e i ),
where

G P (z) = (P H 0 P + P V P -zP ) -1 = j |j j| e j -z .
This equation is similar to the Kvasnička-Lindgren equation and can be solved graphically and recursively by the same process. Notice that the leading term of the recursive expansion of χ is now

Ω ′ = i Q i V G P (e i ).
Let us call a tree t right-normalized if there is no edge in t such that the tree t ′ obtained by pruning the tree t at that edge can be written t 1 ∨ with t 1 = . The only left comb possibly contained in a right-normalized tree is . The number of right-normalized trees is considerably smaller than the number of trees. For n=1, 2, 3 and 4 the number of right-normalized trees is 1 ( ), 1 ( ), 2 ( , ) and 4 ( , , , ) instead of 1, 2, 5, 14. The right-normalized trees are enumerated by the Motzkin numbers [START_REF] Donaghey | Motzkin numbers[END_REF].

The solution of eq. ( 10) is then Ω = P + t Ωt , where t runs over right-normalized trees and Ωt can be defined recursively by

Ωt = i / ∈M,j∈M |i i|V |j j| e j -e i if t 1 = and t 2 = , (11) Ωt 
= i / ∈M,j∈M |i i|V Ωt2 |j j| e j -e i if t 1 = and t 2 = , ( 12 
) Ωt = - i / ∈M,j∈M |i i| Ωt1 V Ωt2 |j j| e j -e i if t 1 = and t 2 = . ( 13 
)
Once again, this approach reduces the number. It can be expected that this resummation considerably accelerates the convergence of the series. Indeed, when the model space is well chosen, the matrix elements of QV P are smaller than those of P V P . In this expression, all terms involving powers of P V P have been resummed.

C. Alternative accelerated tree expansion

A similar resummation, that we omit, can be obtained by summing over right combs. However, it is not so practical as the previous ones because it is usually not easy to invert QHQ -Qz. If this inversion is possible, then we can simultaneously sum over right and left combs, at least if we assume that a finite gap exists between the eigenvalues of QHQ and P HP . We make this assumption, proceed as before and transform the Kvasnička-Lindgren equation. We define P j = |j j| the projector onto the eigenspace of P HP with energy e j and use similar notations for the projectors and energy levels of QHQ. Thus, P = j P j and we can rewrite the lhs of eq. ( 10) as

i Q i χP (H 0 -e i + V )P = ij Q i χP (H 0 -e i + V )P j = ij Q i χ(e j -e i )P j = j Q(e j -H 0 )χP j .
Thus eq. ( 10) becomes j Q(e j -H 0 )χP j = QV P + QV χ -χV χ, or j Q(e j -H 0 -V )χP j = QV P -χV χ.

For all eigenvalues e j of P HP , this gives us χP j = S(e j )V P j -S(e j )χV χP j , where we set:

S(z) = (zQ -QHQ) -1 .
We can write directly the wave operator as a sum parametrized by trees: Ω = P + t≥| Ωt , where Ωt is defined recursively for all trees by

Ωt = i / ∈M,j∈M |i i|V |j j| e j -e i = j∈M S(e j )QV P j if t = , (14) Ωt 
= - i / ∈M,j∈M |i i| Ωt1 V Ωt2 |j j| e j -e i = - j∈M S(e j ) Ωt1 V Ωt2 P j if t = t 1 ∨ t 2 . (15) 
As for the one involving a direct resummation over right combs, this resummation is not as practical as the previous one because the eigenvalues of QHQ are generally not known. However, this algorithm provides a way to express the eigenvectors of a matrix M = A C C † B in terms of the eigenvalues and eigenvectors of A and B.

D. Fourth resummation

We use now another representation of trees in terms of trees. Since any tree t decomposes uniquely as t = t 1 ∨ t 2 , a recursion on the left hand side of the decomposition shows that there is a unique integer k and k unique trees v i (with i = 1, . . . , k) such that

t = L k (v 1 , . . . , v k ),
where

L k (v 1 , . . . , v k ) = . . . ( ∨ v 1 ) ∨ . . . ∨ v k-1 ∨ v k .
In words, L k (v 1 , . . . , v k ) is obtained by taking a left comb with k right leaves and grafting v k on the lowest right leaf, v k-1 on the next one, up to v 1 on the highest right leaf.

