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Abstract

This work proposes and explores a new propulsion mechanism for sessile droplets which could

be of interest for microfluidic applications. This mechanism relies on the Marangoni stresses

resulting from the surface tension gradient arising when two droplets of different surface tensions

coalesce. We argue that the tendency of the fluid to flow towards regions of higher surface tension

is sufficient to displace the droplet. The coalescence of two miscible, partially wetting droplets with

different surface tensions is investigated theoretically in this paper and modeled in the Lubrication

approximation framework. The problem is described by a set of three highly non-linear, coupled

partial differential equations which is solved in the Finite Element program COMSOL. The analysis

reveals two important dimensionless numbers which govern the flow characteristics, one related

to the strength of the surface tension gradient and the other to the diffusion time scale. The

numerical results confirm the occurrence of the self-propulsion behavior and a parametric study

is performed to explore the role of the two dimensionless numbers on the propulsion speed and

the total displacement. Unsurprisingly, self-propulsion is enhanced for larger values of the surface

tension contrast between the two droplets and smaller values of the diffusion time scale which

results in more time for the surface tension gradient to act.

∗ mathieu.sellier@canterbury.ac.nz; http://www.mech.canterbury.ac.nz/people/sellier.shtml
† volker.nock@canterbury.ac.nz
‡ verdier@ujf-grenoble.fr

2



I. INTRODUCTION

Microfluidic devices play an ever increasing role in nano- and biotechnologies. An emerg-

ing area of research in this technology-driven field is digital microfluidics which is based upon

the micromanipulation of discrete droplets (Fair et al., 2007; Darhuber and Troian, 2005).

Microfluidic processing is performed on unit-sized packets of fluid which are transported,

stored, mixed, reacted, or analyzed in a discrete manner. An obvious challenge however is

how to displace the sessile droplets on the substrate. A range of propulsion mechanisms

has been investigated in the past including chemically treating the substrate such that the

wettability becomes non-uniform (see e.g. Greenspan 1978; Brochard 1989; Chaudhury and

Whitesides 1992; Daniel and Chaudhury 2002), applying an electrical potential to exploit

the electrowetting effect, (see e.g. Cho et al. 2003; Yeo and Chang 2005; Cho and Moon

2008), applying surface acoustic waves, (see e.g Renaudin et al. 2006; Yeo and Friend 2009),

or inducing a gradient of surface tension by applying a temperature gradient, the so-called

Marangoni effect, (see e.g Brzoska et al 1993; Darhuber et al 2003a; Darhuber et al 2003b;

Ford and Nadim 1994; Smith 1995; Yarin et al. 2002; Gomba and Homsy 2010).

This work investigates the possibility to propel the droplets using the surface tension

gradient which arises during the mixing of two droplets of liquid having different composi-

tions and therefore surface tensions. The fluid having a tendency to flow towards regions of

higher surface tension, a net flow results and one would expect the droplets to move until

a fully mixed state is reached resulting in a uniform surface tension or “fuel” exhaustion.

This problem is treated theoretically here to demonstrate the principle and builds on earlier

work on the modeling of the coalescence of sessile droplets (see Sellier and Trelluyer 2009).

The coalescence of sessile droplets is a problem which has recently attracted the attention

of researchers because of their relevance in coating phenomena such as spray coating, liquid

and chemical imbibition on plant foliage, or in microfluidic devices for which the coalescence

of sessile droplet has recently been identified as a potential mechanism to mix reagents (see

e.g. Ristenpart et al. 2006 or Stone et al. 2004). It is explored here for the first time as a

possible propulsion mechanism.

The next section is devoted to the description of the problem, the model, and the so-

lution procedure. It is followed by a result section which demonstrates the self-propulsion

mechanism and investigate the influence of important dimensionless parameters. The paper
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closes on concluding remarks.

II. MODEL DESCRIPTION

A. Geometry and notations

The problem considered is illustrated in Figure 1. Two out of equilibrium droplets

(Droplet 1 and Droplet 2) having the same viscosity µ and density ρ spread independently

and contact at time T0 when coalescence begins. The miscible, non-volatile droplets have the

same initial volume V0 and they partially wet the substrate forming a characteristic contact

angle Θs at equilibrium. Droplet 1 is initially centered at (X1, Y1) and Droplet 2 at (X2, Y2).

