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LOCAL TB THEOREMS AND HARDY INEQUALITIES

P. AUSCHER AND E. ROUTIN

Abstract. In the setting of spaces of homogeneous type, we give a direct proof of the local Tb
theorem for singular integral operators. Motivated by questions of S. Hofmann, we extend it to
the case when the integrability conditions are lower than 2, with an additional weak boundedness
type hypothesis, which incorporates some Hardy type inequalities. The latter can be obtained
from some geometric conditions on the homogeneous space. For example, we prove that the
monotone geodesic property of Tessera suffices.
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1. Introduction

The goal of this paper is to study a question raised by S. Hofmann in [Ho2] (question 3.3.1).
The question is whether in existing local Tb theorems, one can weaken the integrability conditions
on the accretive systems to any exponent greater than 1. So far, the known arguments for, say,
antisymmetric kernels, [C], [AHMTT], [Ho1], [AY], [TY], handle exponents greater than or
equal to 2 and no less. Motivations in [HM] are towards obtaining uniform rectifiability of
n−dimensional Ahlfors-David regular sets which are seen as boundaries of domains satisfying
some interior access condition to the boundary, and whose Poisson kernel satisfies some scale
invariant Lp estimate for p larger than 1 and p close to 1. Here, we work on spaces of homogeneous
type with scalar operators. We do not consider non-doubling spaces or Banach space valued
theory, where Tb theorems are proved under L∞ or BMO control on b, and we refer to the
work of Nazarov, Treil and Volberg [NTV1], [NTV2], and T. Hytönen [Hy1], [Hy2]. The interest
of local Tb theorems over the ”global” Tb theorem of David, Journé and Semmes [DJS] (and
McIntosh, Meyer [MM] where it was introduced for the first time) is that there is no need for
producing para-accretive functions which are unavoidable in such a formulation (see the work
of Han and Sawyer [HS]). And in application, the local statement is much easier to use. An
occurrence of this is in the work of the first author with Alfonseca, Axelsson, Hofmann, Kim
[AAAHK].

We partially answer Hofmann’s question with our Theorem 3.1. That is, we provide an
argument that works for all integrability exponents. This argument is based on the Beylkin-
Coifman-Rokhlin algorithm [BCR] (see also the work of T. Figiel [F]), but in adapted Haar
wavelets rather than the normal ones. However, as we shall see, our proof works at the expense
of a supplementary weak boundedness property assumption when the integrability exponents
are close to 1. As a matter of fact, we think that the statement proposed in [Ho2] is not correct
for exponents close to 1, due to the inapplicability of Hardy inequalities, without a further
hypothesis (which appears in the analysis of one term, which is not susceptible to cancel with
other controlled terms). It is thus interesting to isolate this hypothesis but it could be hard to
check. The understanding of this issue might require some extra efforts.

Historically, local T (b) theorems were introduced and proved on spaces of homogeneous type
by M. Christ [C] with L∞ bounds on the accretive systems. The first author, Hofmann, Muscalu,
Tao and Thiele [AHMTT] found a generalization for all exponents but for model singular integral
operators called perfect dyadic. This argument was carried out to standard singular integral
operators by S. Hofmann [Ho1] but a restriction on the exponents appeared, to be able to use
Hardy inequalities. Then the first author and Yang [AY] were able to find a different argument
improving on exponents, still with a restriction though. This argument was carried out to spaces
of homogeneous type by Tan and Yan [TY], we mention however some gaps there, as Hardy
inequalities need to be proved or assumed on such spaces.

This gives us the opportunity to study, on a space of homogeneous type, inequalities (which
we call of Hardy type)

∣∣∣∣
∫

I

∫

J

f(y)g(x)

Vol(B(x,dist(x, y)))
dµ(x)dµ(y)

∣∣∣∣ ≤ C‖f‖Lp(I,dµ)‖g‖Lp′ (J,dµ)

for I ∩ J = ∅, and 1 < p < +∞, 1/p + 1/p′ = 1. Our terminology comes from the fact that in
Euclidean spaces, such inequalities follow from the well known 1−dimensional Hardy inequality.
It turns out that they hold without any restriction if I, J are Christ’s dyadic cubes (see Section
2). This seems not to have been noticed in the literature for dual pairs of exponents and we prove
it in Section 9. It depends in particular on the small layers for dyadic cubes. However, if I is a
ball B and J , say, 2B\B, then it is not clear in general. It clearly depends on how B and 2B\B
see each other through their boundary. We prove that some small boundary hypothesis (called
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the relative layer decay property) suffices. We also show that this property holds in all doubling
complete Riemannian manifolds, length spaces and more generally in any monotone geodesic
space of homogeneous type. The latter notion arose in geometric measure theory from the work
of R. Tessera [T], and was recently proved by Lin, Nakai and Yang [LNY] to be equivalent to a
chain ball notion introduced by S. Buckley [B2].

The paper is organized as follows. In Section 2 we recall some basic definitions and results
in spaces of homogeneous type, such as the existence of dyadic cubes and the definition of
singular integral operators. In Section 3 we state our main results, that is Theorem 3.1 (main
Tb theorem with hypotheses on dyadic cubes), Theorem 3.5 (Tb theorem with hypotheses on
balls), and Theorem 3.7 (relaxing support conditions on accretive systems), and comment our
hypotheses. We prove Theorem 3.5 and Theorem 3.7 in Section 4, while the proof of Theorem
3.1 is developed over the three subsequent sections: we introduce some notations and give some
preliminary results in Section 5, notably the existence of adapted Haar wavelets in a space of
homogeneous type, explain important reductions in Section 6, and finally detail the algorithm
and estimate all the terms involved in Section 7. We then devote Section 8 to the study of two
particular cases: the case of perfect dyadic operators and the case when the exponents are not
too small, that is 1/p + 1/q ≤ 1, for which the proof is much easier. Finally, we have a closer
look at Hardy type inequalities in Section 9.

This work is part of a doctorate dissertation of the second author. It was conducted at
Université Paris-Sud and the Center for Mathematics and its Applications (CMA) at ANU.
The authors are particularly grateful to CMA for their warm hospitality and financial support
during their visit. The authors also thank S. Hofmann, T. Hytönen, J.-M. Martell for discussions
related to this work.

2. Notations and preliminaries

Throughout this work, we assume that (X, ρ, µ) is a space of homogeneous type, that is, X is
a set equipped with a metric ρ and a non-negative Borel measure µ on X for which there exists
a constant CD < +∞ such that all the associated balls B(x, r) = {y ∈ X; ρ(x, y) < r} satisfy
the doubling property

0 < µ(B(x, 2r)) ≤ CDµ(B(x, r)) < ∞

for every x ∈ X and r > 0. We also assume that µ({x}) = 0 for all x ∈ X. We will use the
notation A . B (resp. A ≈ B) to denote the estimate A ≤ CB (resp. (1/C)B ≤ A ≤ CB) for
some absolute constant C which may vary from line to line.

2.1. Dyadic cubes. The following result, due to M. Christ (see [C]), states the existence of
sets analogous to the dyadic cubes of Rn in a space of homogeneous type.

Lemma 2.1. There exist a collection of open subsets {Qj
α ⊂ X : j ∈ Z, α ∈ Ij}, where Ij

denotes some (possibly finite) index set depending on j, and constants 0 < δ < 1, a0 > 0, η > 0,
and C1, C2 < +∞ such that

(1) For all j ∈ Z, µ({X\
⋃

α∈Ij
Qj

α}) = 0.

(2) If j < j′ , then either Qj′

β ⊂ Qj
α, or Qj′

β ∩Qj
α = ∅.

(3) For each (j, α) and each j′ < j there is a unique β such that Qj
α ⊂ Qj′

β .

(4) For each (j, α), we have diam(Qj
α) ≤ C1δ

j .

(5) Each Qj
α contains some ball B(zjα, a0δ

j). We say that zjα is the center of the cube Qj
α.

(6) Small boundary condition:

µ
({

x ∈ Qj
α : ρ(x,X\Qj

α) ≤ tδj
})

≤ C2t
ηµ(Qj

α) ∀j, α, ∀t > 0.
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We will call those open sets dyadic cubes of the space of homogeneous type X. For a cube

Q = Qj
α, j is called the generation of Q, and we set l(Q) = δj . By (4) and (5), l(Q) is comparable

to the diameter of Q, and we call it, in analogy with R
n, the length of Q. Whenever Qj+1

α ⊂ Qj
β,

we will say that Qj+1
α is a child of Qj

β, and Qj
β the parent of Qj+1

α . For every dyadic cube Q, the

notation Q̃ denotes the collection of all the children of Q. It is easy to check that each dyadic
cube has a number of children uniformly bounded.

A neighbor of Q is any dyadic cube Q′ of the same generation with ρ(Q,Q′) < l(Q). The

notation Q̂ will denote the union of Q and all its neighbors. It is clear that Q and Q̂ have
comparable measures. It is easy to check that a cube Q has a number of neighbors that is
uniformly bounded.

2.2. Singular integral operators. For 1 ≤ p ≤ ∞, the space of p-integrable complex valued
functions on X with respect to µ is denoted by Lp(X), the norm of a function f ∈ Lp(X) by
‖f‖p, the duality bracket given by 〈f, g〉 =

∫
X fgdµ (we do mean the bilinear form), and the

mean of a function f on a set E denoted by [f ]E = µ(E)−1
∫
E fdµ. For any x, y ∈ X, we set

λ(x, y) = µ(B(x, ρ(x, y))).

It is easy to see that λ(x, y) is comparable to λ(y, x), uniformly in x, y.

Definition 2.2. A standard Calderón-Zygmund kernel on X is a function K : X × X\{x =
y} → C such that there exists a constant α > 0 for which

(2.1) |K(x, y)| .
1

λ(x, y)

and

(2.2) |K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| .

(
ρ(x, x′)

ρ(x, y)

)α 1

λ(x, y)

whenever ρ(x, x′) ≤ ρ(x, y)/2, and ρ(x, y) > 0.

Denote by Dα the space of all Hölder continuous functions of order α ∈ (0, 1] with compact
support and D′

α the dual space of Dα (we refer to [C] for the detail). A singular integral operator
(sio) T on X is a continuous mapping from Dα to D′

α which is associated to a standard kernel
K(x, y), in the sense that

〈Tf, g〉 =

∫∫
K(x, y)f(y)g(x)dµ(x)dµ(y)

whenever f, g ∈ Dα with disjoint supports. Standard computations and a density argument
show that one can extend T from Lp(K) into L∞

loc(K
c) for any compact K, so that

(2.3) Tf(x) =

∫
K(x, y)f(y)dµ(y)

for all f ∈ Lp(X) with supp f ⊂ K and almost all x /∈ K. In the following, T ∗ will denote
the operator adjoint to T . Let us state the well known standard estimates for singular integral
operators.

Proposition 2.3 (Standard Calderón-Zygmund estimates). Let T be a singular integral operator
on X. Let r > 0, xB ∈ X and let B be the ball of radius r centered in xB. Let g be a function
of mean 0 supported on B, and f a function supported on the complement of 2B. Then we have
the standard estimate

(2.4) |〈g, Tf〉| . ‖g‖1

∫

(2B)c

(
r

ρ(xB , y)

)α

λ(xB , y)
−1|f(y)|dµ(y).
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Similarly in the dyadic setting, if Q is a dyadic cube in X of center zQ, g a function of mean 0

supported on Q and f a function supported on the complement of Q̂, we have

(2.5) |〈g, Tf〉| . ‖g‖1

∫

Q̂c

(
l(Q)

ρ(zQ, y)

)α

λ(xQ, y)
−1|f(y)|dµ(y).

