

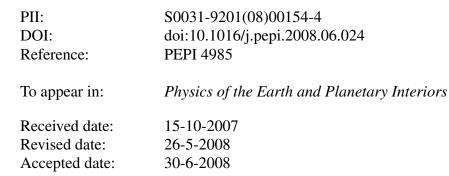
Equation of state and CaCl transformation of Al-bearing silica up to 100 GPa and 3000 K

Nathalie Bolfan-Casanova, Denis Andrault, E. Amiguet, N. Guignot

► To cite this version:

Nathalie Bolfan-Casanova, Denis Andrault, E. Amiguet, N. Guignot. Equation of state and CaCl transformation of Al-bearing silica up to 100 GPa and 3000 K. Physics of the Earth and Planetary Interiors, 2009, 174 (1-4), pp.70. 10.1016/j.pepi.2008.06.024 . hal-00533032

HAL Id: hal-00533032 https://hal.science/hal-00533032


Submitted on 5 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Equation of state and CaCl₂ transformation of Al-bearing silica up to 100 GPa and 3000 K

Authors: N. Bolfan-Casanova, D. Andrault, E. Amiguet, N. Guignot

Please cite this article as: Bolfan-Casanova, N., Andrault, D., Amiguet, E., Guignot, N., Equation of state and CaCl₂ transformation of Al-bearing silica up to 100 GPa and 3000 K, *Physics of the Earth and Planetary Interiors* (2007), doi:10.1016/j.pepi.2008.06.024

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Equation of state and CaCl ₂ transformation of						
2	Al-bearing silica up to 100 GPa and 3000 K						
3	N. Bolfan-Casanova ^{1*} , D. Andrault ¹ , E. Amiguet ^{1,2} , and N. Guignot ³						
4	¹ Laboratoire Magmas et Volcans, Université B. Pascal, Clermont-Ferrand, France						
5	² now at Laboratoire de Structure et Propriétés de l'Etat Solide, Lille, France						
6	³ SOLEIL-synchrotron, Gif-sur-Yvette, France						
7							
8	Abstract						
9	Structure and density of the Al-bearing silica phases were investigated at high pressure and						
10	temperature by means of powder X-ray diffraction in laser heated diamond anvil cell at the						
11	ID30 beamline of the ESRF. The transition from rutile (TiO ₂) to calcium chloride (CaCl ₂)						
12	phase occurs at lower pressure, down to 23 GPa at 300 Kelvin, compared to 50 GPa in the						
13	pure SiO ₂ system. The distortion increases with pressure and decreases with temperature. We						
14	determined experimentally the clapeyron slope of the transition: dP/dT of 0.02 GPa/K.						
15	According to the phase diagram determined by in-situ X-ray diffraction, Al-bearing silica						
16	should be in the CaCl ₂ form in most of the transition zone and lower mantle. Also, aluminous						
17	silica, whether in the rutile or calcium chloride form, is softer than pure silica. Our results						
18	show that the incorporation of \sim 2.3 weight % of alumina in silica decreases its bulk modulus						
19	of around 7-10% in case of the rutile form and of 3.5 % in case of the $CaCl_2$ form.						
20	Keywords: stishovite, CaCl ₂ , aluminum, phase transition, Clapeyron slope						
21	* Corresponding author: Nathalie Bolfan-Casanova						
22	Laboratoire Magmas et Volcans,5 rue Kessler, 63000 Clermont-Ferrand						
23	Fax : 00 + 33 4 73 34 67 44						
24	N.Bolfan@opgc.univ-bpclermont.fr						

25

26 Introduction

27 Since seismic tomography images have shown slabs entering the lower mantle, 28 comprised between 670 and 2900 km depth (van der Hilst et al., 1997), the recycling of 29 oceanic crust into the deep Earth offers a way of enriching the mantle in silica. Indeed, 30 experimental petrology studies indicate that in subduction zones stishovite (tetragonal rutile 31 structure $P4_2/mnm$) crystallises above 9 GPa in the basaltic and sedimentary portions of the 32 subducted oceanic crust. Stishovite becomes more and more abundant as a result of the 33 dissolution of clinopyroxene into garnet structure (Irifune and Ringwood, 1987). Also, 34 stishovite has been shown to be an ubiquitous product of dehydration reactions occurring in 35 sedimentary and basaltic wet compositions (Ono, 1998). In such a subduction context 36 stishovite could contain up to 9 weight percent Al₂O₃ (Ono, 1999)(Ono, 1998). The 37 incorporation of even small amounts of this element and its possible coupling with oxygen vacancies, following the reaction $Si^{4+} = Al^{3+} + \frac{1}{2} \Box_0^{2+}$, can influence the stability, density and 38 39 the compressibility of mantle phases. Such parameters are important in the assessment of the 40 density, composition and thermal structure of the deep mantle.

41 In addition, pure stishovite undergoes a displacive phase transition to orthorhombic 42 CaCl₂ structure (*Pnnm* space group) at pressure around 50 GPa, as demonstrated by several 43 experiments using either X-ray diffraction (Andrault et al., 1998a; Hemley et al., 2000; 44 Kingma et al., 1996; Tsuchida and Yagi, 1989) or Raman spectroscopy (Hemley et al., 2000; Kingma et al., 1995). The onset of the phase transformation was reported between ~45 and 45 46 ~ 60 GPa by the different authors. Here, we present the first structural evidence on the effect 47 of aluminium on the transition of rutile to CaCl₂ structure of silica *in-situ* at high-pressure and 48 high-temperature using the laser-heated diamond anvil cell technique up to ~ 100 GPa and 49 more than 3000 K.

50

51 **Experimental procedure**

Two different types of aluminous silica containing around 4 wt% Al_2O_3 were used as starting material. One of them is a glass, loaded without any grinding. Due to its treatment at very high temperature and small surface/volume ratio of the sample, it should contain a negligible amount of water. This sample is ideal for heating using CO₂ laser. However, in order to heat with a YAG laser and to be able to measure pressure at high-temperature we had to mix the sample with a laser absorber such as platinum. Thus, a gel of the same composition was prepared in order to be mechanically mixed with Pt powder.

59 We performed experiments at different pressure and temperature conditions (see 60 **Table 1**). To generate high pressures, we used a membrane-type diamond anvil cell equipped 61 with 300-µm diamond culets. Re-gaskets were pre-indented to 40-50 µm thickness before 62 drilling a 80-um hole using electro-erosion. Samples were loaded together with a small ruby 63 chip and the pressure medium. Ar pressure medium (loaded cryogenically) was used in CO₂-64 laser heating experiments whereas NaCl pressure medium was preferred for YAG-laser 65 heating experiments, still Ar was sometimes used. Laser-heating was used to synthesize 66 stishovite or post-stishovite *in-situ* in the DAC, and to release the deviatoric stresses after 67 each pressure increase. The setup is composed of two 40 W single-mode continuous YAG 68 lasers with excellent power stability focused on each side of the sample. The X-ray beam 69 intensity on ID30 was sufficient to obtain high quality angle-dispersive diffraction patterns in 70 60 s, which further minimizes any potential temperature deviation to a few tens of K. We 71 measured temperature on one side of the sample by the spectroradiometric method using 72 reflective collecting optics. Temperature were measured three times during collection of X-73 ray diffractograms and the temperature variation was within 50 degrees in average, except

above 2200K where it reached 100 degrees due to melting of the pressure medium Ar orNaCl.