The surface tensions of Droplet 1 and 2 are σ1 and σ2, respectively. The Marangoni stresses

arising from the surface tension gradient induced during the mixing are expected to produce

a net flow in the direction of increasing surface tension as shown in Figure 1. We assume,

as done in Schwartz et al. (1995) or Howison et al. (1997), that the surface tension of the

mixture of Droplets 1 and 2 is simply given by

σ = σ1 + Γ(1 − c) , (1)

where Γ = σ2 − σ1 and c is the local concentration of Droplet 1 fluid.

σ1 σ1

X1 X2

Y1

Droplet 1

Z

Droplet 2
H(X,Y,T)

>

Net flow

X X

Y Droplet 2
ρ, µ ρ, µ

Side view Top view

Droplet 1

Lx

Lσ y
2

FIG. 1. Sketch of the droplet system at the onset of coalescence.

B. Governing equations

Like most free boundary problems, modeling the coalescence of sessile droplets is chal-

lenging and the presence of a dynamic wetting line is an additional source of complexity
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because of the ill-defined nature of the boundary condition along this line. The present

study builds on the model described by Sellier and Trelluyer (2009) where this free surface

problem is tackled in the lubrication approximation framework and a disjoining pressure

model is used to capture the dynamics of the wetting front. The main idea, described in

details in other sources (see Schwartz and Eley 1998; Schwartz 1998), is to introduce a thin

precursor film of thickness H⋆ ahead of the contact line to remove the singularity there

and add a disjoining pressure term of the correct magnitude such that the motion of the

contact line ceases when the contact angle reaches its equilibrium value. In spite of its

limitations, such modeling framework has had some success in predicting the dynamics of

droplet spreading on homogeneous or heterogeneous substrates (see e.g. Schwartz and Eley

1998; Schwartz 1998; Gaskell et al. 2004). The resulting governing equations read

∂H

∂T
= −∇ ·

−→
Q , (2)

∂cH

∂T
= −∇ ·

(

c
−→
Q

)

+ D∇ · (H∇c) , (3)

−→
Q = −

(

H3

3µ
∇P

)

+

(

H2

2µ
∇σ

)

, (4)

P = −σ∇2H − Π (H, H⋆) , (5)

where the droplet thickness normal to the substrate H(X, Y, T ), the concentration c(X, Y, T )

of Droplet 1 phase, and the pressure P (X, Y, T ) are the dependent variables and D is the

diffusivity constant. Equation (2) expresses the conservation of mass and eq. (5) the balance

of normal stresses at the interface. The discharge
−→
Q , given by eq. (4), has two contribu-

tions: the first one results from the pressure gradient and the second one from the surface

tension gradient (Marangoni stresses). Equation 3 is a “depth-averaged” statement of the

conservation of Droplet 1 phase in the mixture derived in a similar form by Howison et al.

(1997). The disjoining pressure term is given by

Π (H, H⋆) =
(n − 1)(m − 1)

H⋆(n − m)
σ(1 − cos Θs)

[(

H⋆

H

)n

−

(

H⋆

H

)m]

, (6)

where n and m are the exponents of the interaction potential. Note that the disjoining

pressure term is zero for a fully wetting system since Θs = 0 for such systems. Notwith-

standing corrections in the contact line region, a steady solution of eqs. (2) and (5) in the

absence of surface tension gradient is a paraboloid of revolution. Based on the equilibrium

configuration of a droplet of volume V0 lying on a substrate with equilibrium contact angle
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Θs, a characteristic droplet radius R0 and maximum thickness H0 can be defined. Indeed,

if we assume the equilibrium droplet to be a paraboloid of revolution, its volume will be

V0 = π
2
H0R0

2 and its contact angle Θs = arctan
(

2H0

R0

)

or Θs ≈
2H0

R0
in the limit of small

ǫ = H0

R0
relevant to the lubrication approximation. The latter can be rearranged to express

the droplet radius and thickness as

R0 = 3

√

4V0

πΘs

, (7)

H0 =
Θs

2
3

√

4V0

πΘs

. (8)

Introducing these scales along with T0 =
3µR4

0

σH3

0

in the governing equations results in

∂h

∂t
= ∇ ·

(

−Σh1∇h + Σh∇h1 + h3
∇p

)

, (9)

∂h1

∂t
= ∇ ·

((

−Σ
h1

2

h
− d

h1

h

)

∇h + (Σh1 + d)∇h1 + h1h
2
∇p

)