Over the course of this article, we will often use what we call Hardy type inequalities. The
prototype of Hardy type inequalities is

∣∣∣∣
∫

I

∫

J

f(y)g(x)

x− y
dydx

∣∣∣∣ ≤ C

(∫

I
|f(y)|νdy

) 1
ν
(∫

J
|g(x)|ν

′
dx

) 1
ν′

,

when I, J are adjacent intervals, supp f ⊂ I, supp g ⊂ J , and 1 < ν < ∞, ν ′ = ν
ν−1 . This

easily follows from the boundedness of the Hardy operator Hf(x) = 1
x

∫ x
0 f(t)dt (hence our

terminology), and does not use regularity of 1
x−y . Thus one can hope to extend such inequalities

on spaces of homogeneous type with kernel 1/λ(x, y) and measure µ when I, J are reasonable
disjoint subsets of X. Let us state such a result in the dyadic setting.

Lemma 2.4. Let Q,Q′ be two disjoint dyadic cubes in X. Let 1 < ν < +∞, with dual exponent
ν ′. There exists C < +∞ such that for all function f supported on Q, f ∈ Lν(Q), and all

function g supported on Q′, g ∈ Lν′(Q′), we have

(2.6)

∫

Q′

∫

Q

|f(y)g(x)|

λ(x, y)
dµ(x)dµ(y) ≤ C‖f‖ν‖g‖ν′ .

The constant C only depends on CD and ν.

We refer to Section 9 for the proof of Lemma 2.4. Observe that this result immediately yields
the following corollary regarding singular integral operators.

Lemma 2.5. Let T be a singular integral operator on X. Let 1 < ν < +∞ with dual exponent
ν ′.

• There exists C < +∞ such that for every disjoint dyadic cubes Q,Q′, and every functions
f, g respectively supported on Q,Q′, with f ∈ Lν(Q), g ∈ Lν′(Q′), we have

(2.7) |〈Tf, g〉| ≤ C‖f‖Lν(Q)‖g‖Lν′ (Q′).

• There exists C < +∞ such that for every dyadic cube Q, and every function f supported
on Q with f ∈ Lν(Q), we have

(2.8) ‖Tf‖Lν(Q̂\Q) ≤ C‖f‖Lν(Q).

Proof. Use (2.1), Lemma 2.4, and for the second part the fact that the number of neighbors of
any given cube is uniformly bounded. �

3. Main results and comments

Our main result is the following.

Theorem 3.1. Let 1 < p, q < +∞. Let T be a singular integral operator with locally bounded
kernel. Assume that there exists a (p, q) dyadic pseudo-accretive system adapted to T . Then T
extends to a bounded operator on L2(X), with bounds independent of ‖K‖∞,loc .

Let us explain what is a (p, q) dyadic pseudo-accretive system adapted to T .
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Definition 3.2. (p, q) dyadic pseudo-accretive system.
Let 1 < p, q < +∞ with dual exponents p′, q′, and let T be a singular integral operator on X.
We say that a collection of functions ({b1Q}Q, {b

2
Q}Q) is a (p, q) dyadic pseudo-accretive system

adapted to T if there exists a constant CA < +∞, such that for each dyadic cube Q, b1Q, b
2
Q are

supported on Q with

(3.1)

∫

Q
b1Qdµ = µ(Q) =

∫

Q
b2Qdµ,

(3.2)

∫

Q

(
|b1Q|

p + |b2Q|
q
)
dµ ≤ CA µ(Q),

(3.3)

∫

Q̂

(
|T (b1Q)|

q′ + |T ∗(b2Q)|
p′
)
dµ ≤ CA µ(Q),

Furthermore, the functions biQ are required to satisfy the following properties: for all C < +∞,

there exists CH < +∞ and 1 < ν < +∞ such that for every (Q,Q′) dyadic cubes, for every

dyadic cubes R′ ⊂ Q′, Rn ⊂ (R̂′\R′) ∩ Q, Rn mutually disjoint, with ρ(R′, Rn) < l(Rn),
[|b1Q′ |p]R′ ≤ C, [|b2Q|

q]Rn ≤ C, and for every set of coefficients (αn)n, we have

(3.4)

∣∣∣∣∣

〈
b2Q

(∑

n

αn1Rn

)
, T (b1Q′1R′)

〉∣∣∣∣∣ ≤ CH

∥∥∥∥∥
∑

n

αn1Rn

∥∥∥∥∥
ν

µ(R′)
1
ν′ .

We also need a control of the diagonal terms: for all C < +∞, there exists CWBP < +∞ such
that for every (Q,Q′) dyadic cubes, for every dyadic cube R ⊂ Q ∩ Q′ with [|b1Q′ |p]R ≤ C,

[|b2Q|
q]R ≤ C, we have

(3.5)
∣∣〈b2Q1R, T (b1Q′1R)

〉∣∣ ≤ CWBP µ(R).

We require the biQ to satisfy also the symmetric properties, with respectively b1 instead of b2, p
instead of q, q instead of p, and T ∗ instead of T .

We remark that the statement has a converse. If T is bounded, then the collection ({1Q}Q, {1Q}Q)
is a (p, q) accretive system adapted to T for any exponents. Several comments are in order. Let
us begin with the case 1/p + 1/q > 1.

(1) In this case, we cannot use the Hardy inequality (2.6) with exponents p and q replacing
ν and ν ′. So our hypotheses (3.4) and (3.5) are a substitute for the missing (2.6). In
practice, they could very well hold due to specific relations or cancellations between the
biQ and T .

(2) Observe that, while being a rather unsatisfactory condition, (3.4) and (3.5) imply the
following weaker statement: for every dyadic subcubes R,R′ of cubes Q,Q′, such that
R,R′ are neighbors, and b1Q′ , b2Q satisfy the same size estimates as above on R, R′, we
have

(3.6) |〈b2Q1R, T (b
1
Q′1R′)〉| . µ(R′).

This weaker property is more satisfactory as it is a lot closer to what we are used to
calling a weak boundedness property. Unfortunately, (3.6) suffices for all but one term
we could not estimate otherwise than assuming the stronger property (3.4).

(3) Note that it is not clear whether for any systems (b1Q), (b
2
Q) satisfying (3.1) and (3.2),

if T is bounded on L2(X) then (3.3), (3.4), (3.5) hold. But a (p, q) accretive system
adapted to T is, as its name indicates, not any pair of systems.
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Let us now assume 1/p + 1/q ≤ 1. First, we show that (3.4) is necessarily satisfied as a
consequence of (3.2) and (3.3), and it is an application of Lemma 2.5. This is stated in the
following proposition.

Proposition 3.3. Let 1 < p, q < +∞ with dual exponents p′, q′, and such that 1/p + 1/q ≤ 1.
Let T be a singular integral operator on X. Suppose that (b1Q), (b

2
Q) constitute a collection of

functions supported on Q, satisfying (3.1), (3.2), and the following weaker form of (3.3),

(3.7)

∫

Q

(
|T (b1Q)|

q′ + |T ∗(b2Q)|
p′
)
dµ ≤ CA µ(Q).

Then the functions biQ satisfy (3.3) and (3.4).

Proof. We first prove (3.3). By (2.8), we have
∫

Q̂\Q

(
|T (b1Q)|

q′ + |T ∗(b2Q)|
p′
)
dµ .

∫

Q
(|b1Q|

q′ + |b2Q|
p′)dµ

.

(∫

Q
|b1Q|

pdµ

) q′

p

µ(Q)
1− q′

p +

(∫

Q
|b2Q|

qdµ

) p′

q

µ(Q)
1− p′

q

. µ(Q),

where we have applied the Hölder inequality to get the second inequality, which is made possible
only because 1/p + 1/q ≤ 1 implies that p/q′, q/p′ ≥ 1. The inequality (3.3) follows. Now we
prove (3.4) with ν = q (and the symmetrical inequality will hold for ν = p). Write

∣∣∣∣∣

〈
b2Q

(∑

n

αn1Rn

)
, T (b1Q′1R′)

〉∣∣∣∣∣ .
∥∥∥∥∥b

2
Q

(∑

n

αn1Rn

)∥∥∥∥∥
q

‖T (b1Q′1R′)‖
Lq′ (R̂′\R′)

By (2.8), and using again the fact that 1/p + 1/q ≤ 1,

‖T (b1Q′1R′)‖
Lq′ (R̂′\R′)

. ‖b1Q′‖Lq′ (R′) . µ(R′)
1
q′ .

Moreover, because the Rn are disjoint,
∥∥∥∥∥b

2
Q

(∑

n

αn1Rn

)∥∥∥∥∥
q

.

(∑

n

|αn|
q

∫

Rn

|b2Q|
qdµ

)1
q

.

(∑

n

|αn|
qµ(Rn)

) 1
q

.

∥∥∥∥∥
∑

n

αn1Rn

∥∥∥∥∥
q

.

�

As formulated, the inequality (3.5) is not a direct consequence of (3.1), (3.2) and (3.7). For
this, one needs further control for b1Q′ , T (b1Q′), b2Q, T

∗(b2Q) on R than the one written in (3.7).

This can be achieved (see Section 8.2). In other words, when 1/p+1/q ≤ 1, a possible definition
of a (p, q) accretive system adapted to T to prove Theorem 3.1 is (3.1), (3.2) and (3.7). In
particular, this covers p = q = 2.

Our argument to prove Theorem 3.1 involves using the BCR algorithm introduced in [BCR],
applied with Haar wavelets adapted to the dyadic pseudo-accretive system (biQ), which allows us
to obtain a direct proof without having to use the decomposition of a singular integral operator
as the sum of a bounded operator and a perfect dyadic singular integral operator used in [AY]
and [TY]. We will develop this in the following sections.

Since dyadic cubes can be ugly sets in practice, on which checking (3.3), (3.4) or (3.5) might
be difficult, a natural question is whether or not one can switch from dyadic hypotheses in
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Theorem 3.1 to hypotheses made on balls. The following Theorem 3.5 deals with this concern,
but first let us give one more definition.

Definition 3.4. Hardy property.
Let (X, ρ, µ) be a space of homogeneous type. We say that X has the Hardy property if for

every 1 < ν < +∞, with dual exponent ν ′, there exists C < +∞ such that for every ball B in
X, with 2B denoting the concentric ball with double radius, and all functions f supported on
B, f ∈ Lν(B), g supported on 2B\B, g ∈ Lν′(2B\B), we have

(3.8)

∫

B

∫

2B\B

|f(y)g(x)|

λ(x, y)
dµ(x)dµ(y) ≤ C‖f‖ν‖g‖ν′ .

Obviously, if X has the Hardy property, (3.8) will remain true with 2B replaced by cB for
any c > 1, with a different constant C. We refer to Section 9.2 for geometric conditions ensuring
that a space of homogeneous type has the Hardy property.