For decompression measurements in Argon, no annealing was performed in order to avoid to revert into the low-pressure phase. As a consequence of such decompression measurements the pressure derivative of the bulk modulus cannot be derived with a good degree of accuracy.

The X-ray diffraction patterns were collected *in-situ* at high pressure at the ID30 80 81 beamline of the European Synchrotron Radiation Facility (ESRF) using angle dispersive 82 radiation (Andrault and Fiquet, 2001; Mezouar et al., 2005; Schultz et al., 2005). A channel-83 cut, water-cooled monochromator was used to produce a bright monochromatic X-ray beam 84 at 0.3738 Å wavelength. Vertical and horizontal focusing was achieved by bent-silicon 85 mirrors, the curvatures of which were adapted to obtain an optimal X-ray flux on a full width 86 at half maximum of less than 10x10 µm spot on the sample. Two-dimensional images were 87 recorded on an image plate and integrated using the Fit2d code (Hammersley, 1996). All X-88 ray spectra were treated using the Rietvield method with the GSAS package (Larson and Von 89 Dreele, 1988).

90 Both Ar, ruby, and/or Pt pressure standards were available in our pressure chamber. 91 Ruby was mainly used to reach the target pressure for first synthesis. We preferred the 92 pressure provided by the Ar or Pt equation of state (EoS) (Holmes et al., 1989; Jamieson et 93 al., 1982; Jephcoat, 1998), because it can be recorded at the same position as the sample, and 94 therefore the potential artefacts related to pressure gradient in the sample chamber are 95 discarded. At high temperature, we used the Pt EoS (Jamieson et al., 1982) to derive the 96 pressure in the hot sample that can be affected by the effect of thermal pressure (Andrault et al., 1998b). The error of volume measurement at the ID30 beamline was of about 2.10⁻⁴. At 97

30 GPa pressure, it translates to pressure errors of ~0.3 or ~1 GPa, when using Ar or Pt
pressure standards, respectively.

100

101 Experimental results

a) Lattice distortion at room temperature

103 At high pressures, X-ray diffraction patterns display the presence of the pressure medium, Ar 104 or NaCl, Pt black if added, SiO₂, and sometimes corundum (**Fig. 1**). The latter being due to an 105 excess of alumina in the starting composition compared to the Al solubility in silica under 106 some conditions of pressure and temperature. Looking closely at the diffraction patterns 107 recorded at lower pressure, it appears that the CaCl₂-form appears at a pressure as low as 108 about 23 GPa at 300 K, as shown in **Figure 2a** by the splitting of the *c/a* and *c/b* parameter 109 ratios recorded at room temperature after laser annealing.

110 Figure 3a also shows the increase of the splitting of diffraction peaks with pressure at 111 298 K. Indeed, the rutile model of stishovite fails to explain spectral regions located at \sim 12, 112 14, and 17 degrees of the 2theta diffraction angle, where splitting of the [120,210], [121,211], 113 and [130,310] lines is observed (see insets in Fig. 1). This clearly evidences the occurrence of the orthorhombic (Pnnm) lattice of the CaCl₂-form of SiO₂ at such low pressure. In Figure 114 115 **2a**, we also report previous results for Al-free stishovite (Andrault et al., 1998a) showing that 116 at 300 K the transition occurs at ~50 GPa. The comparison between Al-bearing and Al-free 117 samples raises three important points: first, the distortion appears at much lower pressure in 118 the Al-bearing SiO_2 system. Second, the distortion increases quite rapidly above the transition 119 pressure for the Al-free phase, while it is very progressive for the Al-bearing samples. Finally, 120 the distortion appears similar for both Al-free and Al-bearing compounds above 70 GPa. 121 Therefore, the most apparent effect of Al on the structure of stishovite is to facilitate the 122 CaCl₂-distortion in the 23-70 GPa pressure range.

Figure 2b displays the distortion of aluminous silica samples synthesized at different

124	pressures and decompressed in Ar without annealing. In the case where the sample is					
125	synthesized in the stability field of the rutile-form, e.g. stishovite, the decompression curves					
126	display a normal, i.e. linear, behavior. Whereas, in the case where the sample is synthesized in					
127	the stability field of the CaCl ₂ form we observe a peculiar behavior during decompression. In					
128	one case, the CaCl ₂ structure of silica is conserved down to 10 GPa and then the sampl					
129	reverts to the rutile form. In the other case the CaCl ₂ form was quenched to room pressure.					
130	However, in the laser-annealed experiments we did not detect any systematic difference					
131	in cell parameters due to a change in starting material from glass to gel nor from a change in					
132	laser from CO ₂ to YAG.					
133						
134	b) Lattice distortion at high temperature					
135	For nominal pressures (at 300K) of 23, 26, and 36 GPa, we clearly observe a decrease of the					
136	CaCl ₂ cell distortion as a function of increasing temperature (Fig. 3b and Fig. 4). Because of					
137	thermal pressure, the pressure increases with increasing temperature (Andrault et al., 1998b),					
138	and the thermal pressures measured in this study thanks to the Pt scale (Jamieson et al., 1982)					
139	agree with those calculated from an average bulk modulus of 290 GPa for aluminous silica					
140	and an expansion coefficient of $1.6 \times 10^{-5} \text{ K}^{-1}$ as measured for pure stishovite (Nishihara et al.,					
141	2005). Thus, we find that the rutile structure appears around 2230 K at 20.3 GPa, 2934 K at					
142	35.0 GPa and potentially ~3500 K at 49 GPa, if we extrapolate the c/a and c/b ratios of					
143	Figure 4 using the pressure-temperature relationship measured in this study using Pt. This					
144	clearly evidences a positive Clapeyron slope for the transition from rutile to $CaCl_2$					
145	polymorphs of Al-bearing silica (see discussion).					