If we sum over k and over all trees v i we find

F = + ∞ k=1 L k (F, . . . , F ), (16) 
where F stands for the formal sum of all trees. We can plug the expansion of the wave operator of section III C in this equation and get for t = L k (v 1 , . . . , v k ):

Ωt = (-1) k j1...j k+1
S(e j k+1 ) . . . S(e j1 )QV P j1 V Ωv1 P j2 V . . . V Ωv k P j k+1 .

Therefore, eq. ( 16) gives us the non-perturbative equation

χ = j S(e j )V P j + ∞ k=1 (-1) k j1...j k+1
S(e j k+1 ) . . . S(e j1 )QV P j1 V χP j2 V . . . V χP j k+1 .

If we use instead the first expansion Eq (3) of the wave operator and plug the corresponding recursive formulas in L k (v 1 , . . . , v k ), we get Ω t = (-1) k-1 j1...j k+1 S 0 (e j k+1 )...S 0 (e j1 )QV

P j1 V Ω v1 P j2 V Ω v2 ...V Ω v k P j k+1
where Ω | := P and S 0 (z) := (zQ -QH 0 Q) -1 , so that:

Ω = P + ∞ k=1 (-1) k-1 i (...((Q i V G 0 p (e i ))V ΩG 0 p (e i ))...V ΩG 0 p (e i )).
We believe that these relations are new. Similar expansions would follow by considering the symmetric expansion of trees (using the grafting operation of a tree on the right-most leaf of another tree instead of the grafting on the left-most tree).

E. Relation with previous works

The previous works on quasidegenerate perturbation theory correspond to a summation which is symmetric to our first alternative expansion (in the sense that they focus on the operators (e i -QHQ)). By following a line suggested by Kvasnička and Lindgren [START_REF] Lindgren | The Rayleigh-Schrödinger perturbation and the linked-diagram theorem for a multi-configurational model space[END_REF][START_REF] Kvasnička | Construction of model Hamiltonians in framework of Rayleigh-Schrödinger perturbation theory[END_REF], several authors transformed the Kvasnička-Lindgren equation into i (e i -QHQ)χP i = QV P -χV P -χV χ.

A resummation (similar, but slightly more involved than the one leading to eq. ( 17)) gives the equation [START_REF] Hose | Diagrammatic many-body perturbation theory for general model spaces[END_REF][START_REF] Suzuki | Perturbation theory for quasidegenerate system in quantum mechanics[END_REF] 

χ = j S(e j )V P j + ∞ k=1 (-1) k j1...j k+1
S(e j k+1 ) . . . S(e j1 )V P j1 (V + V χ)P j2 (V + V χ) . . . (V + V χ)P j k+1 , which is a generalization of the degenerate case [START_REF] Cloiseaux | Extension d'une formule de Lagrange à des problèmes de valeurs propres[END_REF][START_REF] Brandow | Linked-cluster expansions for the nuclear many-body problem[END_REF]. Suzuki and Okamoto further solved this for χ but their rather complex result was not applied to concrete problems, as far as we know. Up to a left/right symmetry, their result is similar to our first alternative expansion, excepted for the fact that P V P and P V S(e)V P are grouped in a single term.

The main practical difference between the result obtained by Suzuki and Okamoto and our second alternative expansion is the fact that we do not consider the term P V P as a perturbation, we treat it exactly. This is important because, when the model space is well chosen, P V P is larger than the non-diagonal terms P V Q.

IV. GREEN FUNCTION OF DEGENERATE SYSTEMS

In this section, we discuss a question related to the Green function of degenerate systems. Consider a Hamiltonian H 0 with a degenerate energy e 0 . The eigenstates of H 0 with energy e 0 span a vector space M . The projector onto the model space M is denoted by P . In a series of recent papers [START_REF] Ch | Many-body Green function of degenerate systems[END_REF][START_REF] Ch | Gell-Mann and Low formula for degenerate unperturbed states[END_REF][START_REF] Ch | Adiabatic approximation, Gell-Mann and Low theorem and degeneracies: A pedagogical example[END_REF], we proved by non-perturbative methods that there are eigenstates |i of H 0 , called the parent states, such that the usual Gell-Mann and Low wavefunction has a well-defined limit when the adiabatic parameter ǫ goes to zero:

|Ψ GML = lim ǫ→0 U ǫ (0, -∞)|i i|U ǫ (0, -∞)|i ,
where U ǫ (t, t ′ ) is the evolution operator in the interaction picture. Morover, we showed that the parent states |i are eigenstates of H 0 (with energy e 0 ) and are also eigenstates of P V P . As a consequence, i|V |j = 0 for i = j if |i and |j are parent states. Since the parent states solve the problem in a non-perturbative approach, one might be tempted to use them in the perturbative one. In other words, we pick up a parent state, say |0 , and we calculate the Rayleigh-Schrödinger series corresponding to the projector |0 0|. However, as noticed by Tóth [START_REF] Tóth | Proposal to improve the behaviour of self-energy contributions to the S-matrix[END_REF], a problem appears in the perturbative expansion. This problem can be illustrated by a simple example: for t = , we have [START_REF] Ch | Tree expansions in time-dependent perturbation theory[END_REF] Ω

t = - i =0 |i i|V |0 0|V |0 0| (e 0 -e i + iǫ)(e 0 -e i + 2iǫ) ,
where ǫ is the adiabatic switching operator, which tends to zero at the end of the calculation. Now, if |i belongs to the model space, then i|V |0 = 0 (because i = 0) and the expression converges although e i = e 0 could have brought a problem. In other words, using a basis of parent states for M has made the expression convergent. However, this trick does not always work. Indeed, for t = , we have [START_REF] Ch | Tree expansions in time-dependent perturbation theory[END_REF]]

Ω t = i =0,j =0
|i i|V |j j|V |0 0| (e 0 -e j + iǫ)(e 0 -e i + 2iǫ) .

If |i belongs to the model space and |j is out of it, then we have e i = e 0 and the limit ǫ → 0 is not defined because nothing insures that i|V |j = 0 or j|V |0 = 0. In other words, the convergence problem was solved at the non-perturbative level but remains at the perturbative one, so that the perturbative expansion has to be resummed in a proper way. Now we show how to solve this problem by using a trick related to the Hamiltonian shift proposed by Silverstone [START_REF] Silverstone | Explicit solution for the wavefunction and energy in degenerate Rayleigh-Schrödinger perturbation theory[END_REF]. We assume that e ′ i = e i + i|V |i are nondegenerate. Then, we rewrite

H = H 0 + V = H ′ 0 + V ′ ,
where

H ′ 0 = H 0 + i∈M |i i|V |i i|, V ′ = V - i∈M |i i|V |i i|.
We build the RS series for H ′ 0 and V ′ with the one-dimensional model space M spanned by |0 . Thus, P ′ = |0 0|. This gives us P ′ V ′ P ′ = 0. As a consequence, Ω t = 0 if t = t 1 ∨ with t 1 = . We can write Q ′ = Q 0 + Q, where Q is the projector corresponding to the initial problem and Q 0 = P -P ′ is the projector onto the basis states of M different from |0 . Then, we have Q 0 V ′ P ′ = 0 and QV ′ = QV . This gives us Q ′ V ′ P ′ = QV ′ P ′ = QV P ′ , which simplifies the evaluation of Ω t for t = . Similarly,

P ′ V ′ Q ′ = P ′ V Q simplifies the evaluation of Ω t for t = t 1 ∨ t 2 . Finally, the identity Q 0 V ′ Q 0 = 0 gives us Q ′ V ′ Q ′ = Q 0 V Q + QV Q 0 + QV Q for the evaluation of Ω t with t = ∨ t 2 .
This gives us the following recursive expression for t = t 1 ∨ t 2 .

Ω t = i |i Q i Q |V |0 0| e ′ 0 -e i if t 1 = and t 2 = , Ω t = i |i Q i Q |V (Q + Q 0 ) Ω t2 |0 0| e ′ 0 -e i + i |i Q0 i Q0 |V Q Ω t2 |0 0| e ′ 0 -e ′ i if t 1 = and t 2 = , Ω t = 0 if t 1 = and t 2 = , Ω t = - i |i Q i Q |Ω t1 |0 0|V Q Ω t2 |0 0| e ′ 0 -e i - i |i Q0 i Q0 |Ω t1 |0 0|V Q Ω t2 |0 0| e ′ 0 -e ′ i if t 1 = and t 2 = .
The recursive expression shows that all terms are well defined if all e ′ i = e i + i|V |i are different and if e ′ 0 is different from the energies e Q j out of the model space.