Theorem 3.5. Let 1 < p, q < +∞ with dual exponents p′, q′, such that 1/p+1/q ≤ 1. Let T be
a singular integral operator with locally bounded kernel. Assume that there exists a collection of
functions ({b1B}B , {b

2
B}B), such that there exists a constant C < +∞ such that for every ball B

in X, biB is supported on B, and we have

(3.9)

∫

B
b1Bdµ = µ(B) =

∫

B
b2Bdµ,

(3.10)

∫

B

(
|b1B |

p + |b2B |
q
)
dµ ≤ C µ(B),

(3.11)

∫

X

(
|T (b1B)|

q′ + |T ∗(b2B)|
p′
)
dµ ≤ C µ(B),

Then T extends to a bounded operator on L2(X), with bounds independent of ‖K‖∞,loc.
Furthermore, if (3.11) is replaced by the weaker uniform bound

(3.12)

∫

B

(
|T (b1B)|

q′ + |T ∗(b2B)|
p′
)
dµ ≤ C µ(B),

then the conclusion still holds provided X has the Hardy property.

Remark 3.6. (1) In [TY], the authors state Theorem 3.5, with hypothesis (3.12), but they
do not assume X has the Hardy property. They justify their statement by reducing
to a dyadic pseudo-accretive system as in our proof of Theorem 3.5 (see the following
section). It might have been a bit over-optimistic, as we do not see how to obtain (3.3)
from (3.12) without using a Hardy type inequality, and the Hardy property (3.8) might
not always be satisfied in a general space of homogeneous type.

(2) We had to assume that 1/p+ 1/q ≤ 1. Indeed, when 1/p+ 1/q > 1, the incompatibility
of exponents p, q makes things tricky, and we cannot see a way of adapting (3.4) and
(3.5) to the balls setting.

(3) We will prove in the next section that integrability over X is equivalent to integrability
over CB for any C > 1, and it obviously implies integrability over B. Conversely though,
integrability over B does not necessarily imply integrability overX. It does when a Hardy
type inequality on balls is satisfied in the space X. Some particular relation between T
and the biB could also be a substitute.
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Finally, a natural question is whether one can relax the support condition on the accretive

system and impose that the biQ are only supported in a slight enlargment, say Q̂, of Q. We

answer this question with following Theorem 3.71.

Theorem 3.7. Let 1 < p, q < +∞ with dual exponents p′, q′. Let T be a singular inte-
gral operator with locally bounded kernel. Assume that there exists a collection of functions
({b1Q}Q, {b

2
Q}Q), and a constant C < +∞ such that for every dyadic cube Q in X, biQ is sup-

ported on Q̂, and we have

(3.13)

∫

Q̂
b1Qdµ = µ(Q) =

∫

Q̂
b2Qdµ,

(3.14)

∫

Q̂

(
|b1Q|

p + |b2Q|
q
)
dµ ≤ C µ(Q),

(3.15)

∫

X

(
|T (b1Q)|

q′ + |T ∗(b2Q)|
p′
)
dµ ≤ C µ(Q).

Suppose as well that for all C < +∞, there exists CH < +∞ and 1 < ν < +∞ such that for

every (Q,Q′) dyadic cubes, for every dyadic cubes R′ ⊂ Q̂′, Rn ⊂ (R̂′\R′) ∩ Q̂, Rn mutually
disjoint, with ρ(R′, Rn) < l(Rn), [|b

1
Q′ |p]R′ ≤ C, [|b2Q|

q]Rn ≤ C, and for every set of coefficients

(αn)n, we have

(3.16)

∣∣∣∣∣

〈
b2Q

(∑

n

αn1Rn

)
, T (b1Q′1R′)

〉∣∣∣∣∣ ≤ CH

∥∥∥∥∥
∑

n

αn1Rn

∥∥∥∥∥
ν

µ(R′)
1
ν′ .

Suppose also that for all C < +∞, there exists CWBP < +∞ such that for every (Q,Q′) dyadic

cubes, for every dyadic cube R ⊂ Q̂ ∩ Q̂′ with [|b1Q′ |p]R ≤ C, [|b2Q|
q]R ≤ C, we have

(3.17)
∣∣〈b2Q1R, T (b1Q′1R)

〉∣∣ ≤ CWBP µ(R).

We naturally require the biQ to satisfy the symmetric properties, with respectively b1 instead of

b2, p instead of q, q instead of p, and T ∗ instead of T .
Then T extends to a bounded operator on L2(X), with bounds independent of ‖K‖∞,loc.

Remark 3.8. As for Theorem 3.1, when 1/p + 1/q ≤ 1, we have a simpler formulation because
one needs not (3.16) and (3.17) and the result holds only assuming (3.13), (3.14) and (3.15).

4. Proofs of Theorem 3.5 and Theorem 3.7

Proof of Theorem 3.5. Theorem 3.5 is a direct consequence of Theorem 3.1 in the particular
case when 1/p + 1/q ≤ 1. In this case, one needs not check hypotheses (3.4) and (3.5) as we
remarked earlier (see Section 8.2 for the detail). We begin by proving the first part of Theorem
3.5. Assuming there exists a pseudo-accretive system ({b1B}, {b

2
B}) on the balls B of X satisfying

(3.9), (3.10) and (3.11), for i = 1, 2, and Q a dyadic cube, let us consider the functions biBQ

where BQ is a ball contained in Q of radius comparable to the diameter of Q. The existence of
such a ball is given by property (5) of Lemma 2.1. Then, normalizing the biBQ

so that they have

mean 1 on Q, we obtain a collection of functions biQ, supported on Q, and that satisfy

[biQ]Q = 1,

1We thank T. Hytönen for his suggestion which led us to the formulation of this theorem.
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∫

Q
(|b1Q|

p + |b2Q|
q)dµ .

∫

B
(|b1BQ

|p + |b2BQ
|q)dµ . µ(Q),

∫

Q̂

(
|T (b1Q)|

q′ + |T ∗(b2Q)|
p′
)
dµ .

∫

X

(
|T (b1BQ

)|q
′
+ |T ∗(b2BQ

)|p
′
)
dµ . µ(Q).

Thus, applying Theorem 3.1 in the particular case when 1/p + 1/q ≤ 1, we obtain the bound-
edness of T on L2(X). For the second part of Theorem 3.5, we prove that if X has the Hardy
property then (3.12) implies (3.11). Observe first that as a consequence of (3.8) and of the fact
that 1/p + 1/q ≤ 1, we have

∫

2B\B

(
|T (b1B)|

q′ + |T ∗(b2B)|
p′
)
dµ . µ(B).

The result is then a direct application of the following lemma.

Lemma 4.1. Let T be a singular integral operator on X. Let α > 1, let B be a ball in X,
and fB a function supported on B such that ‖fB‖L1(B) . µ(B). Then T (fB) ∈ Lν(X\αB) and
‖T (fB)‖

ν
Lν(X\αB) . µ(B) for all 1 < ν < +∞.

Admitting Lemma 4.1, one only has to apply it to the functions biB , with α = 2, and ν1 =
q′, ν2 = p′, to obtain ∫

X\2B

(
|T (b1B)|

q′ + |T ∗(b2B)|
p′
)
dµ . µ(B).

Summing up, we obtain (3.11) as desired. �

Proof of Lemma 4.1. For x ∈ X\2B, applying (2.3) and (2.1), write

|T (fB)(x)| .

∫

B

|fB(y)|

λ(x, y)
dµ(y) .

µ(B)

µ(B(x, ρ(x,B)))
.

Now, for j ≥ 0, set Bj = 2j+1αB and Cj = Bj\Bj−1, and split the integral over X\αB as
∫

X\αB
|T (fB)|

νdµ . µ(B)ν
∑

j≥0

µ(Cj)

µ(Bj)
ν .

Splitting this sum into bundles for which µ(Bj) is comparable, we have

∑

j≥0

µ(Cj)

µ(Bj)
ν =

∑

k≥0

∑

j:2kµ(B)≤µ(Bj )<2k+1µ(B)

µ(Bj)− µ(Bj−1)

µ(Bj)
ν

≤
∑

k≥0

1

(2kµ(B))ν

∑

j:2kµ(B)≤µ(Bj )<2k+1µ(B)

(µ(Bj)− µ(Bj−1))

≤
∑

k≥0

2k+1µ(B)

(2kµ(B))ν
. µ(B)1−ν .

Finally, we obtain as desired ∫

X\αB
|T (fB)|

νdµ . µ(B),

and Lemma 4.1 follows. �
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Proof of Theorem 3.7. The proof uses the same idea as in the previous argument and can be
skipped in a first reading of the paper. We define new systems from the given ones and check the
hypotheses of Theorem 3.1. These verifications can be long and technical to write but not dif-
ficult. They only use basic Calderón-Zygmund estimates for singular integrals (2.5) and Hardy
inequalities on dyadic cubes (2.7). Details are as follows.

Let 0 < C < +∞, and suppose that there exists a dyadic pseudo-accretive system ({b1Q}, {b
2
Q})

on X satisfying (3.13), (3.14), (3.15), (3.17) and (3.16) for some 1 < σ < +∞. For i = 1, 2, and
Q a dyadic cube, set βi

Q = λQb
i
Qk , where Q

k is a dyadic subcube of Q such that l(Qk) = δkl(Q),

ρ(Qk, Qc) ≥ (1 + C1)l(Q
k) where C1 is the constant intervening in property (4) of Lemma 2.1

(that is, Qk is far enough from the border of Q), and λQ is such that [βi
Q]Q = 1 for every cube Q.

That Qk can be so chosen follows from the small boundary condition (6) of Lemma 2.1 because
such cubes occupy a set of measure larger than 1

2µ(Q) if k is taken large enough (independently

of Q). We prove that {β1
Q}Q, {β

2
Q}Q form a (p, q) dyadic pseudo-accretive system adapted to

T . Remark first that because Qk is taken sufficiently far from the boundary of Q, the βi
Q are

always supported inside Q, so that (3.1) is satisfied. Next, observe that the (λQ)Q form a set of
uniformly bounded coefficients : as a consequence of (3.13), we have for every dyadic cube Q,

λQ =
µ(Q)

µ(Qk)
. 1,

by the doubling property. We have by (3.14)
∫

Q
(|β1

Q|
p + |β2

Q|
q)dµ .

∫

Q̂k

(|b1Qk |
p + |b2Qk |

q)dµ . µ(Qk) . µ(Q),

so that (3.2) is satisfied. Similarly, for (3.3), we have by (3.15)
∫

Q̂
(|T (β1

Q)|
q′ + |T ∗(β2

Q)|
p′)dµ .

∫

X
(|T (b1Qk)|

q′ + |T ∗(b2Qk)|
p′)dµ . µ(Qk) . µ(Q).

Let us now prove (3.5). Let Q1, Q2 be two dyadic cubes and let R ⊂ Q1 ∩ Q2 be such that

[|β1
Q1

|p]R ≤ C, [|β2
Q2

|q]R ≤ C. First, if R ⊂ Q̂k
1 ∩ Q̂k

2, (3.5) is a direct consequence of (3.17).

Suppose now that for example R ⊂ Q̂k
2 , R 6⊂ Q̂k

1 . Write

〈β2
Q2

1R, T (β
1
Q1

1R)〉 = 〈b2
Qk

2
1R, T (b

1
Qk

1
1
R∩Q̂k

1

)〉,

because b1
Qk

1
is supported on Q̂k

1 . If R∩ Q̂k
1 6= ∅, then we must have l(R) > l(Qk

1). Remark that

since l(R) ≤ l(Q1) this implies that R and Qk
1 have comparable measure. Write

R ∩ Q̂k
1 =

⋃

j

Qk
1,j,

where the Qk
1,j are dyadic neighbors of Qk

1, and each one of them is strictly contained inside R.