146

123

147 **Discussion**

148

a) Al incorporation in rutile and CaCl₂ phases of silica

The volumes of the aluminous silica phases (rutile or CaCl₂ structure) measured at room 150 151 pressure are significantly higher than that of pure stishovite (see Figure 5). In our study all 152 samples were quenched to room pressure under the form of stishovite except for one sample, 153 Alsti-06, that was quenched in the form of post-stishovite. In Figure 5 the correlation between the volume of Al-bearing stishovite and its Al content is $V_0(A^3) = 46.517 + 12.461 \text{ x}$ 154 155 X_{Al} (Al p.f.u.) as retrieved by Lakshtanov et al. (2005; 2007) based on multi-anvil samples. 156 We used this relationship to interpolate the Al content of the silica phases synthesized in this 157 study knowing their ambient pressure volume. One limitation of this method for determining 158 the Al content could be that our silica phases were synthesized under dry conditions whereas 159 the correlation is built from the volume of stishovite synthesized under wet conditions (except 160 for pure stishovite). Still, (Litasov et al., 2007) have shown that only one seventh of Al 161 incorporated into stishovite is associated with H. It is thus expected that hydration has a small 162 effect on the correlation of cell volume and Al content. Using this correlation, we calculate 163 that our samples (only those quenched under the rutile form) contain between 2.2 and 3.6 164 wt% Al₂O₃, or an average Al content of 2.9 \pm 0.6 wt% Al₂O₃. This variation is explained by 165 the fact that solubility of Al in silica is not that high. It is thus difficult to avoid changes in 166 concentration due to overstepping the solubility limit when different pressure conditions are 167 used together with laser annealing. The sample quenched under the form of $CaCl_2$ displays a very large volume of 47.773 $Å^3$ (see **Table 1**), which leads to an Al content in the phase (0.1 168 169 Al per formula unit) that is anomalously large given that the starting material only contains 170 0.047 Al p.f.u (4 wt% Al₂O₃). The fact that this sample falls off the trend can be explained by 171 its structutral difference with stishovite.

172	Still, a systematic study of the effect of pressure and temperature on the solubility of					
173	Al ₂ O ₃ in both the rutile and CaCl ₂ stability field of silica is lacking. Ono (1999) reports that in					
174	the Al_2O_3 -SiO_2-H ₂ O system the Al content in stishovite increases with temperature up to 9					
175	wt% at 20 GPa and 1700°C. However, in the dry system incorporation of aluminum into silica					
176	seems to be much more limited. In the Al ₂ O ₃ -SiO ₂ , kyanite, composition (Liu et al., 2006)					
177	find that solubility increases with temperature up to 2.5 wt% Al ₂ O ₃ at 2000°C then decreases,					
178	at least up to pressures of 22 GPa. This maximum Al content is consistent with the values for					
179	two samples synthesized here at 16.7 and 23.7 GPa for which the correlation between cell					
180	volume and Al content yields 2.2 and 2.4 wt% Al ₂ O ₃ , respectively. They also report that					
181	solubility of Al_2O_3 decreases with increasing pressure which is contradictory to our					
182	observation. But note that the observation of (Liu et al., 2006) that Al solubility decreases					
183	with increasing temperature is valid only until 22 GPa. Thus the information is lacking for the					
184	solubility of Al in the silica phase within the stability field of the CaCl ₂ phase of silica, <i>i.e.</i>					
185	above 23 GPa, which represents the case of our most aluminous samples. In addition, (Ono et					
186	al., 2001b) report that at 30 GPa in the MORB composition, Al content in stishovite (as					
187	recovered at room pressure) reaches 4.2 wt% Al ₂ O ₃ , thus indicating a different behavior form					
188	the results of (Liu et al., 2006) at high pressures within the stability field of the $CaCl_2$ phase.					
189	The difference could be due either to the presence of water or to intrinsically different					
190	solubility of Al in rutile or CaCl ₂ structure.					

191

192 b) Lattice strain

193 (Kingma et al., 1995) evidenced the softening of the B_{1g} rutile mode in pure SiO₂ using 194 Raman spectroscopy with neon pressure medium up to 60 GPa. They observed the transition 195 from tetragonal to orthorhombic structure at 50 GPa and that it is reversible. They concluded 196 to a second order phase transition. (Andrault et al., 1998a) observed the transition at 54 GPa

197 using powder X-ray diffraction, without any pressure medium but with laser-annealing, and 198 did not observe any substantial discontinuity in volume, suggesting that the transition has 199 mainly a second order character. Still, they noted a sudden increase of distortion of the 200 tetragonal lattice just above the transition pressure, which could indicate a certain degree of 201 first-order character of the transition. (Hemley et al., 2000) performed reversal compression 202 experiments using X-ray single crystal diffraction and Raman spectroscopy in hydrogen 203 pressure medium. They observed the transition to CaCl₂ structure at 58 GPa but also observed 204 an hysteresis on decompression and CaCl₂ remaining down to 40 GPa. This provides another 205 argument for a weak first-order character of the transition.

206 In this study, we observe that the incorporation of Al in silica promotes the transition 207 from rutile to CaCl₂ at very low pressures, down to 23 GPa. If one compares the transition 208 pressure found in the different studies on pure SiO₂, the effect of the pressure media (only 8 209 GPa, see references above) is clearly not enough to explain the lowering of the transition to 210 23 GPa. Thus, the lowering of the transition pressure is due to the presence of aluminum and not to stress. Indeed, because Al³⁺ is larger than Si⁴⁺, incorporation of aluminum induces a 211 212 chemical pressure that destabilizes the low-pressure polymorph, thus shifting the transition to 213 lower pressure. Very recently, (Lakshtanov et al., 2007b) have observed the CaCl₂ phase of 214 silica containing 5 wt% Al₂O₃ at 24.3 GPa at room temperature. Our results are identical to 215 theirs within experimental uncertainty, especially Al content. We find that the transition 216 occurs at pressures between 19 and 23 GPa for a maximum Al content of 4 wt% Al₂O₃.

The interesting point is that a second order character provides the formalism to calculate thermodynamic parameters, especially the entropy change associated with such progressive transition. In such case, we can define an order parameter that represents the degree of lattice strain. For small strains, the order parameter is Q=(a-b)/a (Andrault et al., 1998a; Carpenter et al., 2000). The order parameter shows lattice strain above ~23 GPa at 300

K in annealed samples (**Figure 6**). In this figure (a) it is confirmed that the distortion appears above ~23 GPa for the Al-bearing stishovite, (b) the change with pressure of order parameter $[d(Q^2)/dP]$ is found similar for Al-free and Al-bearing stishovite and (c) the abrupt change of order parameter [Δ S] appears negligible for Al-bearing stishovite while it is clearly visible for the Al-free phase.

227

c) Equation of state at 300 K

229 Figure 7 displays the volumes at 300 K for the different samples measured during 230 compression+annealing or during decompression to room pressure. All aluminous silica 231 phases display higher volumes due to the fact that Al incorporation expands the unit-cell of 232 silica. On the other hand, the volume of aluminous silica tends to converge at high pressure, with lower V/V_0 for Al-bearing stishovite compared to pure silica (except PV20). Firstly, if 233 234 we consider the range of pressure where the stishovite structure is stable, for example for 235 decompression curves of aluminous stishovite (Alsti-01 and Alsti-07), we observe that the Al-236 bearing stishovite is clearly more compressible than pure stishovite with bulk modulus of 237 278±4 GPa and 287±5 GPa (for K'=4.59) or 284±4 GPa and 291±4 GPa (for K'=4), 238 depending on the pressure of synthesis or Al content (16.7 and 23.7 GPa, or 2.2 and 2.4 wt% 239 Al₂O₃ respectively), instead of K₀=310±1 GPa (for K'=4.59) or 324 GPa (for K'=4) for pure 240 stishovite (Andrault et al., 2003). These two Al-bearing stishovite samples have very similar 241 volumes and elastic behavior in agreement with their similar aluminum content.