, (10)

p = −∇
2h − B

[(

h⋆

h

)n

−

(

h⋆

h

)m]

, (11)

where Σ = 3Γ
2σ1ǫ2

, d = DT0

R0
2 , h⋆ is the dimensionless precursor film thickness and B =

2 (n−1)(m−1)
h⋆(n−m)

. The concentration c of Droplet 1 phase is replaced by the fictitious “Droplet 1

height” h1 = ch. The constants (n, m) are set to (9, 3) which corresponds to a Lennard-Jones

interaction potential (Schwartz and Eley 1998). The pressure P is scaled with P0 = σǫ
R0

. The

time scale introduced here is the one used by Sellier and Trelluyer in [23] to describe the

coalescence dynamics of identical sessile droplets and generally speaking, it is the time scale

relevant to capillary induced flows. It can easily be obtained by noting that a characteristic

velocity for thin layer flows driven by surface tension is VC = R0/T0 ≈ H2
∇P/3µ with

P = −σ∇2H from which the characteristic time scale T0 =
3µR4

0

σH3

0

can easily be recovered. In

the present case, it is worth noting that there are two complementary driving mechanisms:

the capillary and Marangoni effects. Both phenomena have their own intrinsic time scales

and the subsequent results show that, typically, they are not the same. Capillary acts on

a short time scale to merge the two droplets together whilst surface tension gradients act

on a longer time scale to displace the merged droplet system. For reasons of consistency

with our earlier work, we use here the time scale representative of capillary induced flows.

Notwithstanding the variable surface tension effects, this model is somewhat related to the

one proposed (but not implemented) by Andrieu et al. (2002) although they a different

approach to alleviate the singularity at the contact line.
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FIG. 2. Computational domain with the initial droplet locations.

C. Solution procedure

The governing equations are solved in the commercial Finite Element package COMSOL.

This package is particularly convenient for solving arbitrary partial differential equations.

Details on the implementation can be found in Sellier and Panda (2010). Since the line

joining the centers of the droplets is a symmetry line, only half of the domain needs to be

considered, as shown in Figure 2. The computational domain is a Lx × Ly = 6R0 × 2R0

rectangle and the line y = 0 correspond to the symmetry line. The computational domain

is tesselated with approximately 19,000 quadratic, Lagrange triangular elements. Given

our model and scales, a paraboloid of radius and height equal to unity is the equilibrium

configuration for a droplet of volume π
2
H0R0

2 (dimensional) or π
2

(dimensionless). As an

initial condition to the coalescence problem, we choose two droplets out of equilibrium with

initial height 2H0 (or 2 in dimensionless units) and volume π
2
H0R0

2, the centroids of which

are placed 1.8R0 apart such that the coalescence occurs when the droplets have almost

reached their maximum spread radius. The initial profile for each of the droplets (1 and

2) is hini(r) = max[h⋆, h⋆ + 2(1 − 2r2)], where r is the distance from the centroid of each
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droplet located at (1.1, 0) and (2.9, 0) in dimensionless units. The “Droplet 1 height” h1 is

set to hini inside Droplet 1 resulting in a unit concentration there and to zero everywhere

else. Natural boundary conditions are applied at the edge of the computational domain such

that ∇h · −→n = ∇p · −→n = ∇h1 ·
−→n = 0 where −→n is the normal to the boundary pointing

outward. Since the droplets remain in the computational domain at all time, the solution

appears to be insensitive to the latter.

III. RESULTS AND DISCUSSION

The governing equations, eqs. (9), (10), and (11), show that the problem is essentially

governed by two dimensionless parameters, i.e. Σ which is a measure of the strength of the

Marangoni stresses and d, the diffusivity. Before proceeding any further, a rough assessment

of the order of magnitude of the different parameters is necessary. As a possible scenario, let’s

assume that the droplets have a volume of 10µl and a static contact angle of 40o = 0.7 rad.

The corresponding equilibrium droplet radius and height, calculated according to eqs. (7)

and (8), are R0 = 2.62 mm and H0 = 1.19 mm, respectively. If the fluid considered is silicone

oil with surface tension σ1 = 0.02 N/m and viscosity µ = 0.0965 Pa.s, the corresponding

time scale T0 is 0.4 s. For a surface tension contrast Γ of 0.01 Pa.m, this results in Σ being

equal to 3.64. A relevant value for the diffusivity D is more difficult to estimate. We quote

here the value of 1.4 × 10−9 m2/s used by Schwartz et al. (2001) as representative of the

mixing of low-viscosity fluids. This results in a dimensionless diffusivity d of 0.082.