Remark that there is a finite number (uniformly bounded) of such cubes, and write

(4.1) 〈b2
Qk

2
1R, T (b

1
Qk

1
1Qk

1,j
)〉 = 〈b1

Qk
1
1Qk

1,j
, T ∗(b2

Qk
2
1R)〉 = Σ1 +Σ2 +Σ3.

where we have applied the decomposition 1R = 1Qk
1,j

+ 1
R∩(Q̂k

1,j\Q
k
1,j)

+1
R\Q̂k

1,j

. Applying (3.17)

on Qk
1,j ⊂ Q̂k

2∩Q̂k
1 , one gets |Σ1| . µ(Qk

1,j). Decompose further Σ2 in a sum on dyadic neighbors

of Qk
1,j (they have their measure comparable to that of Qk

1,j), and apply (3.16) in the particular
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case when there is only one cubeRn to each one of those terms to get |Σ2| . µ(Qk
1,j)

1
σµ(Qk

1,j)
1
σ′ .

µ(Qk
1,j). To bound the last term, it remains to apply the standard estimates : write

b1
Qk

1
1Qk

1,j
=
(
b1
Qk

1
1Qk

1,j
− [b1

Qk
1
]Qk

1,j
1Qk

1,j

)
+ [b1

Qk
1
]Qk

1,j
1Qk

1,j
= f + g,

where both functions are supported on Qk
1,j and f has mean zero. Remark that by (3.14)

|[b1
Qk

1
]Qk

1,j
| .

1

µ(Qk
1)

∫

Q̂k
1

|b1
Qk

1
|dµ .

µ(Q̂k
1)

1
p′

µ(Qk
1)

(∫

Q̂k
1

|b1
Qk

1
|pdµ

) 1
p

. C
1
p .

Thus
∫
Qk

1,j
|f |dµ . µ(Qk

1,j). Remark also that |[b2
Qk

2
]R| . C

1
q because of the size estimate of

β2
Q2

on R. For x ∈ Qk
1,j and y ∈ R\Q̂k

1,j , we have λ(x, y) & µ(Qk
1) & µ(R) because as we have

already remarked these two cubes have comparable measure. By (2.5), we thus have

|〈b2
Qk

2
1
R\Q̂k

1,j

, T f〉| .

∫

Qk
1,j

|f |dµ

∫

R
|b2
Qk

2
1
R\Q̂k

1,j

|dµ


 l(Qk

1)

ρ(Qk
1,j, R\Q̂k

1,j)




α

1

µ(R)
. µ(Qk

1,j).

For the second term, we have

|〈b2
Qk

2
1
R\Q̂k

1,j

, T g〉| . |〈b2
Qk

2
1
R\Q̂k

1,j

, T (1Qk
1,j
)〉| . µ(R)

1
qµ(Qk

1,j)
1
q′ . µ(R),

by the Hardy inequality (2.7). Thus |Σ3| . µ(R). As we have a uniformly bounded number of
j, we have shown in this case

|〈β2
Q2

1R, T (β
1
Q1

1R)〉| . µ(R).

Suppose now that R 6⊂ Q̂k
1, R 6⊂ Q̂k

2. Write again

〈β2
Q2

1R, T (β
1
Q1

1R)〉 = 〈b2
Qk

2
1
R∩Q̂k

2

, T (b1
Qk

1
1
R∩Q̂k

1

)〉.

For this to be different from zero, we must have l(R) > max(l(Qk
1), l(Q

k
2)). Write then as before

R ∩ Q̂k
1 =

⋃

j

Qk
1,j, R ∩ Q̂k

2 =
⋃

i

Qk
2,i,

with Qk
1,j (resp Qk

2,i) dyadic neighbors of Qk
1 (resp Qk

2), and decompose

〈b2
Qk

2
1
R∩Q̂k

2

, T (b1
Qk

1
1
R∩Q̂k

1

)〉 =
∑

i,j

〈b2
Qk

2
1Qk

2,i
, T (b1

Qk
1
1Qk

1,j
)〉.

Fix i and j. If Qk
1,j ∩Qk

2,i 6= ∅, then we estimate the above term by decomposing it as in (4.1).

If Qk
1,j ∩Qk

2,i = ∅ and ρ(Qk
1,j , Q

k
2,i) < min(l(Qk

1), l(Q
k
2)), then apply (3.16) in the particular case

when there is only one cube Rn to get the expected bound. Finally, if Qk
1,j ∩ Qk

2,i = ∅ and

ρ(Qk
1,j , Q

k
2,i) ≥ min(l(Qk

1), l(Q
k
2)), an standard computation using (2.5) also gives the expected

bound, that is
|〈β2

Q2
1R, T (β

1
Q1

1R)〉| . µ(R),

and (3.5) is proved.

We now prove (3.4). Let Q1, Q2 be two dyadic cubes, N a set of integers, and R′ ⊂ Q1, for

every n ∈ N , Rn ⊂ (R̂′\R′) ∩Q2, Rn mutually disjoint, with ρ(R′, Rn) < l(Rn), [|β
1
Q1

|p]R′ ≤ C,

[|β2
Q2

|q]Rn ≤ C, and let (αn)n∈N be a set of coefficients. We distinguish two cases. Suppose first

that R′ ⊂ Q̂k
1. If for all n ∈ N , Rn ⊂ Q̂k

2, then (3.4) is a direct consequence of (3.16). Else,

for the dyadic cubes Rn which are not contained inside Q̂k
2 but intersect Q̂k

2 (and thus satisfy
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l(Rn) > l(Qk
2)), write as before Rn ∩ Q̂k

2 = ∪iRn,i, where the Rn,i are dyadic neighbors of Qk
2.

Denote by N0 the set of integers n such that Rn satisfy the previous property. Remark that N0

is a finite set, and that its cardinal is uniformly bounded : indeed, for n ∈ N0, the dyadic cubes
Rn satisfy l(Qk

2) < l(Rn) ≤ l(Q2) and they are disjoint with respect to one another. Remark
also that we have for every n ∈ N0 and every i, [|b2Q2

|q]Rn,i . C. As a matter of fact, since

Rn,i is a dyadic neighbor of Qk
2 , its measure is comparable to the measure of Qk

2, so that since

Rn ⊂ Q2, we have µ(Rn)
µ(Rn,i)

.
µ(Q2)

µ(Qk
2)

. 1 and

[|b2Q2
|q]Rn,i ≤ [|b2Q2

|q]Rn ×
µ(Rn)

µ(Rn,i)
. C.

For every n ∈ N0, and every i such that ρ(Rn,i, R
′) ≥ l(Rn,i), apply as before the standard

Calderón-Zygmund estimates (2.5) and the Hardy inequality (2.7) to get

|〈b2
Qk

2
1Rn,i , T (b

1
Qk

1
1R′)〉| ≤ |〈T ∗(b2

Qk
2
1Rn,i−[b

2
Qk

2
]Rn,i1Rn,i), b

1
Qk

1
1R′〉|+ |[b2

Qk
2
]Rn,i ||〈T

∗(1Rn,i), b
1
Qk

1
1R′〉|

. µ(Rn,i)l(Rn,i)
α

∫

R′

|b1
Qk

1
(y)|

ρ(y, zn,i)α
dµ(y)

µ(B(zn,i, ρ(y, zn,i)))
+ µ(Rn,i)

1
p′ µ(R′)

1
p ,

where zn,i is the center of the dyadic cube Rn,i. To estimate this integral, split it onto coronae
for which 2ll(Rn,i) ≤ ρ(y, zn,i) < 2l+1l(Rn,i) : let Bl = B(zn,i, 2

l+1l(Rn,i)) and applying Hölder’s
inequality, write

∫

R′

|b1
Qk

1
(y)|

ρ(zn,i, y)α
dµ(y)

µ(B(y, ρ(zn,i, y)))
.
∑

l≥l0

1

2lαl(Rn,i)α
1

µ(Bl)

∫

R′∩Bl

|b1
Qk

1
|dµ

.
1

l(Rn,i)α

∑

l≥l0

1

2lα
µ(Bl)

1
p′

µ(Bl)

(∫

R′

|b1
Qk

1
|pdµ

) 1
p

.
µ(R′)

1
p

l(Rn,i)αµ(Rn,i)
1
p

∑

l≥l0

1

2lα
,

where l0 is a fixed integer which only depends on the dimensional constant a0 of Lemma 2.1.
We have applied the Hölder inequality to get the second line, and the fact that for every l ≥ l0,
µ(Bl) & µ(Rn,i) to get the last line. Consequently, since µ(Rn,i) ≤ µ(Rn), we obtain

|〈b2
Qk

2
1Rn,i , T (b

1
Qk

1
1R′)〉| . µ(Rn)

1
p′ µ(R′)

1
p .

For every n ∈ N0 and every i such that ρ(Rn,i, R
′) < l(Rn,i), apply (3.16) in the particular case

when there is only one cube involved to get

|〈b2
Qk

2
1Rn,i , T (b

1
Qk

1
1R′)〉| . µ(Rn,i)

1
σµ(R′)

1
σ′ . µ(Rn)

1
σµ(R′)

1
σ′ .

Since µ(Rn) . µ(R′) and since there is a finite uniformly bounded number of i, we have

|〈b2
Qk

2
1Rn , T (b

1
Qk

1
1R′)〉| . µ(Rn)

1
ν µ(R′)

1
ν′ ,
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with ν = max(σ, p′). Now, applying (3.16) to the terms for which n ∈ N\N0, and the fact that
the cardinal of N0 is uniformly bounded, write
∣∣∣∣∣

〈
β2
Q2

(∑

n∈N

αn1Rn

)
, T (β1

Q1
1R′)

〉∣∣∣∣∣=
∣∣∣∣∣

〈
b2
Qk

2

(∑

n∈N

αn1Rn

)
, T (b1

Qk
1
1R′)

〉∣∣∣∣∣

.


 ∑

n∈N\N0

|αn|
σµ(Rn)




1
σ

µ(R′)
1
σ′ +

∑

n∈N0

|αn|µ(Rn)
1
ν µ(R′)

1
ν′

.


 ∑

n∈N\N0

|αn|
σµ(Rn)




1
σ

µ(R′)
1
σ′ +


∑

n∈N0

|αn|
νµ(Rn)




1
ν

µ(R′)
1
ν′

Remark that using Hölder’s inequality with
∑

µ(Rn) . µ(R′) we can raise σ to ν if σ < p′.
Thus, we have

∣∣∣∣∣

〈
β2
Q2

(∑

n∈N

αn1Rn

)
, T (β1

Q1
1R′)

〉∣∣∣∣∣.
∥∥∥∥∥
∑

n∈N

αn1Rn

∥∥∥∥∥
ν

µ(R′)
1
ν′ .

It remains only to see what happens when R′ is not contained inside Q̂k
1 and is not disjoint

with Q̂k
1 . In this case, write again R′ ∩ Q̂k

1 = ∪j∈JR
′
j, where the R′

j are dyadic neighbors of Qk
1.