Concerning the CaCl₂-form, we report three P-V curves: one compression+annealing up to 99.9 GPa (PV20) and two decompressions without annealing from 47.6 and 50.5 GPa down to room pressure. Among these last two experiments one sample reverted to the rutile structure without heating at ~10 GPa (PV21) whereas the other one retained its CaCl₂ structure down to ambient conditions (Alsti-06). The room pressure volume V_0 is thus

247 determined directly from the X-ray diffraction measurement or from extrapolation to 1 bar of 248 a second order Birch-Murnaghan EoS (Table 1). Compared to pure silica, aluminous silica 249 with CaCl₂ structure also displays higher volumes and lower V/Vo than pure silica (Andrault 250 et al., 2003) (see Figure 7). The compression + annealing of aluminous silica up to 99.9 GPa 251 yields a K₀ of 322 \pm 7 GPa (for K'=4) or K₀ of 292 \pm 7 GPa (for K'₀=4.59). Compared to pure 252 CaCl₂ silica (K₀ of 334±7 GPa for K'=4, from (Andrault et al., 2003)) it appears that 253 aluminous silica with the CaCl₂ structure is slightly more compressible. The two 254 decompression experiments yield K₀ of 300 ±4 GPa (for K'=4) and K₀ of 259 ±3 GPa (for 255 K'=4) for PV21 and Alsti-06, respectively. The value for PV21 should be regarded with 256 caution because the sample changed structure in the course of the P-V measurement.

Thus, in this study we show that aluminium softens both the rutile and CaCl₂ phases of silica. This softening is in agreement with expectations because KoVo can be regarded as almost constant. Concerning the rutile phase in comparison with pure silica, and using the same Ko' of 4.59 determined by Andrault et al. (2003), the incorporation of an average of \sim 2.3 weight % of alumina in stishovite decreases its bulk modulus of around 7-10%. Concerning the CaCl₂ phase we also observe a decrease of bulk modulus of 3.5%.

263 Previous compressibility studies of aluminous silica have used P-V data sets that cross 264 the transition between the rutile to the CaCl₂ transition (Lakshtanov et al., 2005; Ono et al., 265 2002). Thus the bulk moduli reported include compression behaviour of both the low and 266 high-pressure phases. (Ono et al., 2002) determined a Ko of 282 GPa from 10 to 40 GPa 267 whereas (Lakshtanov et al., 2005) determined a Ko of 304 GPa from 2 to 58 GPa, both using 268 second order Birch-Murnagham Eos (K'=4), for samples containing 2.1 and 1.8 wt% Al_2O_3 , 269 respectively. Our results indicate that the relationship Ko-Vo is a function of the structure of 270 aluminous silica (see Figure 8). The two data points from (Lakshtanov et al., 2007a) display 271 much higher volume for the rutile phase containing both aluminum and hydrogen whereas the

bulk moduli are similar to stishovite measured in this study. There appears to be an additional effect that may be related to the fact that these samples contain about 2400-2900 ppm by weight of water (Lakshtanov et al., 2007a). It is clear that more data is needed to refine the effect of Al content, water content and structure on the elasticity of aluminous silica at highpressure and temperature.

277

d) Phase diagram

279 As shown on Figure 4 from the evolution of the cell parameter ratios we can see that the 280 orthorhombic distortion increases with pressure and decreases with temperature. Figure 9 281 shows all the experimental points from this study. The resulting clapeyron slope of the 282 transition is: dP/dT of 0.02 GPa/K. Such positive clapeyron slope of the transition is expected 283 for a pressure-induced order-disorder phase transformation (Andrault et al., 1998a; Ono et al., 284 2001a). The rutile structure is stable at high temperature and low pressure while the calcium 285 chloride structure is stable at low temperature and high pressure. Comparing the transition 286 boundary with that of pure silica determined experimentally by (Ono et al., 2001a) clearly 287 shows that aluminum has a very large effect on the stability of the CaCl₂ form in the Earth's 288 mantle. In the presence of aluminum this phase can be found in most of the transition zone 289 and lower mantle. Of course, it is expected that the clapeyron slope of the transition depends on Al content, but given that the SiO₂ + 4 wt% Al₂O₃ system is close to saturation, the 290 291 transition boundary determined here should correspond to the lowest pressure one. As shown 292 in Figure 5, the Al content of the silica phases recovered under the rutile form at ambient 293 pressure varies between 2.2 and 3.6 wt% Al₂O₃, due to synthesis of the samples at different 294 pressures. Since the system contained initially 4 wt% Al₂O₃ some corundum must have been 295 present in excess in the samples, but which was rarely detectable because of its low amount. 296 (Lakshtanov et al., 2007b) report the transition form rutile to $CaCl_2$ phase to take place

between 20.0 and 24.8 GPa at 300 K for an Al content of 6 wt% Al_2O_3 . Such pressure is extremely similar to that found in this study between 20 and 23 GPa but for an estimated Al content of 3.1 wt% Al_2O_3 .

300 Experimental petrology studies have shown that stishovite can incorporate substantial 301 Al contents, which are controlled by exchange with neighbouring phases such as 302 clinopyroxene or garnet. In sediment composition (Ono, 1998) has shown that Al content 303 increases with temperature at 15 GPa from 0.43 at 1100°C to 1.92 wt% Al₂O₃ at 1400°C. In 304 MORB composition, Al content ranges from 0.15 wt% Al₂O₃ at 18 GPa and 1000°C up to 4.2 305 % at 30 GPa an 1800°C (Litasov and Ohtani, 2005; Ono et al., 2001b). In our study the 306 ambient volumes of the different silica phases quenched from different pressures suggest a 307 variation in Al content from 2.2 to 3.6 wt% Al₂O₃. Thus values that are within the range of 308 those found in experiments on natural compositions.

309

310 Conclusions

311 In subducted slabs, a free SiO_2 -phase is expected because the composition is much enriched 312 in incompatible elements. Since such elements comprise aluminum, the transition from 313 stishovite to the CaCl₂ phase will occur at lower pressures than in the Al-free system. 314 According to the phase diagram determined by *in-situ* X-ray diffraction, silica should be in 315 the CaCl₂ form in most of transition zone and lower mantle. Although we did not observe any 316 change in volume across the transition, the transformations show a high degree of hysteresis. 317 Thus, it is likely that the transition should not be connected with any density change, but it 318 can affect the seismic properties of descending slabs, because shear properties can be strongly 319 affected by such type of phase transformation (Carpenter et al., 2000; Lakshtanov et al., 320 2007b).