V. CONTINUED FRACTIONS

We discuss here some continued-fraction resummation of the RS series. Such a (generalized) continued fraction formula was found to be very efficient for calculating nuclear properties [START_REF] Coraggio | Shell-model calculations and realistic effective interactions[END_REF]. The combinatorial structure of continued fractions was studied in detail by Flajolet [START_REF] Flajolet | Combinatorial aspects of continued fractions[END_REF][START_REF] Flajolet | Combinatorial aspects of continued fractions[END_REF]. On the other hand, Lee and Suzuki derived a continued fraction expression for χ and the effective Hamiltonian for a degenerate system [START_REF] Lee | The effective interactions of two nucleons in the s-d shell[END_REF][START_REF] Suzuki | Convergent theory for effective interaction in nuclei[END_REF]. Other implementations of continued fractions for pertubation theory can be found in the literature [START_REF] Young | Continued fraction approximants of the Brillouin-Wigner perturbation series[END_REF][START_REF] Feenberg | Analysis of the Schrödinger energy series[END_REF][START_REF] Scofield | Continued-fraction method for perturbation theory[END_REF][START_REF] Makowski | The method of continued fractions for multichannel scattering[END_REF][START_REF] Swain | Systematic method for deriving effective Hamiltonians[END_REF].

A. The Suzuki-Lee formula Suzuki and Lee [START_REF] Suzuki | Convergent theory for effective interaction in nuclei[END_REF] start from the Kvasnicka-Lindgren equation [χ, H 0 ] = QV P + QV χ -χV P -χV χ.

For a degenerate system P H 0 = e 0 P , so that χH 0 = e 0 χ and (e 0 -H 0 )χ = QV P + QV χ -χV P -χV χ. This equation is then reordered into (e 0 -QHQ + χV Q)χ = QV P -χV P . They consider the iterative equation (see [START_REF] Suzuki | Convergent theory for effective interaction in nuclei[END_REF], eq. (3.27) p. 2102).

(e 0 -QHQ + χ n-1 V Q)χ n = QV P -χ n-1 V P,
with the boundary condition χ 0 = 0. In other words

χ n = (e 0 -QHQ + χ n-1 P V Q) -1 (QV P -χ n-1 V P ).

B. A new continued fraction expansion

The Suzuki-Lee formula has two drawbacks: it is restricted to degenerate systems [55] and it requires the inversion of e 0 -QHQ + χ n-1 P V Q, which is usually infinite dimensional. To solve these two problems, we start from eq. ( 10) and, by using

Q i Q = Q i , we rewrite it Q i χP (H -e i )P = Q i V P + Q i V χ -Q i χV χ.
We transform this equation into

Q i χ P (H -e i )P + P V χ = Q i V P + Q i V χ. (18) 
Thus, we define the system of recursive equations

Q i χ n = (Q i V P + Q i V χ n-1 )(P HP -e i P + P V χ n-1 ) -1 , χ n = i Q i χ n ,
with the boundary condition χ 0 = 0. This generalized continued fraction has convergence properties similar to that of Lee and Suzuki, it is well-defined for quasi-degenerate systems and the inverse is computationally easier because it is done within the model space.

VI. BIJECTIONS

Many other combinatorial objects have been used to represent the terms of the RS series in non-degenerate or degenerate cases. Each of these representations is useful for specific applications. It is therefore important to describe the relation between the most important of them (Bloch sequences, Dyck paths, braketings and non-crossing partitions) and the trees. Most of these representations are valid for degenerate systems. Thus, we start by presenting the first terms of the RS series of degenerate systems, where e 0 is the energy of the states of the model space. We also give an n Tree Bloch Dyck Bracketing Partition [ operator representation of these terms, with R = Q(e 0 -H 0 ) -1 Q.

Ω t = i1,i2 |i Q 1 i Q 1 |V |i P 2 i P 2 | e 0 -e i1
= RV P for t = ,

Ω t = - i1,i2,i3 |i Q 1 i Q 1 |V |i P 2 i P 2 |V |i P 3 i P 3 | (e 0 -e i1 )(e 0 -e i1 ) = -R 2 V P V P for t = , Ω t = i1i2i3 |i Q 1 i Q 1 |V |i Q 2 i Q 2 |V |i P 3 i P 3 | (e 0 -e i2 )(e 0 -e i1 )
= RV RV P for t = ,

Ω t = i1i2i3i4 |i Q 1 i Q 1 |V |i P 2 i P 2 |V |i P 3 i P 3 |V |i P 4 i P 4
| (e 0 -e i1 )(e 0 -e i1 )(e 0 -e i1 ) = R 3 V P V P V P for t = ,