Distinguish the j for which ρ(R′
j , R

′c) ≥ l(R′
j) (let J0 be the set composed of such j) and those for

which ρ(R′
j , R

′c) < l(R′
j) (remark that there can very well be no such j). For the latter, apply the

same argument as above : the only difference is that there can be a finite (uniformly bounded)
number of n for which l(Rn) > l(R′

j) (and then since l(Rn) ≤ l(R′) they have comparable

measure) but one only has to apply either the dual estimate of (3.16) if ρ(Rn, R
′
j) < l(R′

j), or

the usual decomposition and (2.5) if ρ(Rn, R
′
j) ≥ l(R′

j), to get the expected bound for each one

of those terms. We obtain for every j ∈ J\J0
∣∣∣∣∣

〈
b2
Qk

2

(∑

n

αn1Rn

)
, T (b1Q′1R′

j
)

〉∣∣∣∣∣.
∥∥∥∥∥
∑

n

αn1Rn

∥∥∥∥∥
ν1

µ(R′)
1
ν′1 ,

with ν1 = max(σ, p′). For j ∈ J0, apply once again the same kind of decomposition as before :
setting f =

∑
n αn1Rn , we have

〈
b2
Qk

2
f, T (b1

Qk
1
1R′

j
)
〉
=
〈
b2
Qk

2
f, T (b1

Qk
1
1R′

j
− [b1

Qk
1
]R′

j
1R′

j
)
〉
+ [b1

Qk
1
]R′

j

〈
b2
Qk

2
f, T (1R′

j
)
〉

= Σ1 +Σ2

Remark that |[b1
Qk

1
]R′

j
| ≤ µ(R′)

µ(R′
j )
|[b1

Qk
1
]R′ | . µ(Q1)

µ(Qk
1 )

. 1. Apply (2.5) and the disjointness of the

cubes Rn to get

|Σ1| .

∫

∪Rn

|b2
Qk

2
f |dµ

∫

R′
j

|b1
Qk

1
1R′

j
− [b1

Qk
1
]R′

j
1R′

j
|dµ

1

µ(R′
j)

. ‖f‖q′

(∫

∪Rn

|b2
Qk

2
|qdµ

) 1
q

. ‖f‖q′ µ(R′)
1
q .
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Apply the Hardy inequality (2.7) to Σ2 for some 1 < r < q to get

|Σ2| .

(∫

∪Rn

|fb2
Qk

2
|rdµ

) 1
r

µ(R′
j)

1
r′ .

(∫

∪Rn

|f |rθ
′
dµ

) 1
rθ′
(∫

∪Rn

|b2
Qk

2
|qdµ

) 1
rθ

µ(R′)
1
r′ ,

where the last inequality is obtained by applying Hölder’s inequality with the exponent θ = q
r .

Since
∑

µ(Rn) . µ(R′), we have
∫
∪Rn

|b2
Qk

2
|qdµ . Cµ(R′), and thus

|Σ2| . ‖f‖ν2µ(R
′)

1
ν′
2 ,

with ν2 = rθ′ = rq
q−r . Finally, as there is a finite uniformly bounded number of j in J , we obtain

as expected the bound∣∣∣∣∣

〈
β2
Q2

(∑

n

αn1Rn

)
, T (β1

Q1
1R′)

〉∣∣∣∣∣.
∥∥∥∥∥
∑

n

αn1Rn

∥∥∥∥∥
ν

µ(R′)
1
ν′ ,

with ν = max(ν1, ν2, q
′), and thus (3.4) is proved. The dual estimates obviously follow by

symmetry of our hypotheses. It remains only to apply Theorem 3.1 to get the boundedness of
T . �

5. Preliminaries to the proof of Theorem 3.1

We shall use the language of dyadic cubes rather than tiles used in [AHMTT].

5.1. Adapted martingale difference operators. Let Q be a dyadic cube of the space of
homogeneous type X. For every f ∈ L2(X) we define

EQ(f) = [f ]Q1Q and ∆Q(f) =
∑

Q′∈Q̃

EQ′(f)− EQ(f).

It is easy to check that if µ(X) = +∞, for any f ∈ L2(X) we have the representation formula

f =
∑

Q⊂X

∆Qf,

with ‖f‖22 =
∑

Q⊂X ‖∆Qf‖
2
2. If µ(X) < +∞, replace f by f − [f ]X on the left hand sides. We

omit the details and refer to [AHMTT] for further explanation.
Let P be a collection of cubes in X. We will say that a locally integrable function b is pseudo-

accretive on P if |[b]Q| & 1 for all Q ∈ P, and is strongly pseudo-accretive on P if we have

|[b]Q| & 1 and |[b]Q′ | & 1 for all Q ∈ P, Q′ ∈ Q̃. Conversely, we say that such cubes Q are
respectively pseudo-accretive (pa), strongly pseudo-accretive (spa) with respect to b. A cube
that is pa but not spa with respect to b is called degenerate pseudo-accretive (dpa) with respect
to b. Given a function b strongly pseudo-accretive on Q (that is, on P = {Q}), we define

Eb
Q(f) =

[f ]Q
[b]Q

1Q,

∆b
Q(f) =

∑

Q′∈Q̃

Eb
Q′(f)−Eb

Q(f).

A straightforward computation shows that∫

Q
b∆b

Qfdµ = 0.

Note that the operators ∆b
Q introduced here are not the same ones than those defined by S.

Hofmann in [Ho1]. However, if Db
Q is the operator defined in [Ho1], we have Db

Q = b∆b
Q. It will
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be easier to work with the operators ∆b
Q introduced here because we do not assume b ∈ L2(Q).

The following proposition gives a wavelet representation of theses operators.

Proposition 5.1. Let Q be a dyadic cube and NQ the number of children of Q. If b ∈ L1(Q)

is strongly pseudo-accretive on Q, then there exist 0 < C < ∞ and functions φb,s
Q , φ̃b,s

Q , 1 ≤ s ≤
NQ − 1 with the following properties

(1) The functions φb,s
Q , φ̃b,s

Q are supported on Q and constant on each child of Q.

(2)
∫
Q bφb,s

Q dµ =
∫
Q φ̃b,s

Q bdµ = 0.

(3) ‖φb,s
Q ‖2 + ‖φ̃b,s

Q ‖2 ≤ C.

(4)
∫
Q φ̃b,s

Q bφb,s′

Q dµ = δs,s′.

(5) For all f ∈ L1(X)

∆b
Qf =

NQ−1∑

s=1

〈f, φb,s
Q 〉φ̃b,s

Q .

(6) For all f ∈ L1(X)

1

C

NQ−1∑

s=1

|〈f, φb,s
Q 〉|2 ≤ ‖∆b

Qf‖
2
L2(Q) ≤ C

NQ−1∑

s=1

|〈f, φb,s
Q 〉|2.

Moreover, C depends only on C(b,Q) = supQ′∈Q̃([|b|]Q, |[b]
−1
Q |, |[b]−1

Q′ |).

The proof is postponed to appendixA. Let us comment. IfNQ = 1, then there is nothing to do

as ∆b
Qf = 0 anyway. On the other hand, NQ is uniformly bounded as mentioned earlier. Recall

here that 〈f, g〉 =
∫
X fgdµ. Next, these functions are adapted Haar functions as in [AHMTT]

with a biorthogonality property. Note that (1) and (2) imply that ‖φb,s
Q ‖1 + ‖φ̃b,s

Q ‖1 ≤ Cµ(Q)
1
2

and ‖φb,s
Q ‖∞ + ‖φ̃b,s

Q ‖∞ ≤ C
1
2
XCµ(Q)−

1
2 , with

(5.1) CX = sup
Q⊂X,Q′∈Q̃

µ(Q)

µ(Q′)
.

As long as C(b,Q) remain uniform as Q and b vary, we obtain uniform estimates. As this shall
be the case throughout, and as s will play no role in our analysis, we shall make the standing
assumption that, unless it is 0, ∆b

Qf rewrites as

∆b
Qf = 〈f, φb

Q〉φ
b
Q.

Given a dyadic cube Q ⊂ X, set

RQ = {Q′ dyadic ; Q′ ⊂ Q}.

Now, if {Pi} is a collection of non overlapping dyadic subcubes of a cube Q0, set

Ω(Q0, {Pi}) = RQ0 \
⋃

i

RPi ,

and assume that Ω(Q0, {Pi}) ⊂ {Q ⊂ Q0 : Q spa b}. Then we have the following results.

Lemma 5.2. Let 1 < q < +∞, let C{Pi}(b) = supi [|b|
q]
1/q
Pi

. We have, with Ω := Ω(Q0, {Pi}),
∑

Q∈Ω

|〈f, φb
Q〉|

2 . C{Pi}(b)
2 ‖f‖2L2(Q0)

.
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Proof. We refer to Lemma 6.7 of [AHMTT] for the detail. The only difference is that we use
here the language of cubes rather than tiles. �

Lemma 5.3. Suppose that C{Pi}(b) < +∞, b1Q0\∪Pi
∈ L∞(Q0), and b ∈ Lq(Q0) for some 1 <

q < +∞. Let cQ be a set of uniformly bounded coefficients, and define, with Ω := Ω(Q0, {Pi}),
the bounded bilinear form

〈Lf, g〉 =
∑

Q∈Ω

cQ〈f, φ
b
Q〉〈φ

b
Q, g〉, for f, g ∈ L2(Q0).

Then L is bounded on Lν(Q0) for all 1 < ν < +∞, with

‖Lf‖Lν(Q0) . ‖{cQ}‖l∞
(
C{Pi}(b) + 1

)
‖f‖Lν(Q0).

Furthermore,
∑

Q∈Ω 〈f, φb
Q〉bφ

b
Q unconditionally converges in Lν(Q0) if 1 < ν ≤ q and f ∈

Lν(Q0), with∥∥∥∥∥∥
∑

Q∈Ω

cQ〈f, φ
b
Q〉bφ

b
Q

∥∥∥∥∥∥
Lν(Q0)

≤ ‖L‖Lν→Lν

(
C{Pi}(b) + ‖b1Q0\∪Pi

‖∞
)
‖f‖Lν(Q0).

The implicit constants in the . depend only on the doubling constant CD and ν.

Proof. Let F = Q0\∪Pi. First, L is bounded on L2(Q0) by Lemma 5.2 and the Cauchy-Schwarz
inequality. We now prove that L is of weak type (1, 1). Indeed, let f ∈ L1(Q0) ∩ L2(Q0),
λ > 0, and write a classical Calderón-Zygmund decomposition of f : there exist functions h
and (βi)i supported in mutually disjoint dyadic cubes Qi such that f = h +

∑
i βi, with h ∈

L1(Q0)∩L∞(Q0), ‖h‖L1(Q0) . ‖f‖L1(Q0), ‖h‖L∞(Q0) . λ, and for all i, ‖βi‖L1(Q0)∩L2(Q0) < +∞,∫
Qi

βidµ = 0.