321

322 Acknowledgments

- 323
- 324 The authors thank Y. Wang and E. Ohtani for editing this manuscript. Also two anonymous
- 325 reviewers greatly improved the quality by their comments.
- 326

327 Figure captions:

328

<u>Figure 1</u>: X-ray diffractogram recorded at 41 GPa and 300 K after laser heating at ~2500 K
using the gel starting composition. Diffraction peaks of Ar, Pt and the CaCl₂-form are clearly
visible. Small diffraction peaks (not indexed) correspond to minor amounts of corundum. A,
B, and C insets show selected two-theta regions where splitting of diffraction peaks evidence
the CaCl₂-distortion.

334

Figure 2: Evolution of the c/a and c/b cell parameter ratio of the silica structure as recorded at 300 K (a) on compression+annealing steps and (b) on decompression without annealing in Ar pressure medium. Empty symbols represent the CaCl₂ structure, and full symbols the rutile structure. Distortion is evidenced above ~23 GPa in Al-bearing system whereas for Al-free silica the transition occurs around 50 GPa as reported previously (Andrault et al., 1998a). In b) we can observe that the CaCl₂ can be quenched down to 10 GPa or even room pressure.

341

342 <u>Figure 3</u>: Evolution of the CaCl₂-distortion (a) with pressure at room temperature in Ar 343 pressure medium (experiment AlSti2 upt to 49 GPa) and (b) with temperature at 23 GPa of 344 nominal pressure in NaCl pressure medium (experiment StiAl-01), for selected two-theta 345 zones.

346

347 <u>Figure 4</u>: Evolution with temperature of the c/a and c/b cell parameters ratio of aluminous
348 silica for three different nominal pressures (as measured at 300 K) for samples StiAl-01,
349 StiAl-02, StiAl-03 (see **Table 1**). Of course, the pressure is not constant at high-tmeperature

due to thermal pressure. The rutile structure appears around 2230 K at 20.3 GPa, 2934 K at

35.0 GPa and potentially ~3500 K at 49 GPa, if we extrapolate the c/a and c/b ratios.

352

353 Figure 5: Correlation between the room pressure volume of aluminous wet stishovite 354 synthesized in the multi-anvil press and its Al content. Previous data for pure stishovite are 355 from (Andrault et al., 2003), and for aluminous stishovite from (Smyth et al., 1995), (Ono et 356 al., 2002) and (Lakshtanov et al., 2005). Plotting the ambient cell volumes of the aluminous 357 silica phases synthesized in this study using DAC (circles) into this diagram allows to retrieve 358 their Al content. Empty symbols indicate samples that have been decompressed after one 359 single annealing, full symbols those which have experienced multiple pressures and 360 annealings. This figure suggests that the silica samples synthesized in this study (recovered 361 under the rutile form) contain between 2.2 and 3.6 wt% Al₂O₃.

362

363 Figure 6: Evolution with pressure of the square of the order parameter Q=(a-b)/a used to 364 quantify the lattice strain associated with the CaCl₂ distortion. Circles represent the 365 decompression in Ar pressure medium from 50.5 GPa, and squares the compression + 366 annealing in NaCl pressure medium up to 99 GPa. Also shown is the order parameter for pure 367 silica from Andrault et al. (2003) (diamonds). Although the cell parameters ratios of 368 aluminous silica show an hysteresis on decompression that would indicate a first order 369 character, there is no discontinuity on the order parameter across the transition. Also, the gap 370 observed for pure silica may be due to insufficient pressure resolution of the data coverage 371 rather than to a small degree of first order character.

372

Figure 7: P-V curves measured at 300 K for Al-bearing silica compounds shown as a function
of volume during compression+annealing and during decompression without annealing. Open
symbols represent the CaCl₂ structure and full symbols the rutile structure. Also shown is the
compression curve for pure silica from (Andrault et al., 2003).

377

378 <u>Figure 8</u>: Correlation between bulk modulus (for K'=4) and room pressure volume of 379 aluminous silica from this study and comparison with previous studies. The structure of the 380 phase is specified because in some cases the compression curve crossed the transition 381 between rutile to CaCl₂ phase. See text.

382

383 <u>Figure 9</u>: Phase diagram drawn for Al-bearing silica. Pressures at high temperature are 384 derived from volume measurements of the Pt pressure standard that is mixed with the sample. 385 The mantle geotherm is from (Katsura et al., 2004). Also shown as the dotted black curve is 386 the Clapeyron slope of the stishovite to post-stishovite phase transition in pure SiO₂ from 387 (Ono et al., 2001a). The phase boundary for aluminous stishovite can be expressed as dP/dT 388 of 0.02 GPa/K (green curve).