Figure 3 illustrates simulation results for two sets of conditions. The first one, case a,

has a high value of Σ and a low value of d (Σ = 1 and d = 0.05) and the second one,

case b, has a lower value of Σ and a higher value of d (Σ = 0.01 and d = 0.1). For

both cases, the precursor film thickness h⋆ is set to 0.04. Smaller values of the precursor film

thickness would require finer meshes resulting in a steep increase in computational time. The

sequence shows some of the major stages of the droplet coalescence reported in Andrieu et

al. (2002): the initial contact and appearance of a neck between the two droplets, the growth

of the neck at almost constant lateral extent, and the contraction of the droplet, possibly

combined with translation, to recover a spherical cap configuration. Intuition suggests that

the self-propulsion will be enhanced if Σ is greater which essentially increases the driving

mechanism (by increasing in Marangoni stresses) and d is smaller which results in a longer
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lasting surface tension gradient since diffusion enhances the mixing of the fluids. This is

precisely the trend observed in Figure 3, where the colored region indicates the footprint of

the droplet system defined here as the points where the film thickness is greater than 0.05, a

value slightly higher than the precursor film thickness to filter out film thickness fluctuation

in the contact line region. It is clear from this picture sequence that some amount of self-

propulsion is achieved for case a: the droplet advances by almost a diameter. The droplet

for case b appears to remain fairly static, on the other hand. This is confirmed by looking

at Figure 4, which gives a more quantitative picture of the coalescence and self-propulsion.

For case a, the upper graph in Fig. 4, the Marangoni stresses are sufficiently strong to

significantly distort the droplet from the spherical cap configuration which initiates the self-

propulsion. This feature, on the other hand, is not observed for case b. The concentration

contours on Figure 3 also embody useful information. Clearly, the diffusion front smears

out more rapidly when the diffusivity is larger (case b) and the concentration homogenizes

quicker leading to a more rapid “fuel” exhaustion as the surface tension gradient may be

thought of as the fuel which propels the droplet. Also of interest is the fact that Droplet

1 mixes into Droplet 2 along the edges of the resulting droplet, a feature already observed

experimentally in Sellier and Trelluyer (2009), see Figure 5. Figure 6 shows the volumetric

discharge field given by eq. (4) and the contours of constant surface tension. The vectors

show that during the initial stage of the coalescence, the flow is reminiscent of a stagnation

point flow (Figures 1-3). As Droplet 1 penetrates Droplet 2, the surface tension gradient

drives Droplet 1 sideways, towards the edges of the droplet system (Figures 4, 5). Finally,

the droplet sets in motion and the flow field in unidirectional in the propulsion direction

(Figure 6).

In order to establish more systematically the effect of Σ and d on the self-propelling

behavior, a parametric study is performed. The value of Σ is varied between 0.1 and 1 and

the value of d between 0.05 and 0.5. This parameter window is offers a good overview of

the expected dynamics. The position of the center of gravity of the system as a function of

time is shown in Figure 7. It is computed according to

xCOG =

∫

Ω
(h − h⋆)xdω

∫

Ω
(h − h⋆)dω

, (12)

where Ω = [0, 6] × [0, 2] is the computational domain. All the curves in Figure 7 have a

similar trend although not on the same scale. The center of gravity moves to greater values
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1a

1b

2a

2b

3a

3b

4a

4b

5a

5b

6a

6b

FIG. 3. Droplet system at different times. The sequence reads from left to right and top to

bottom. The colored region indicates the footprint of the droplet system and the contours are

lines of constant Droplet 1 fluid concentration, c = h1

h
. The picture number, ranging from 1 to

6, corresponds to t1 = 3.6 × 10−2, t2 = 0.1, t3 = 0.464, t4 = 1, t5 = 4.64, and t6 = 10, label a

corresponds to Σ = 1, d = 0.05, and label b to Σ = 0.01, d = 0.1
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FIG. 4. Free surface and h1 profile along y = 0 for case a (upper graph) and case b (lower graph).