Observe that Lβ =
∑

i

∑
Q∈Ω cQ〈βi, φ

b
Q〉φ

b
Q, so that if Q strictly contains Qi then 〈βi, φ

b
Q〉 = 0

since
∫
Qi

βi = 0 and φb
Q constant on the children of Q. It is thus clear that Lβ is supported in

∪iQi, where Qi denotes the closure of Qi. Hence Lf = Lh on Q0\ ∪i Qi. Now, write

µ({x ∈ Q0 : |Lf(x)| > λ}) ≤ µ({x ∈ Q0\ ∪i Qi : |Lh(x)| > λ}) +
∑

i

µ(Qi),

and note that µ(Qi) = µ(Qi) by (6) of Lemma 2.1. Since h ∈ L1(Q0) ∩ L∞(Q0), h ∈ L2(Q0)
with ‖h‖2L2(Q0)

. λ‖f‖L1(Q0), so that, using the boundedness of L on L2(Q0),

µ({x ∈ Q0\ ∪i Qi : |Lh(x)| > λ}) ≤
1

λ2

∫

Q0

|Lh|2dµ .
‖L‖2L2→L2

λ
‖f‖L1(Q0).

Furthermore, we have by the maximal theorem for dyadic averages
∑

i

µ(Qi) ≤
1

λ
‖f‖L1(Q0).

This proves that L is of weak type (1, 1). By duality and interpolation, L is thus bounded on
Lν(Q0) for all 1 < ν < +∞, with the required control on its norm.
The second part of Lemma 5.3 amounts to proving that for all 1 < ν ≤ q, and f ∈ Lν(Q0), g ∈

Lν′(Q0),

|〈Lf, bg〉| ≤ ‖L‖Lν→Lν

(
C{Pi}(b) + ‖b1Q0\∪Pi

‖∞
)
‖f‖Lν(Q0)‖g‖Lν′ (Q0)

.

Write

〈Lf, bg〉 =
∑

Q∈Ω

cQ〈f, φ
b
Q〉〈φ

b
Q, bg1F 〉+

∑

Q∈Ω

cQ〈f, φ
b
Q〉〈φ

b
Q, bg1

⋃
Pi
〉 = (i) + (ii).
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First, as a consequence of what precedes, we have

|(i)| ≤ ‖L‖Lν→Lν ‖f‖Lν(Q0)‖b1F g‖Lν′ (Q0)
≤ ‖L‖Lν→Lν ‖b1F ‖∞‖f‖Lν(Q0)‖g‖Lν′ (Q0)

.

For the second term, write

(ii) =
∑

Q∈Ω

∑

i

cQ〈f, φ
b
Q〉〈φ

b
Q, 1Pi〉[bg]Pi +

∑

Q∈Ω

∑

i

cQ〈f, φ
b
Q〉〈φ

b
Q, (bg − [bg]Pi)1Pi〉.

Observe that for any Q ∈ Ω, either Q and Pi are disjoint, or φ
b
Q is constant over Pi, which yields

in any case

〈φb
Q, (bg − [bg]Pi)1Pi〉 = [φb

Q]Pi

∫

Pi

(bg − [bg]Pi)dµ = 0.

Therefore,

(ii) =
∑

Q∈Ω

∑

i

cQ〈f, φ
b
Q〉〈φ

b
Q, 1Pi〉[bg]Pi ,

and

|(ii)| ≤ ‖L‖Lν→Lν ‖f‖Lν(Q0)

∥∥∥∥∥
∑

i

[bg]Pi1Pi

∥∥∥∥∥
Lν′ (Q0)

≤ ‖L‖Lν→Lν ‖f‖Lν(Q0)

(∑

i

µ(Pi)|[bg]Pi |
ν′

)1/ν′

.

Observe that for all i, applying the Hölder inequality, we have

|[bg]Pi | ≤
1

µ(Pi)

∫

Pi

|bg|dµ ≤

(
1

µ(Pi)

∫

Pi

|b|νdµ

)1/ν ( 1

µ(Pi)

∫

Pi

|g|ν
′
dµ

)1/ν′

≤ C{Pi}(b)

(
1

µ(Pi)

∫

Pi

|g|ν
′
dµ

)1/ν′

,

because ν ≤ q. Consequently, we get

|(ii)| ≤ ‖L‖Lν→Lν C{Pi}(b) ‖f‖Lν (Q0)

(∑

i

∫

Pi

|g|ν
′
dµ

)1/ν′

≤ ‖L‖Lν→Lν C{Pi}(b)‖f‖Lν (Q0) ‖g‖Lν′ (Q0)
,

where the last inequality comes from the fact that the Pi are non overlapping cubes. As this ar-
gument is valid for any set of uniformly bounded coefficients (cQ)Q, this proves the unconditional

convergence of the sum
∑

Q∈Ω 〈f, φb
Q〉bφ

b
Q in Lν(Q0), and we are done. �

Remark 5.4. The operator L is a sample of a perfect dyadic singular integral operator as in
[AHMTT]. See Section 8.1.

5.2. A stopping time decomposition. We now state a stopping time lemma, already seen
in [AHMTT] and [Ho1], and which is central in our argument.

Lemma 5.5. Let 1 < p, q < +∞ with dual exponents p′, q′. Assume that T is a singular integral
operator with locally bounded kernel. Suppose that there exists a (p, q) dyadic pseudo-accretive
system ({b1Q}, {b

2
Q}) adapted to T . Then there exist 0 < ε ≪ 1 and C < +∞ depending only on

the doubling constant CD, the implicit constants in (2.1) and (2.2), and the constant CA from
(3.2) and (3.7), such that for each fixed dyadic cube Q0, RQ0 has a partition

RQ0 = Ω1 ∪ Ω1
buffer ∪ (∪RP 1

n
),
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adapted to b = b1Q0
as follows

(1) The tops {P 1
n} are non overlapping dyadic subcubes of Q0 with

(5.2)
∑

n

µ(P 1
n) ≤ (1− ε)µ(Q0).

We say that they realize a (1− ε)-packing of Q0.

(2) b is strongly pseudo-accretive on Ω1, and degenerate pseudo-accretive on Ω1
buffer.

(3) We have for all Q ∈ Ω1 ∪Ω1
buffer ∪ {Pn}n the mean bounds

(5.3)

∫

Q

(
|b|p + |T (b)|q

′
)
dµ ≤ Cµ(Q).

(4) Ω1
buffer = {Q ∈ RQ0\ ∪ RP 1

n
| ∃n : P 1

n ∈ Q̃}, that is Ω1
buffer is composed of the dpa

cubes with respect to b, and we have, with CX as in (5.1), the CX-packing property

(5.4)
∑

Q∈Ω1
buffer

µ(Q) ≤ CXµ(Q0).

(5) We have the decomposition

(5.5) f = [f ]Q0b+
∑

Q∈Ω1

b∆b
Qf +

∑

Q∈Ω1
buffer

ξbQf +
∑

n

(f1P 1
n
− [f ]P 1

n
b1P 1

n
),

where the ”buffer functions” ξbQ are supported on Q, have mean zero, and take the
form

ξbQf =
∑

Q′∈Q̃

Q′∈Ω1∪Ω1
buffer

aQ′b1Q′ +
∑

P 1
n∈Q̃

(a′P 1
n
b1P 1

n
− a′′P 1

n
b1P 1

n
),

where the coefficients aQ, a
′
Q, a

′′
Q depend on f and b, and obey the bounds

∑

Q′∈Q̃

(
|aQ′ |+ |a′Q′ |+ |a′′Q′ |

)
. ‖f‖L∞(Q0).

A similar statement holds with b1Q, Tb
1
Q and p, q′ replaced by b2Q, T

∗b2Q and q, p′.

Proof. Only minor modifications have to be made to adapt the proof to the homogeneous setting.
The stopping time is simply on whether

(i) [|b|]Q < δ

or

(ii) [|b|p]Q + [|T (b)|q
′
]Q > C

for dyadic subcubes Q of Q0 for appropriately chosen δ > 0 and C < +∞. We refer to [Ho1] for
a proof that can be followed line by line (we do not need the control with the maximal function
used there). The fact that (5.3) holds also for Q = Pn comes from the doubling property. The
decomposition formula (5.5) is identical to Lemma 6.11 of [AHMTT]. �

Observe that this lemma does not require (3.4) nor (3.5) to be satisfied. Remark as well
that with our previous notation, we have Ωi ∪ Ωi

buffer = Ω(Q0, {P
i
n}). We now introduce the
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stopping-time projections which are fundamental to our analysis. For f ∈ L1(Q0), and with the
notation of Lemma 5.5, for i ∈ {1, 2}, set

(5.6) Π
biQ0f = f −

∑

n

(f1P i
n
− [f ]P i

n
biP i

n
) = f1Q0\∪P i

n
+
∑

n

[f ]P i
n
biP i

n
.

This operator not only depends on biQ0
but also on the stopping-time cubes P i

n and the cor-

responding functions bi
P i
n
. Thus, the notation is not completely accurate but simplifies the

understanding.

Lemma 5.6. The stopping-time projections Π
biQ0 have the following properties: for all f ∈

L∞(Q0), we have

(5.7)

∫

Q0

|Π
biQ0 f |pidµ ≤ (1 + CA)‖f‖

pi
L∞(Q0)

µ(Q0),

with CA the constant in (3.2) and (p1, p2) = (p, q).

(5.8) [Π
biQ0 f ]Q = [f ]Q,

for all Q ∈ Ωi ∪ Ωi
buffer ∪ {P i

n} .

(5.9) Π
biQ0 (Π

biQ0f) = Π
biQ0 f.

(5.10) (Π
biQ0 f)1Q = Π

biQ0 (f1Q),

for all Q ∈ Ωi ∪ Ωi
buffer ∪ {P i

n} .

(5.11)

∫

Q
|Π

biQ0 f |pidµ ≤ (1 + CA)‖f‖
pi
L∞(Q)µ(Q),

for all Q ∈ Ωi ∪ Ωi
buffer ∪ {P i

n} .

Proof. We prove first (5.7) and (5.11). By (5.6) we have |Π
biQ0 f |pi = |f |pi1Q0\∪P i

n
+
∑

n |[f ]P i
n
bi
P i
n
|pi .

By (3.2) for biP i
n
and (5.2), we have

∫

Q0

|Π
biQ0 f |pidµ ≤ ‖f‖piL∞(Q0)

µ(Q0) + ‖f‖piL∞(Q0)

∑

n

∫

Q0

|biP i
n
|pidµ

≤ ‖f‖piL∞(Q0)
µ(Q0) + ‖f‖piL∞(Q0)

CA

∑

n

µ(P i
n) ≤ (1 + CA)‖f‖

pi
L∞(Q0)

µ(Q0).

If Q ∈ Ωi ∪ Ωi
buffer ∪ {P i

n}, then Q cannot be contained in any P i
n. Thus, applying again (3.2)

for bi
P i
n
and the disjointness of the cubes P i

n, we have

∫

Q
|Π

biQ0 f |pidµ ≤ ‖f‖piL∞(Q0)
µ(Q\ ∪ P i

n) + ‖f‖piL∞(Q0)
CA

∑

n;P i
n⊂Q

µ(P i
n) ≤ (1 + CA)‖f‖

pi
L∞(Q0)

µ(Q).

For (5.8), observe that because of (3.1) for biP i
n
,

∫

Q
Π

biQ0fdµ =

∫

Q\∪P i
n

fdµ+
∑

n;P i
n⊂Q

[f ]P i
n
µ(P i

n) =

∫

Q
fdµ,

and (5.8) follows. Note that property (5.9) is a direct consequence of (5.8). Only the property
(5.10) thus remains to be proved. Observe that for a cube Q ∈ Ωi ∪Ωi

buffer ∪ {P i
n}, and for any
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n, [f1Q]P i
n
= 0 if Q ∩ P i

n = ∅ and [f1Q]P i
n
= [f ]P i

n
if P i

n ⊂ Q. As we have already remarked,
there is no other possibility, so that

Π
biQ0 (f1Q) = f1Q\∪P i

n
+

∑

n;P i
n⊂Q

[f ]P i
n
biP i

n
= (Π

biQ0 f)1Q.