Ω t = - i1i2i3i4 |i Q 1 i Q 1 |V |i Q 2 i Q 2 |V |i P 3 i P 3 |V |i P 4 i P 4
| (e 0 -e i1 )(e 0 -e i2 )(e 0 -e i1 ) = -R 2 V RV P V P for t = ,

Ω t = - i1i2i3i4 |i Q 1 i Q 1 |V |i P 2 i P 2 |V |i Q 3 i Q 3 |V |i P 4 i P 4 | (e 0 -e i1 )(e 0 -e i1 )(e 0 -e i3 ) = -R 2 V P V RV P for t = , Ω t = - i1i2i3i4 |i Q 1 i Q 1 |V |i Q 2 i Q 2 |V |i P 3 i P 3 |V |i P 4 i P 4 | (e 0 -e i1 )(e 0 -e i2 )(e 0 -e i2 ) = -RV R 2 V P V P for t = , Ω t = i1i2i3i4 |i Q 1 i Q 1 |V |i Q 2 i Q 2 |V |i Q 3 i Q 3 |V |i P 4 i P 4 | (e 0 -e i3 )(e 0 -e i2 )(e 0 -e i1 )
= RV RV RV P for t = .

A. Bloch sequences

Bloch [START_REF] Bloch | Sur la théorie des perturbations des états liés[END_REF] was the first to write the general term of Ω for degenerate systems. To describe his result, we consider the wave operator Ω(λ) of the Hamiltonian H 0 + λV . We have the series expansion with

Ω(λ) = P + ∞ n=1 λ n Ω n ,
Ω n = k1,...,kn S (k1) V S (k2) V . . . V S (kn) V P, (19) 
where S 0 = -P , S (k) = R k for k > 0, and where k 1 , . . . , k n run over the Bloch sequences. A Bloch sequence is an n-tuple [START_REF] Koshy | Catalan Numbers with Applications[END_REF] and item m 5 in Stanley's Catalan addendum). Since Bloch's publication [START_REF] Bloch | Sur la théorie des perturbations des états liés[END_REF], they were widely used [START_REF] Messiah | Quantum Mechanics[END_REF][START_REF] Suzuki | Degenerate perturbation theory in quantum mechanics[END_REF][START_REF] Suzuki | Erratum: Degenerate perturbation theory in quantum mechanics[END_REF][START_REF] Kuo | Folded-Diagram Theory of the Effective Interaction in Nuclei, Atoms and Molecules[END_REF] to represent the general term of the RS series for degenerate systems. The bijection between trees and sequences is defined by φ( ) := (1), φ(s ∨ ) := Kφ(s), φ( ∨ s) := (1) • φ(s) and φ(s ∨ t) := Kφ(s) • φ(t) where s = , t = , where the product on the right hand sides is the concatenation of sequences (i.e. (k

(k 1 k 2 . . . k n ) of non-negative integers, such that k 1 + • • • + k m ≥ m for m < n and k 1 + • • • + k n = n.
1 . . . k m )(k m+1 . . . k n ) = (k 1 . . . k n ))
, and where the operation K acts by K(k 1 , k 2 , . . . , k n ) = (k 1 + 1, k 2 , . . . , k n , 0). Notice that φ is clearly one to one (injective). The fact that it is actually a bijection follows e.g. from the fact that trees and Bloch sequences are both enumerated by Catalan numbers.

We prove now its compatibility with the tree and Bloch expansions by induction. We write t = t 1 ∨ t 2 and we consider the usual four cases. The first case is t = , t 1 = t 2 = . This is the starting point of the inductive proof. We have Ω t = RV P = S 1 V P = Ω 1 , where we used the fact that the only Bloch sequence for n = 1 is (1). Let us denote by Ω B the contribution of Ω n in eq. ( 19) corresponding to the Bloch sequence B = (k 1 . . . k n ). Thus, we showed that, for t = and B = (1), we have Ω t = Ω B . Now, assume that Ω t = Ω φ(t) for all trees t with |t| ≤ n and choose a tree t such that |t| = n + 1. Then, t = t 1 ∨ t 2 with |t 1 | ≤ n and |t 2 | ≤ n. We consider the three remaining cases. If t 1 = and t 2 = , then Ω t is obtained from eqs. ( 4) and ( 8) Ω t = -RΩ t1 P V P . By the induction hypothesis, we have Ω t1 = Ω B1 for B 1 = φ(t 1 ). Therefore, Ω t = RΩ B1 (-P )V P . If B 1 = (k 1 . . . k n ), then Ω t = Ω B with B = (k 1 + 1, k 2 , . . . , k n , 0) = KB 1 and the property is proved. The second case is t 1 = and t 2 = . Then eqs. ( 4) and [START_REF] Barnett | Symbolic calculation in chemistry: Selected examples[END_REF] give us Ω