FIG. 5. Experimental observation of the mixing of two sessile droplets, source Sellier and Trelluyer

(2009).

of x, i.e. to the right of the computational domain, as time increases. This motion is is

relatively fast initially, it slows down for later times, and finally the droplet system reaches

an equilibrium position. At t = 30, the droplet systems have reached (or are very near) their

equilibrium positions. Figure 7 confirms that self-propulsion is maximum for larger values
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1 2

3 4

5 6

FIG. 6. Vector plot of the volumetric discharge field and contours of constant surface tension for

increasing times from top-left to bottom-right.
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FIG. 7. Position of the center of gravity of the system as a function of time.

of Σ. The largest displacement of the droplet, dmax, is achieved for Σ = 1 and d = 0.05 for

which dmax = 2.37. For the silicone oil system discussed above, this corresponds to a total

displacement of 6.2 mm. Almost no motion is observed for S = 0.1, the smallest tested
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FIG. 8. Distance traveled as a function of the Peclet number.

value of the dimensionless group S. As previously mentioned, lower values of d enhance

the self-propulsion since it maintains a surface tension gradient for a longer time period.

This competition between the surface tension gradient drives the system and the tendency

of diffusion to steer the system towards equilibrium can be captured by the Peclet number.

We express here the Peclet number, Pe, as the ratio of the time scale for lateral diffusion,

TD, to that of Marangoni flow, TM , i.e. Pe = TD/TM . The time scale for lateral diffusion is

given by TD = R0
2/D while that of Marangoni flow is TM = R0/VM where VM is a typical

velocity induced by surface tension gradient. For a thin layer of fluid, this velocity may

approximately be expressed as H∇σ/2µ. Therefore, an order of magnitude estimate of VM

is

VM ≈
H0

2µ

Γ

R0
=

Γ

2µ
ǫ . (13)

After manipulation, it can be shown that this Peclet number can be expressed in terms of

the previously defined dimensionless groups as Pe = Σ/d. Figure 8 shows the total traveled

distance, dmax, as a function of the Peclet number for the values of d and Σ reported in Figure

7. The point cloud is well fitted by a line indicating that the distance traveled increases

approximately linearly with the Peclet number.

The velocity of the center of gravity is reported in Figure 9. It is simply obtained by
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FIG. 9. Velocity of the center of gravity of the system as a function of time.

differentiating a cubic spline fitted through the points representing the position of the center

of gravity as a function of time. The scientific computing program MATLAB is used for

this purpose. The velocity of the center of gravity is seen to increase first as the droplet

gains momentum due to the surface tension gradient. It reaches a maximum which is then

followed by a decrease. The maximum speed achieved during the coalescence is again for

Σ = 1 and d = 0.05. It reaches a value of 0.245, which means that the droplet system

runs over 0.245R0 during T0. For the silicone oil system discussed above, this would give

a maximum velocity of ≈ 1.6 mm/s. This value is to be taken carefully as the contact

line dynamics is known to be very dependent on the precursor film thickness with thicker

films (as is the case here) tending to over-predict the spreading rate. The system velocity

is almost nil when Σ = 0.1. It is also worth mentioning that the peak velocity is reached

for later times for smaller values of the diffusivity which reflects the fact that the surface

tension gradient is stronger over a larger time interval for a small diffusivity.
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IV. CONCLUDING REMARKS

This work proposes a model for the coalescence of sessile, miscible, partially wetting

droplets. The model is based on the lubrication approximation which assumes a flow with

negligible inertia and a small slope of the free surface. An additional conservation equation

is introduced to represent the concentration of one of the phases in the mixture. Besides

the limitations of the model implicit to the lubrication approximation framework, we have

further assumed that the viscosity, density, and wettability are the same for both droplets

letting only surface tension differ. Bearing in mind these simplifications, the results of this

work suggest that it is possible to propel droplets by using the surface tension gradient which

arises when the two droplets merge. The governing equations derived here suggest that the

strength of the self-propulsion is governed by two dimensionless numbers: Σ, a measure of

the surface tension contrast and d, the diffusivity which gives a measure of how long it takes

for the two droplets to be fully mixed. These parameters can be combined into a Peclet

number and the numerical results suggest that the maximum traveled distance of the system

is proportional to this number. This propulsion mechanism has the advantage of being easy

to implement compared to others such as thermocapillary or electrowetting which require

advanced micro-fabrication techniques. It has the disadvantage, on the other hand, of not

being sustainable: i.e. the propulsion will stop when mixing is complete.
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