�

5.3. Sketch of the proof of Theorem 3.1. To prove Theorem 3.1, we will begin by showing
that we can reduce to proving that for every f, g supported on a reference cube Q0 and uniformly

bounded by 1, we have |〈Π
b2Q0 f, T (Π

b1Q0g)〉| ≤ Cµ(Q0). This is done in Section 6 and involves
estimating the error terms; we will see that stopping-time Lemma 5.5 plays a central part in
this, and particularly (5.2) and (5.3). To prove the above inequality, we apply (5.5) of Lemma
5.5 to decompose the stopping-time projectors Π on our adapted Haar wavelet basis given by
Proposition 5.1. This gives us a number of matrix coefficients to estimate, which, to put it
briefly, is done using the decay of the kernel of T and hypotheses (3.2), (3.3), (3.4) and (3.5) of
Theorem 3.1.

6. Reductions

We now proceed to the proof of Theorem 3.1. Let T be a singular integral operator with
locally bounded kernel on X, and assume that there exists a (p, q) dyadic pseudo-accretive
system ({b1Q}, {b

2
Q}) adapted to T . It is of classical knowledge that to prove the L2 boundedness

of T , it suffices to show that there exists a constant C < +∞ such that for every dyadic cube
Q,

(6.1) ‖T1Q‖L1(Q) ≤ Cµ(Q) and ‖T ∗1Q‖L1(Q) ≤ Cµ(Q).

By symmetry of our hypotheses, it is enough to prove the second assertion. We give ourselves
a reference cube Q0, and we do this for all the cubes Q contained in Q0. Since Q0 is arbitrary,
the general case follows, as long as our constants are independent of Q0. As a matter of fact,
if µ(X) < +∞, then X can be assumed to be a dyadic cube itself and (6.1) follows readily.
Otherwise, if µ(X) = +∞, let us introduce the equivalence relation on the dyadic cubes ”Q1 ∼
Q2 ⇔ ∃Q dyadic cube such that Q1∪Q2 ⊂ Q”. It is easy to see that in a space of homogeneous
type, there must be a finite number of equivalence classes for this relation. Thus, the argument
which follows will give us a constant Ci for each one of those equivalent classes, by letting Q0

grow into one such equivalent class. But since they come in a finite number, (6.1) follows.
Let us now proceed to our argument. For a dyadic cube Q, we denote by EQ the set of all

functions supported on Q and uniformly bounded by 1. By duality, it suffices to prove that

A = sup
Q⊂Q0
f∈EQ

∣∣∣∣
1

µ(Q)
〈f, T1Q〉

∣∣∣∣ . 1.

Note that A < +∞ with our a priori assumption C = ‖K‖L∞(Q0×Q0) < +∞ and µ(Q0) < +∞.

Indeed, |〈f, T1Q〉| ≤ C‖f‖∞µ(Q)2 so A ≤ Cµ(Q0) < +∞. Of course, this is not the bound we
are after.

6.1. First reduction. Let

B = sup
Q⊂Q0
f∈EQ

∣∣∣∣
1

µ(Q)
〈Πb2Qf, T1Q〉

∣∣∣∣.

Lemma 6.1. We have A . B + 1.
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Proof. Let us fix a cube Q in X, a function f ∈ EQ, and for the sake of simplicity, denote b2Q

by b2 and Πb2Q by Π2. We write

f = Π2f +
∑

j

fj, with fj = f1P 2
j
− [f ]P 2

j
b2P 2

j
.

We thus have 〈f, T1Q〉 = 〈Π2f, T1Q〉+Σ, with

Σ =
∑

j

〈fj , T1Q〉,

which we decompose in two parts

Σ1 =
∑

j

〈fj, T1P 2
j
〉 and Σ2 =

∑

j

〈fj, T1Q\P 2
j
〉.

By definition of the quantity A, the fact that f1P 2
j
∈ EP 2

j
, and (5.2), we have

∑

j

|〈f1P 2
j
, T1P 2

j
〉| ≤ A

∑

j

µ(P 2
j ) ≤ A(1 − ε)µ(Q).

By (3.3) for T ∗(b2
P 2
j
), we also have

∑

j

|〈[f ]P 2
j
b2P 2

j
, T1P 2

j
〉| .

∑

j

µ(P 2
j ) . µ(Q),

which takes care of the sum Σ1. For the sum Σ2, we write

Σ2 =
∑

j

〈fj, T1Q\P̂ 2
j

〉+
∑

j

〈fj , T1P̂ 2
j \P

2
j

〉.

As the functions fj have mean zero, a standard computation using (2.5) allows us to bound the
first sum by

∑
µ(P 2

j ) . µ(Q). For the second sum, (2.7) applied to fj ∈ Lq(Q) by (3.2) for b2
P 2
j
,

and 1Q ∈ Lq′(Q) gives us the same bound. We have obtained

|〈f, T1Q〉| ≤ Bµ(Q) +A(1− ε)µ(Q) + Cµ(Q),

and Lemma 6.1 follows using A < +∞. �

6.2. Second reduction. This is where our argument departs from the ones in [AHMTT] or
[Ho1]. Let Q be a fixed dyadic subcube of Q0. Let us consider

AQ = sup

∣∣∣∣
1

µ(Q′)
〈Πb2Qf, T1Q′〉

∣∣∣∣,

BQ = sup

∣∣∣∣
1

µ(Q′)
〈Πb2Qf, TΠ

b1
Q′1Q′〉

∣∣∣∣,

where the suprema are taken over all the b2Q pseudo-accretive subcubes Q′ of Q, and all the

functions f ∈ EQ′ . As Q is itself b2Q pseudo-accretive, it is clear that B ≤ supQAQ. Again
AQ < +∞ for each Q by our qualitative assumptions.

Lemma 6.2. We have AQ . BQ + 1.
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Proof. As before, let us fix a pseudo-accretive subcube Q′ of Q, a function f ∈ EQ′ , and let us
forget Q and Q′ in our notations for the sake of simplicity. We write

1Q′ −Π11Q′ =
∑

i

gi, with gi = 1P 1
i
− b1P 1

i
,

where we recall that the P 1
i are given by the decomposition of Q′ with respect to b1Q′ as in

Lemma 5.5 and Π1 = Π
b1
Q′ . We thus have 〈Π2f, T1Q′〉 = 〈Π2f, T (Π11Q′)〉+Σ, with

Σ =
∑

i

〈Π2f, Tgi〉.

We first consider the sum Σ1 running over the indices i such that the cubes P 1
i are pa 2 (here,

P 1
i pa 2 means that P 1

i ∈ Ω2 ∪ Ω2
buffer), and we write

Π2f = Π2(f1P 1
i
) + Π2(f1Q′\P 1

i
).

We then have

〈Π2(f1P 1
i
), T gi〉 = 〈Π2(f1P 1

i
), T1P 1

i
〉 − 〈Π2(f1P 1

i
), T b1P 1

i
〉

By definition of AQ, the fact that f1P 1
i
∈ EP 1

i
, and (5.2), we have

∑

P 1
i pa 2

|〈Π2(f1P 1
i
), T1P 1

i
〉| ≤ AQ

∑

P 1
i pa 2

µ(P 1
i ) ≤ AQ(1− ε)µ(Q′).

On the other hand, by (5.10), (5.11), and (3.3) for T (b1
P 1
i
) on P 1

i , we have

∑

P 1
i pa 2

|〈Π2(f1P 1
i
), T b1P 1

i
〉| .

∑

P 1
i pa2

‖Π2f‖Lq(P 1
i )
‖T (b1P 1

i
)‖Lq′ (P 1

i )
.
∑

P 1
i pa 2

µ(P 1
i ) . µ(Q′).

Finally, again for P 1
i pa 2, we have by Lemma 5.6,

Π2(f1Q′\P 1
i
) = f1F∩(Q′\P 1

i )
+

∑

P 2
j ∩P

1
i =∅

[f ]P 2
j
b2P 2

j
= f1Q′\P 1

i
−

∑

P 2
j ∩P

1
i =∅

fj,

with fj = f1P 2
j
− [f ]P 2

j
b2
P 2
j
as before. The sum

∑
P 1
i pa 2 |〈f1Q′\P 1

i
, T gi〉| can be estimated in the

same way we treated the sum Σ2 in Lemma 6.1. It thus remains to estimate the term

Σ′
1 = −

∑

P 1
i pa 2

∑

P 2
j ∩P

1
i =∅

〈fj, T gi〉,

which we defer for now. We now estimate the sum Σ2 running over those indices i such that P 1
i

is not pa 2, which means that there exists an index k (unique), with P 1
i ⊂ P 2

k . For a fixed index
k, denote

Gk =
∑

P 1
i ⊂P 2

k

gi.

Observe that Gk is supported on P 2
k , with mean zero and that

∫
P 2
k
|Gk|

pdµ . µ(P 2
k ) by (3.3) for

the b1
P 1
i
on P 1

i and P 1
i ⊂ P 2

k . Write

Π2f = f1Q′\P 2
k
+ [f ]P 2

k
b2P 2

k
−
∑

j 6=k

fj,

which allows us to decompose Σ2 into three parts: Σ2 = Σ′
2+Σ′′

2 +Σ′′′
2 . Once more, we estimate

the sum Σ′
2 =

∑
k 〈f1Q′\P 2

k
, TGk〉 as we estimated the sum Σ2 in Lemma 6.1. The sum Σ′′

2 =
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∑
k [f ]P 2

k
〈T ∗(b2

P 2
k
), Gk〉 is also easy to manage using the hypothesis (3.3) for T ∗(b2

P 2
k
) on P 2

k and

the support and size properties of the functions Gk. Overall, we are left to estimate the term

Σ3 = Σ′
1 +Σ′′′

2 = −
∑

P 1
i pa 2

∑

P 2
j ∩P

1
i =∅

〈fj , T gi〉 −
∑

P 1
i nonpa 2

∑

P 2
j ∩P

1
i =∅

〈fj, T gi〉

= −
∑

(i,j):P 2
j ∩P

1
i =∅

〈fj, T gi〉.

We split the sum into two parts, depending on whether (i, j) is such that l(P 2
j ) ≤ l(P 1

i ) or not.

Let us consider for example the sum for the indices (i, j) satisfying that condition, the other
sum can be treated in a symmetric way. We want to estimate

Σ′
3 = −

∑

(i,j):P2
j
∩P1

i
=∅

l(P2
j
)≤l(P1

i
)

〈fj , T gi〉.

Fix the index i. Then either P 2
j ⊂ P̂ 1

i \P
1
i or P 2

j ∩ P̂ 1
i = ∅ because of the relative sizes of those

cubes. Set Fi =
∑

fj where the sum runs over all the indices j such that P 2
j ⊂ P̂ 1

i \P
1
i . Lemma

2.5 and the use of hypothesis (3.3) for T (b1
P 1
i
) on P̂ 1

i assure that

|〈Fi, T gi〉| ≤ |〈Fi, T1P 1
i
〉|+ |〈Fi, T b

1
P 1
i
〉| . µ(P 1

i ).