, C

389 **References**

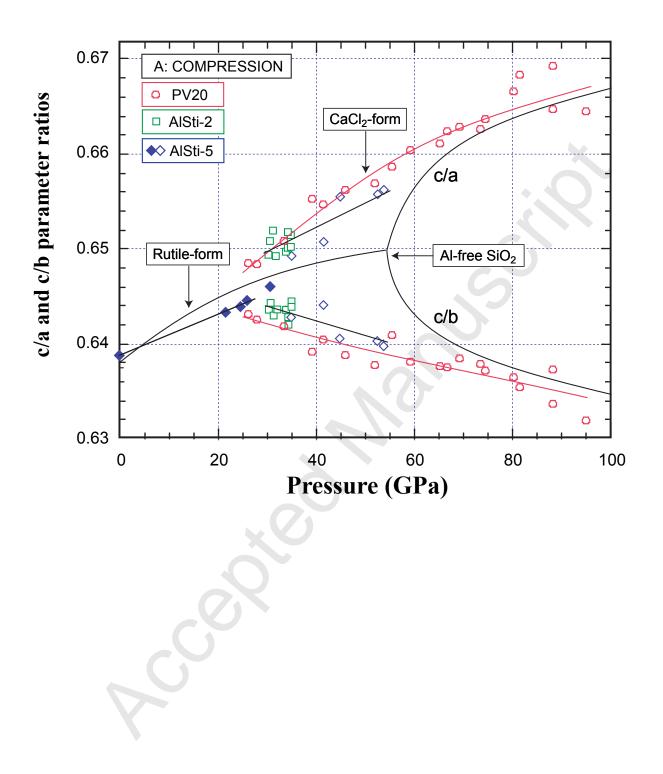
390							
391	Andrault, D., Angel, R.J., Mosenfelder, J.L. and Le Bihan, T., 2003. Equation of state of the						
392	stishovite to lower mantle pressures. American Mineralogist, 88: 301-307.						
393	Andrault, D. and Fiquet, G., 2001. Synchrotron radiation and laser-heating in a diamond anvil						
394	cell. Review of Scientific Instruments, 72(2): 1283-1288.						
395	Andrault, D., Fiquet, G., Guyot, F. and Hanfland, M., 1998a. Pressure-induced landau-type						
396	transition in stishovite. Science, 23: 720-724.						
397	Andrault, D. et al., 1998b. Thermal pressure in a laser-heated diamond-anvil cell: An x-ray						
398	diffraction study. European Journal of Mineralogy, 10: 931-940.						
399	Carpenter, M.A., Hemley, R.J. and Mao, H.K., 2000. High-pressure elasticity of stishovite						
400	and the P4(2)/mnm reversible arrow Pnnm phase transition. Journal of Geophysical						
401	Research, 105(B5): 10807-10816.						
402	Hammersley, J., 1996. Fit2d user manual, ESRF, Grenoble, France.						
403	Hemley, R.J. et al., 2000. Solid/order parameter coupling in the ferroelastic transition in dense						
404	SiO ₂ . Solid State Communications, 114(10): 527-532.						
405	Holmes, N.C., Moriarty, J.A., Gathers, G.R. and Nellis, W.J., 1989. Equations of state of						
406	platinum to 660 GPa (6.6 Mbar). Journal of Applied Physics, 66: 2962-2967.						
407	Irifune, T. and Ringwood, A.E., 1987. Phase transformations in a harzburgite composition to						
408	26 GPa: implications for dynamical behaviour of subducting slab. Earth and Planetary						
409	Science Letters, 86: 365-376.						
410	Jamieson, J.C., Fritz, J.N. and Manghnani, M.H., 1982. Pressure measurement at high						
411	temperature in x-ray diffraction studies: gold as a primary standard. In: S. Akimoto						
412	and M.H. Manghnani (Editors), High Pressure Research in Geophysics. Riedel,						
413	Boston, pp. 27-48.						
414	Jephcoat, A.P., 1998. Rare-gas solids in the Earth's deep interior. Nature, 393: 355-358.						
415	Katsura, T. et al., 2004. Olivine-wadsleyite transition in the system (Mg,Fe) ₂ SiO ₄ . Journal of						
416	Geophysical Research, 109: doi:10.1029/2003JB002438.						
417	Kingma, K.J., Cohen, R.E., Hemley, R.J. and Mao, H.K., 1995. Transformation of stishovite						
418	to a denser phase at lower mantle pressures. Nature, 374: 243-245.						
419	Kingma, K.J., Mao, H.K. and Hemley, R.J., 1996. Synchrotron x-ray diffraction of SiO ₂ to						
420	multimegabar pressures. High Pressure Research, 14: 363-374.						
421	Lakshtanov, D.L. et al., 2007a. Effect of Al^{3+} and H^+ on the elastic properties of stishovite.						
422	American Mineralogist, 92: 1026-1030.						
423	Lakshtanov, D.L. et al., 2007b. The post-stishovite phase transition in hydrous alumina-						
424	bearing SiO_2 in the lower mantle of the Earth. Proceedings of the National Academy						
425	of Sciences of the USA, 104: 13588-13590.						
426	Lakshtanov, D.L. et al., 2005. The equation of state of Al,H-bearing SiO2 stishovite to 58						
427	GPa. Physics and Chemistry of Minerals, 32(7): 466-470.						
428	Larson, A.C. and Von Dreele, R.B., 1988. GSAS Manual, Los Alamos National Laboratory.						
429	Litasov, K. et al., 2007. High hydrogen solubility in Al-rich stishovite and water transport in						
430	the lower mantle. Earth and Planetary Science Letters, 262: 620-634.						
431	Litasov, K. and Ohtani, E., 2005. Phase relations in hydrous MORB at 18-28 GPa:						
432	implications for heterogeneity of the lower mantle. Physics of the Earth and Planetary						
433	Interiors, 150: 239-263.						
434	Liu, X. et al., 2006. Decomposition of kyanite and solubility of Al_2O_3 in stishovite at high						
435	pressure and high temperature conditions, Physics and Chemistry of Minerals, pp.						
436	711-721.						

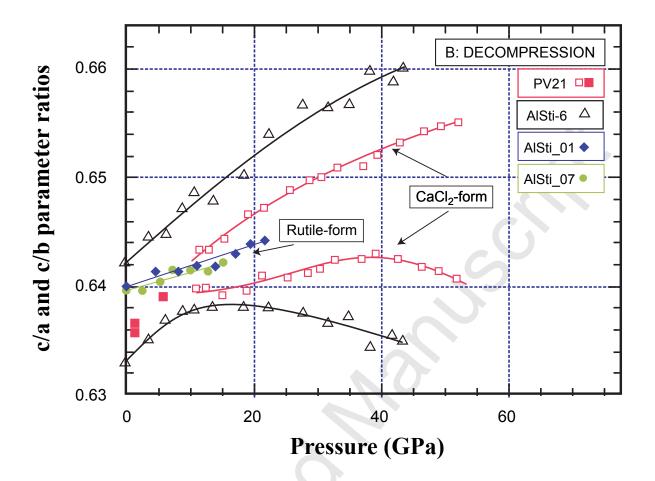
437	Mezouar, M. et al., 2005. Development of a new state-of-the-art beamline optimized for
438	monochromatic single-crystal and powder X-ray diffraction under extreme conditions
439	at the ESRF. Journal of Synchrotron Radiation, 12: 559-664.
440	Nishihara, Y., Nakayama, K., Takahashi, E., Iguchi, T. and Funakoshi, K., 2005. P-V-T
441	equation of state of stishovite to the mantle transition zone conditions. Physics and
442	Chemistry of Minerals: in press.
443	Ono, S., 1998. Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt
444 445	compositions: Implications for water transport in subduction zones. Journal of Geophysical Research-Solid Earth, 103(B8): 18253-18267.
446 447	Ono, S., 1999. High temperature stability limit of phase egg, AlSiO ₃ (OH). Contribution in Mineralogy and Petrology, 137: 83-89.
448	Ono, S., Hirose, K., Murakami, M. and Isshiki, M., 2001a. Post-stishovite boundary in SiO ₂
449	determined by in situ X-ray observations. Earth and Planetary Science Letters, in
450	press.
451	Ono, S., Ito, E. and Katsura, T., 2001b. Mineralogy of subducted basaltic crust (MORB) from
452	25 to 37 GPa, and chemical heterogeneity of the lower mantle. Earth and Planetary
453	Science Letters, 190: 57-63.
454	Ono, S. et al., 2002. Equation of state of Al-bearing stishovite to 40 GPa at 300 K. American
455	Mineralogist, 87(10): 1486-1489.
456	Schultz, E. et al., 2005. Double-sided laser heating system for in situ high pressure-high
457	temperature monochromatic x-ray diffraction at the ESRF. High Pressure Research,
458	25(1): 71-83.
459	Smyth, J.R., Swope, R.J. and Pawley, A.R., 1995. H in Rutile-Type Compounds .2. Crystal-
460 461	Chemistry of Al Substitution in H-Bearing Stishovite. American Mineralogist, 80(5-6): 454-456.
462	Tsuchida, Y. and Yagi, T., 1989. A new, post-stishovite high-pressure polymorph of silica.
463	Nature, 340: 217-220.
464	van der Hilst, R.D., Widiyantoro, S. and Engdahl, E.R., 1997. Evidence for deep mantle
465	circlation from global tomography. Nature, 386: 578-584.
466	
467	