t = RΩ t1 (-P )V QΩ t2 . If φ(t 1 ) = B 1 = (k 1 . . . k p ) and φ(t 2 ) = B 2 = (l 1 . . . l q ), then Ω t = Ω B with B = (k 1 + 1, k 2 , . . . , k p , 0, l 1 , . . . , l q ) = K(B 1 )B 2 . Thus, φ(t 1 ∨ t 2 ) = K(B 1 )B 2 = Kφ(l 1 ) • φ(l 2 )
. The last case is t 1 = and t 2 = . Equations ( 4) and [START_REF] Bigot | Contribution of the screened self-energy to the Lamb shift of quasidegenerate states[END_REF] give us

Ω t = RV QΩ t2 . If B 2 = φ(t 2 ) = (k 1 . . . k n ), then Ω t = Ω B with B = (1k 1 . . . k n ) = (1) • φ(t 2 ).

B. Dyck paths

In ref. [START_REF] Bloch | Sur la théorie des perturbations des états liés[END_REF], Bloch also defined geometrical objects that are Dyck paths rotated by π/4. We prefer to use Dyck paths because they are thoroughly studied in the combinatorial literature (see, for example Item i, p. 221 of ref. [START_REF] Stanley | Enumerative Combinatorics[END_REF] or Example 6.2, p. 151 of ref [START_REF] Koshy | Catalan Numbers with Applications[END_REF], where they are called mountain ranges).

The bijection between Dyck paths and Bloch sequences used in ref. [START_REF] Bloch | Sur la théorie des perturbations des états liés[END_REF] is well known in the combinatorial literature [25, p. 168 and 181]. To build the Dyck path corresponding to the the Bloch sequence (k 1 k 2 . . . k n ), start from the origin and make k 1 steps in the North-East direction, then make one step in the South-East direction, then k 2 steps in the North-East direction, then one step in the South-East direction, and so on. This bijection is illustrated in tables I and II.

C. Non-crossing partitions

The terms of the RS series of degenerate systems can also be described by non-crossing partitions. This correspondence was studied by Olszewski [START_REF] Olszewski | Combinatorial analysis of the Rayleigh-Schrödinger perturbation theory based on a circular scale of time[END_REF] because it leads to useful factorizations of the RS terms for non-degenerate systems.

Consider the examples at the beginning of section VI. If we just look at the denominators, we see that each of them can be deduced from the right comb by saying that some indices are equal. For the five trees with |t| = 3, the term corresponding to t = can be obtained from that of t = by stating that e i1 = e i2 = e i3 . The other terms follow from e i1 = e i3 , e i1 = e i2 and e i2 = e i3 .

More generally, for a given tree t, we say that two indices j and k are equivalent if and only if e ij = e i k in the denominator of Ω t . The sets of equivalent indices form a partition of {1, . . . , n}. We recall that a partition B 1 |B 2 | . . . |B k of {1, . . . , n} is a set of disjoint subsets B i of {1, . . . , n} whose union is {1, . . . , n}. Each subset B i is called a block of the partition. The partitions corresponding to the RS terms of order 1 to 3 are given in table I and for order 4 in table II. It will be shown that these partitions are non-crossing. Two blocks A and B of a partition are said to be crossing if there are a, b in A and x, y in B such that a < x < b < y or x < a < y < b. A partition is called non-crossing if no two of its blocks cross.

We build by induction a partition from a tree. Note first that for tree t of order n we deal with partitions of {1, . . . , n}. A tree of order n has n + 1 leaves. Thus, the index of the rightmost leaf is not used in the partition.

For a given tree t = t 1 ∨ t 2 , we call P (P 1 , P 2 , respectively) the partition corresponding to t (t 1 , t 2 , respectively). We consider the usual four cases. (i) For t 1 = t 2 = we associate the partition P = |1|. (ii) For t 1 = and t 2 = , eq. ( 8) gives us the additional denominator e 0 -e 1 . Therefore, an additional index is equivalent to 1. This index is that of the rightmost leaf of t 1 , which was not used in P 1 . Therefore, the partition P of t is obtained from P 1 by adding to the block of P 1 containing 1 the index of the rightmost leaf of t 1 , which is |t 1 | + 1. (iii) For t 1 = and t 2 = , eq. ( 7) gives us the additional denominator e 0 -e 1 . However, the leaf denoted by 1 is new and no block of P 2 should contain it. Therefore, the partition P of t is obtained from P 2 by increasing all numbers of P 2 by 1 and by adding the block |1|. (iv) For t 1 = and t 2 = , we compose the previous cases. We build P by adding the index |t 1 | + 1 to the block of P 1 containing the index 1 and we increase all indices of P 2 by |t 1 | + 1. We check that, in all cases, the resulting partition is non-crossing.