P

Run number	Pressure range [*] (GPa)	Laser used	Pressure medium and standard	Starting material	Vo measured (Å ³)	Vo fitted using Eos (Å ³)	Ko (GPa)	Method	Al content (p.f.u.) ³
Alsti- 01	21.7 -> 10 ⁻⁴	CO ₂	Ar	glass	46.861	46.866 (025) ¹ 46.875 (028) ²	284 ± 4^1 278 ± 4^2	<u> </u>	2.4
Alsti- 07	15.2 -> 10 ⁻⁴	CO ₂	Ar	glass	46.845	46.871 (020) ¹ 46.874 (022) ²	291 ± 5^1 287 ± 5^2	Decompression	2.2
Alsti- 06	43.5 -> 10 ⁻⁴	CO ₂	Ar	glass	47.773	47.881 (049) ¹ 47.932 (060) ²	259 ± 3^1 248 ± 4^2		3.5
PV20	26.2 -> 99	YAG	NaCl + Pt	gel	-	46.513 (126) ¹ 46.770 (135) ²	$\begin{array}{c} 322\pm7^1\\ 292\pm7^2 \end{array}$	Compression + annealing	
PV21	51.8 -> 10 ⁻⁴	YAG	Ar + Pt	gel	47.043	47.076 (049) ¹ 47.121 (046) ²	300 ± 4^1 287 ± 4^2	Decompression	3.6
AlSti2	21 -> 49	YAG	Ar + Pt	gel	5			In-situ high temperature	
AlSti5	19 -> 31	YAG	NaCl + Pt	gel	46.911			experiments	2.5
StiAl- 01	23 GPa	YAG	NaCl + Pt	gel	46.983				3.1
StiAl- 02	26 GPa	YAG	NaCl + Pt	gel	-			In-situ high temperature experiments	
StiAl- 03	36 GPa	YAG	NaCl + Pt	gel	47.055			experiments	3.7

Table 1. Experimental run conditions and elastic parameters results


^{*} pressure measured by the Pt or Ar scale (Jamieson et al., 1982; Jephcoat, 1998). ¹ elastic parameters fitted using a second order Birch-Murnaghan eos using a K'of 4, and ² K' of 4.59 as in the case of pure SiO₂ (Andrault et al., 2003). Pressure for determining the Eos is measured thanks to Pt or Ar Eos (Holmes et al., 1989; Jamieson et al., 1982; Jephcoat, 1998).


³ as determined from Figure 5.

- Andrault, D., Angel, R.J., Mosenfelder, J.L. and Le Bihan, T., 2003. Equation of state of the stishovite to lower mantle pressures. American Mineralogist, 88: 301-307.
- Holmes, N.C., Moriarty, J.A., Gathers, G.R. and Nellis, W.J., 1989. Equations of state of platinum to 660 GPa (6.6 Mbar). Journal of Applied Physics, 66: 2962-2967.
- Jamieson, J.C., Fritz, J.N. and Manghnani, M.H., 1982. Pressure measurement at high temperature in x-ray diffraction studies: gold as a primary standard. In: S. Akimoto and M.H. Manghnani (Editors), High Pressure Research in Geophysics. Riedel, Boston, pp. 27-48.
- Jephcoat, A.P., 1998. Rare-gas solids in the Earth's deep interior. Nature, 393: 355-358.

C C C

Figure 2b

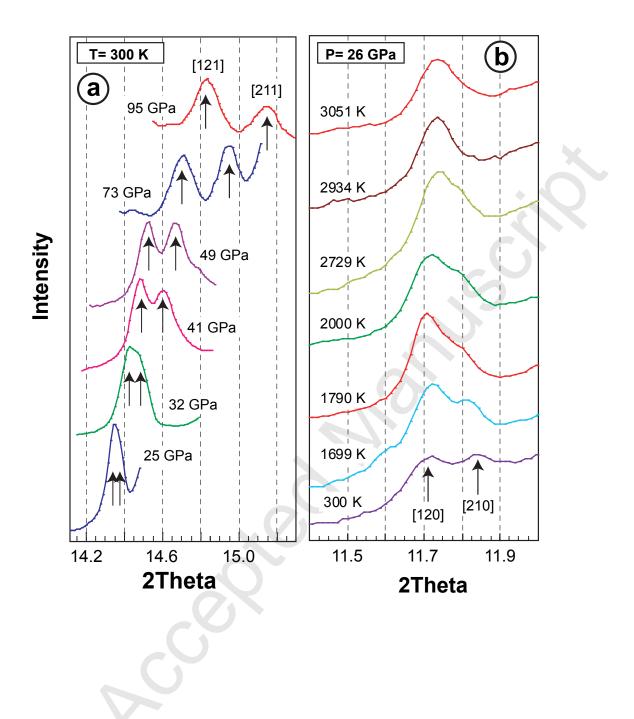
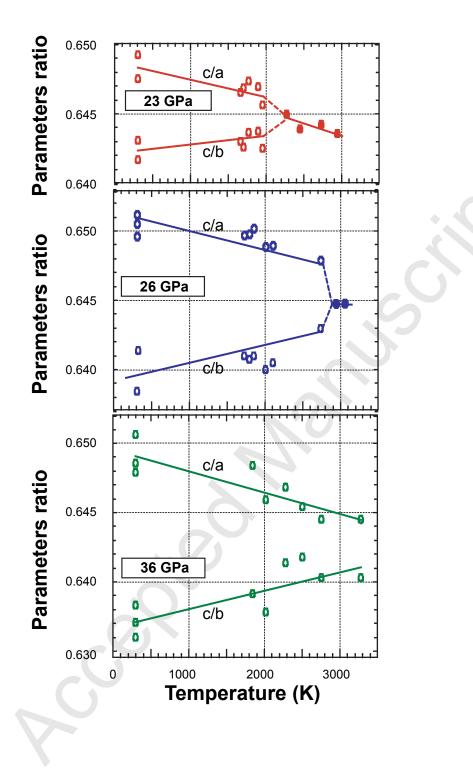