Note that Olszewski [START_REF] Olszewski | Combinatorial analysis of the Rayleigh-Schrödinger perturbation theory based on a circular scale of time[END_REF] does not explicitly use non-crossing partitions. He describes the general term of the RS series for non-degenerate systems by drawing a circle with n points and pinching some of these points. The relation with non-crossing partitions is straightforward: all points that are pinched together belong to the same block of the partition. However, his correspondence between partitions and terms of the RS series is not the same as ours.

FIG. 1 :

 1 FIG.1:A tree with its labelled leaves and its three proper subtrees. The inner vertices are labelled a, b, c and d. The couples (l(v), r(v)) are[START_REF] Strutt | Theory of Sound[END_REF][START_REF] Moreira | Derivation of spin Hamiltonians from the exact Hamiltonian: Application to systems with two unpaired electrons per magnetic site[END_REF],[START_REF] Strutt | Theory of Sound[END_REF][START_REF] Lindgren | Atomic Many-Body Theory[END_REF],[START_REF] Strutt | Theory of Sound[END_REF][START_REF] Schrödinger | Quantisierung als Eigenwertproblem[END_REF] and[START_REF] Moreira | A unified view of the theoretical description of magnetic coupling in molecular chemistry and solid state physics[END_REF][START_REF] Moreira | Derivation of spin Hamiltonians from the exact Hamiltonian: Application to systems with two unpaired electrons per magnetic site[END_REF] for v = a, b, c and d, respectively.

TABLE I :

 I Correspondence between several representations of the RS terms for n=1,2,3: numbered tree, Bloch sequence, Dyck path, bracketing, non-crossing partition and item in Olszewski's list of examples[START_REF] Olszewski | Combinatorial analysis of the Rayleigh-Schrödinger perturbation theory based on a circular scale of time[END_REF].

									28]
	1			1				(1)	* o	|1|	1
	2		2		1		(20)	- * o * o	|12|	2
	2			1	2	(11)	* o * o	|1|2|	1
	3	3	2		1		(300)	* o * o * o	|123|	5
					3		
	3		2		1		(210)	- * o * o * o	|13|2|	2
	3	3	1	2	(201)	- * o * o * o	|12|3|	4
	3	3	1	2	(120)	- * o * o * o	|1|23|	3
	3			1	2	3	(111)	* o * o * o	|1|2|3|	1

TABLE II :

 II Correspondence between several representations of the RS terms for n=4: numbered tree, Bloch sequence, Dyck path, bracketing, non-crossing partition and item in Olszewski's list of examples[START_REF] Olszewski | Combinatorial analysis of the Rayleigh-Schrödinger perturbation theory based on a circular scale of time[END_REF].

			Tree Bloch Dyck	Bracketing	Partition [28]
	4	3	2			1	(4000)	- * o * o * o * o	|1234|	5
	3	2	4	1	(3100)	* o * o * o * o	|134|2|	6
	4							3
			2				1	(3010)	* o * o * o * o	|124|3| 14
	4 2			1 3	(2200)	* o * o * o * o	|14|23|	7
			2			1 4 3	(2110)	- * o * o * o * o	|14|2|3| 4
	4	3					2
								1	(3001)	* o * o * o * o	|123|4| 13
		3	4		2
								1	(2101)	- * o * o * o * o	|13|2|4| 11
		4		3	2
								1	(2020)	* o * o * o * o	|12|34| 10
	4							2	3
						1		(2011)	- * o * o * o * o	|12|3|4| 9
			4	3	1	2	(1300)	* o * o * o * o	|1|234|	8
			3		1 4 2	(1210)	- * o * o * o * o	|1|24|3| 3
	4							3
				1	2	(1201)	- * o * o * o * o	|1|23|4| 12
				1 4	2	3	(1120)	- * o * o * o * o	|1|2|34| 2
				1	2	3	4	(1111)	* o * o * o * o	|1|2|3|4| 1

  The Bloch sequences for n=1, 2 and 3 are given in table I and for n=4 in table II. These combinatorial objects are enumerated by Catalan numbers (see Example 6.24 p. 180 of ref.