Figure 3

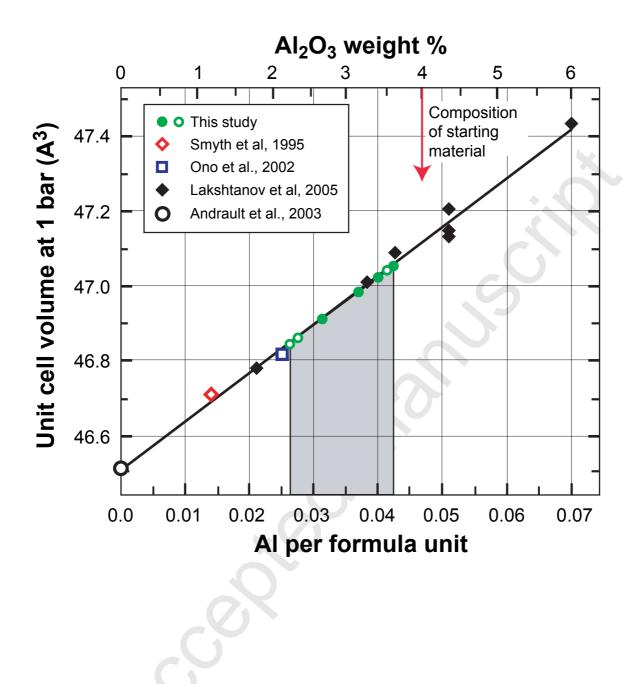
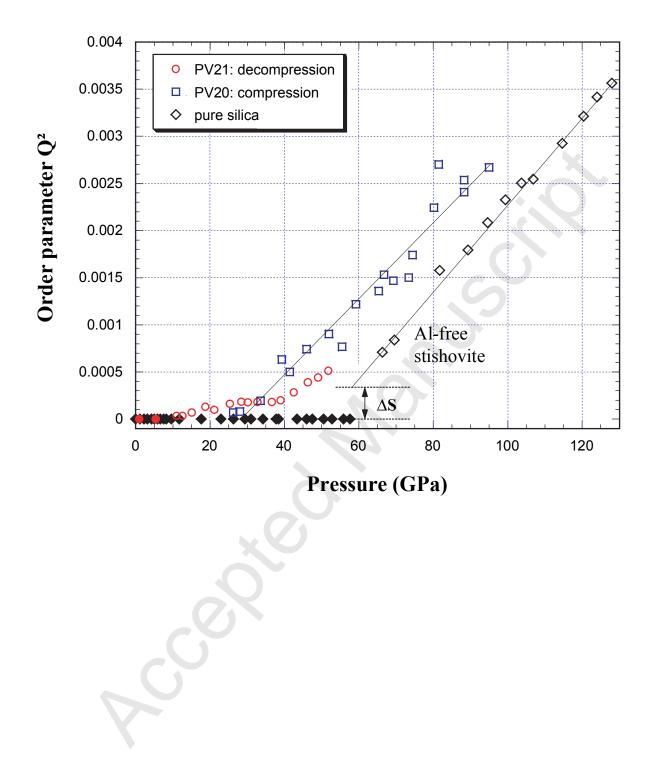
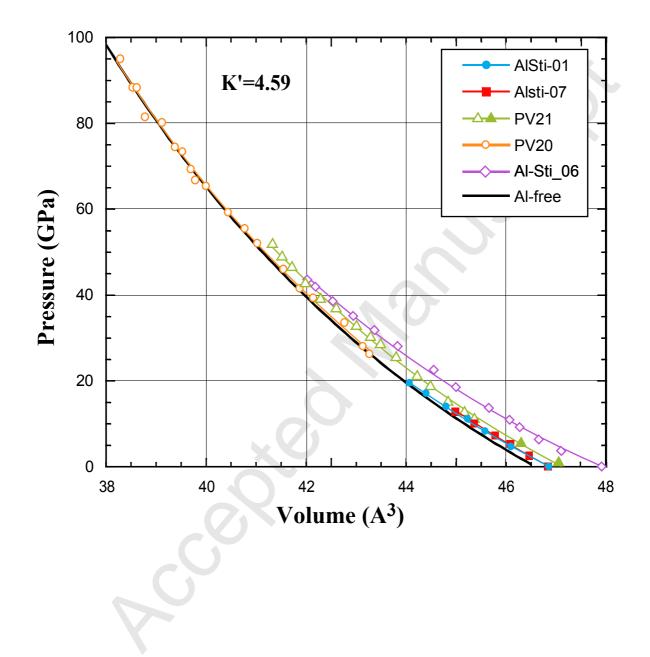




Figure 5 Page 27 of 31

Figure 6

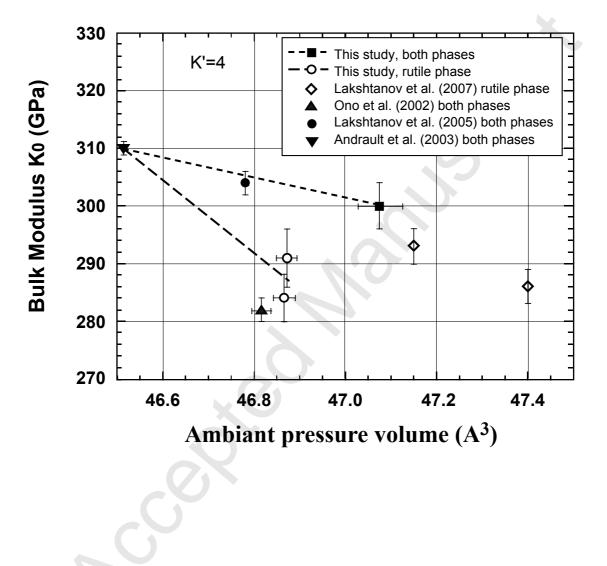
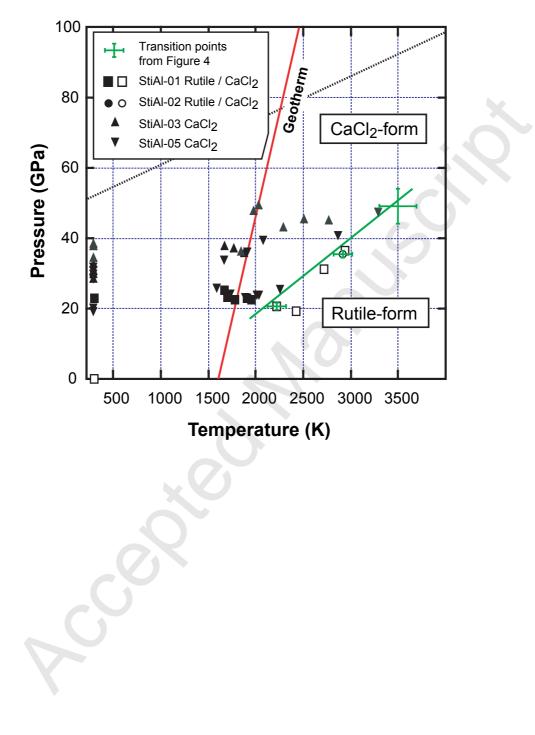



Figure 8