D. Bracketing

Following a suggestion by Brueckner [START_REF] Brueckner | Many-body problem for strongly interacting particles. II. Linked cluster expansion[END_REF], Huby and Tong [START_REF] Huby | Formulae for non-degenerate Rayleigh-Schrödinger perturbation theory in any order[END_REF][START_REF] Tong | On Huby's rules for non-degenerate Rayleigh-Schrödinger perturbation theory in any order[END_REF] proposed, for the energy of nondegenerate systems, a solution in terms of bracketing, that is isomorphic with Stanley's problem e 5 in his "Catalan addendum".

Consider the example of t = . We have Ω t = R 2 V P V P . For a nondegenerate system P = |0 0| and Ω T |0 = R 2 V |0 0|V |0 . The rule of the game is now to insert expectation values to disjoin powers of R. Thus, Ω T |0 = -R 0|V |0 RV |0 . We use Tong's pictorial representation, where R is replaced by * , V by o, 0| by and |0 by , so that Ω T |0 = - * o * o . The bracketings for |t|=1,2 and 3 are given in table I and for order 4 in table II. Brueckner's bracketing is a powerful way to simplify the RS series, for instance by including the vacuum expectation value 0|V |0 into H 0 , so that all RS terms involving it cancel. More details and examples can be found in some textbooks [START_REF] Shavitt | Many-Body Methods in Chemistry and Physics[END_REF] or review papers [START_REF] Paldus | Time-independent diagrammatic approach to perturbation theory of fermion systems[END_REF].

We now describe the connection between trees and bracketings. Denote by b(t) the bracketing corresponding to t in Tong's representation. Assume that b(t) is known for all trees t with |t| ≤ n and take a tree

). Note that this bijection is different from the one used by Tong [START_REF] Tong | On Huby's rules for non-degenerate Rayleigh-Schrödinger perturbation theory in any order[END_REF].

An equivalent bijection is obtained by numbering the inner vertices of the trees. The operation ν that associates to each tree t its numbered tree is defined as follows. We denote by ν(t)[k] the numbered tree obtained from ν(t) by adding to all the vertex numbers. Then, ν(t) can be defined recursively. and the sets are |1|24|3|. These sets form a non-crossing partition which is the same as that used by Olszewski [START_REF] Olszewski | Combinatorial analysis of the Rayleigh-Schrödinger perturbation theory based on a circular scale of time[END_REF]. To obtain b(t), first number the |t| stars of b(t) from 1 to |t| from the left to the right. Then, consider a block B = k 1 . . . k p of the partition. If p = 1, do nothing, if p > 1, then write a after star number k 1 , a before star number k p and replace star number k i with 1 < i < p (if any) by * .

VII. CONCLUSION

Combinatorial physics is an emerging field that uses modern tools of algebraic combinatorics to solve physical problems. It was born with the investigation of the algebraic structure of renormalization in quantum field theory [START_REF] Connes | Renormalization in quantum field theory and the Riemann-Hilbert problem I: The Hopf algebra structure of graphs and the main theorem[END_REF] and showed its ability to deal with many-body problems [START_REF] Ch | Quantum field theory meets Hopf algebra[END_REF].

We showed that combinatorial physics is able to solve such long-standing problems as time-independent perturbation theory. The RS series is at the heart of many applications of quantum mechanics. It is also equivalent to more sophisticated methods such as Feynman diagrams [START_REF] Wu | A remark on the conventional perturbation theory[END_REF]. It is even related to Wilson's renormalization group [START_REF] Müller | Renormalization by projection: on the equivalence of the Bloch-Feschbach formalism and Wilson's renormalization[END_REF].

Our combinatorial methods provided easy resummations of the RS series. It remains now to test their convergence properties.

Note that Arnol'd also used trees in perturbation theory [START_REF] Arnold | Remarks on the perturbation theory for problems of Mathieu type[END_REF]. However, his trees are essentially different from ours because they describe the successive degeneracy splitting due to higher order terms [START_REF] Ya | General scheme of splittings of degenerate eigensubspaces and eigenelements of self-adjoint operators in high orders of perturbation theory[END_REF].

VIII. ACKNOWLEDGEMENT G. S. T. was partially supported by the grant OTKA K60040.