For the indices j such that P 2
j ∩ P̂ 1

i = ∅ we have to work a little bit more. Using that gi is of

mean 0 and applying (2.5), we obtain for each concerned couple (i, j)

|〈fj , T gi〉| .

∫

P 1
i

|gi(y)|

∫

P 2
j

|fj(x)|

(
l(P 1

i )

ρ(x, y)

)α
1

λ(x, zP 1
i
)
dµ(x)dµ(y)

.

∫

P 1
i

|gi(y)|
∑

k≥1

∫

P 2
j ∩Ck(P

1
i )

|fj(x)|

(
l(P 1

i )

δ−k+1l(P 1
i )

)α
1

µ(B(zP 1
i
, δ−k+1l(P 1

i )))
dµ(x)dµ(y)

. µ(P 1
i )
∑

k≥1

δαkµ(B(zP 1
i
, δ−k+1l(P 1

i )))
−1

∫

P 2
j ∩Ck(P

1
i )

|fj|dµ,

where zP 1
i
denotes the center of the cube P 1

i and

Ck(P
1
i ) = {x ∈ X|δ−k+1l(P 1

i ) ≤ ρ(x, zP 1
i
) < δ−kl(P 1

i )}.

Now, remark that since l(P 2
j ) ≤ l(P 1

i ), for each j there are at most two sets Ck(P
1
i ) non disjoint

with P 2
j . Thus we can sum over j with k fixed, and as the functions fj are supported on the

cubes P 2
j with

∫
|fj| . µ(P 2

j ), we get

∑

j

∫

P 2
j ∩Ck(P

1
i )

|fj |dµ .
∑

P 2
j ∩Ck(P

1
i )6=∅

µ(P 2
j ) . µ(Ck(P

1
i )).
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Then, summing over k, we have
∑

j:P 2
j ∩P̂

1
i =∅

|〈fj, T gi〉| .
∑

k≥1

δαkµ(B(zP 1
i
, δ−k+1l(P 1

i )))
−1µ(Ck(P

1
i ))µ(P

1
i )

.
∑

k≥1

δαkµ(P 1
i ) . µ(P 1

i ).

It remains only to sum over i to get |Σ3| . µ(Q′). To summarize, we have obtained

|〈Π2f, T1Q′〉| ≤ BQµ(Q
′) +AQ(1− ε)µ(Q′) + Cµ(Q′),

and Lemma 6.2 follows using AQ < ∞. �

Remark 6.3. Observe that this argument does not require the properties (3.4) and (3.5) to be
satisfied. We used (3.3) (and not (3.7)) once. No further conditions on p, q are required.

As a consequence of what precedes, we will be done if we prove there exists a constant C < +∞
such that

|〈Πb2Qf, T (Π
b1
Q′g)〉| ≤ Cµ(Q′)

for all dyadic subcube Q of Q0, all b
2
Q pseudo-accretive subcube Q′ of Q, and all f, g ∈ EQ′ . By

(5.10) of Lemma 5.6, if Q′ is a b2Q pseudo-accretive subcube of Q and f, g ∈ EQ′ , we have

Πb2Qf = Πb2Q(f1Q′) = (Πb2Qf)1Q′ = f1Q′\(∪P 2
j )

+
∑

P 2
j ⊂Q′

[f ]P 2
j
b2P 2

j
,

and

Π
b1
Q′g = g1Q′\(∪P 1

i )
+
∑

P 1
i ⊂Q′

[g]P 1
i
b1P 1

i
.

Thus, the expressions reduce to partitions of Q′ by dyadic subcubes and possibly the complement
of their union. From this point on, we no longer use the (1−ε)-packing property (5.2) in Lemma
5.5 and the 1-packing property suffices, that is we do not care if Q′\(∪P 2

j ) = ∅, which is a

possibility. This means that Q′ can become our reference cube, and b2Q could be as well replaced

by any function b2 for which the non pseudo-accretive cubes are the P 2
j ⊂ Q′ and Lemma 5.5

holds with (1− ε) replaced by 1 in (5.2). To simplify notation, we shall do this and set Q′ = Q0,
and even further assume it is of generation 0. We have to prove

(6.2) |〈Π2f, T (Π1g)〉| ≤ Cµ(Q0)

for any f, g ∈ EQ0 where Πi = Π
biQ0 , and Lemma 5.5 holds for both with the (1 − ε) of (5.2)

replaced by 1. For simplicity, we denote biQ0
by bi. We shall also say Q spa i (resp. dpa i) if

Q ∈ Ωi (resp. Q ∈ Ωi
buffer). We also set ∆i

Q = ∆bi

Q and ξiQ = ξb
i

Q .

7. BCR algorithm and end of the proof

We intend to prove (6.2) with the simplification of notation.
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7.1. Representation of projections. By the decomposition formula (5.5) of Lemma 5.5, we
have

Πif = [f ]Q0b
i +

∑

Q spa i

bi∆i
Qf +

∑

Qdpa i

ξiQf.

Set Ei
0f = [f ]Q0b

i, and ∀j ≥ 0,

Di
jf =

∑

Q spa i

l(Q)=δj

bi∆i
Qf +

∑

Qdpa i

l(Q)=δj

ξiQf =
∑

Q spa i

l(Q)=δj

〈f, φi
Q〉b

iφi
Q +

∑

Q dpa i

l(Q)=δj

ξiQf

Ei
jf = Ei

0f +

j−1∑

l=0

Di
lf.

Lemma 7.1. With the previous notation, we have

(7.1) Ei
jf =

∑

Qpa i

l(Q)=δj

[f ]Q
[bi]Q

bi1Q +
∑

Pi
n

l(Pi
n)≥δj

[f ]P i
n
biP i

n
.

Furthermore, we have when f ∈ L∞(Q0)

(7.2) Πif = lim
j→+∞

Ei
jf,

with the convergence taking place in L1(Q0).

Proof. The first part of Lemma 7.1 is a linear algebra computation, we will omit the detail. The
second assertion is an application of the dominated convergence theorem in L1(Q0). Observe
first that, by (7.1), we have

|Ei
jf | ≤ C−1|bi|+

∑

n

|biP i
n
|,

where C = inf |[b]Q|, the infimum taken over the pa i cubes Q. To see that Ei
jf converges µ-a.e.

on Q0 towards Π
i, use again (7.1) and observe that for every n, Ei

jf is constant on P i
n for j large

enough (depending on n), and equal to [f ]P i
n
biP i

n
. If x ∈ F i = Q0\ ∪ P i

n, then by the Lebesgue

differentiation theorem
[f ]Q
[b]Q

tends µ-a.e. towards f(x)
b(x) when Q tends towards x. Thus Ei

jf tends

µ-a.e. towards f on F i, and, by (5.6), Ei
jf tends µ-a.e. towards Πif on Q0. It remains only to

apply the dominated convergence theorem in L1(Q0) to get (7.2).
�

Now, because of (7.2), and because we assumed the kernel of the operator T to be locally
bounded, we can take the limit and write

〈Π2f, TΠ1g〉 = lim
j→+∞

〈E2
j f, TE

1
j g〉

= 〈E2
0f, TE

1
0g〉+

∑

j≥0

(
〈D2

j f, TD
1
j g〉+ 〈D2

j f, TE
1
j g〉+ 〈E2

j f, TD
1
j g〉
)

= 〈E2
0f, TE

1
0g〉+ 〈f, Ug〉+ 〈f, V g〉+ 〈f,Wg〉.

This is the so called BCR algorithm, introduced in [BCR] for the classical martingale differences.
Here we use the adapted martingale differences. Let us remark that the first term is easy to
estimate because f, g ∈ EQ0 , and because of (3.2), (3.3). Remark also that the two last terms
V,W can be treated in the same way by duality. They lead to paraproduct type operators. The
diagonal term U is relatively easy to treat. With this decomposition and the wavelet represen-
tation, we will obtain matrix coefficients of the form 〈b2θQ, T (b

1θR)〉, where the functions θQ, θR
are supported on the cubes Q,R respectively. The idea is mostly to use the kernel decay and
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the standard Calderón-Zygmund estimates (2.5) when the cubes Q,R are far away, and to use
the weak boundedness properties (3.4), (3.5) when they are close.

Before tackling those estimations, let us first introduce some more notation. For Q and R
two dyadic cubes of the space of homogeneous type X, set

µ(Q,R) = µ(R,Q) = inf
x∈Q,y∈R

{µ(B(x, ρ(x, y))), µ(B(y, ρ(x, y)))} ,

and

αQ,R = αR,Q =

{
µ(Q)

1
2µ(R)

1
2

(
inf(l(Q),l(R))

ρ(Q,R)

)α
1

µ(Q,R) if ρ(Q,R) ≥ sup(l(Q), l(R))

1 if l(Q) = l(R), and ρ(Q,R) < l(Q).

Of course αQ,R is not defined on all pairs of cubes (Q,R), but that does not matter as we will
only use this notation when we are in one of the above cases. We will frequently use some
coefficient estimates to bound the terms of the form 〈b2θQ, T (b

1θR)〉 we evoked earlier, and we
will constantly refer to Appendix B for the detail of these estimates.

7.2. Analysis of U . First, let us decompose

〈f, Ug〉 =
∑

j≥0

〈D2
j f, TD

1
j g〉 = 〈f, U1g〉+ 〈f, U2g〉+ 〈f, U3g〉+ 〈f, U4g〉,

with

〈f, U1g〉 =
∑

Q spa 2;R spa 1
l(R)=l(Q)

〈f, φ2
Q〉〈b

2φ2
Q, T (b

1φ1
R)〉〈g, φ

1
R〉,

〈f, U2g〉 =
∑

Q spa 2;R dpa 1
l(R)=l(Q)

〈f, φ2
Q〉〈b

2φ2
Q, T (ξ

1
Rg)〉,

〈f, U3g〉 =
∑

Q dpa 2;R spa 1
l(R)=l(Q)

〈ξ2Qf, T (b
1φ1

R)〉〈g, φ
1
R〉,

〈f, U4g〉 =
∑

Q dpa 2;Rdpa 1
l(R)=l(Q)

〈ξ2Qf, T (ξ
1
Rg)〉.

Observe that the sums with respect to j have disappeared once we notice they force the cubes
Q and R to have equal lengths.

Estimate of 〈f, U1g〉. We refer to Appendix B for the detail, but, applying (B.1) of Lemma
B.1, we have

|〈f, U1g〉| .
∑

Q spa 2;R spa 1
l(R)=l(Q)

αQ,R|〈f, φ
2
Q〉| |〈g, φ

1
R〉|.

Remember that by Lemma 5.2

∑

Q spa 2

|〈f, φ2
Q〉|

2 . ‖f‖22 . µ(Q0),



28 P. AUSCHER AND E. ROUTIN

and similarly for 〈g, φ1
R〉. Therefore, we have by the Cauchy-Schwarz inequality

|〈f, U1g〉| .
∑

Q spa 2;R spa 1
l(R)=l(Q)

αQ,R |〈f, φ2
Q〉| |〈g, φ

1
R〉|

.




∑

Q spa 2;R spa 1
l(R)=l(Q)

αQ,R

(
µ(R)

µ(Q)

)1/2

|〈f, φ2
Q〉|

2




1/2


∑

Q spa 2;R spa 1
l(R)=l(Q)

αQ,R

(
µ(Q)

µ(R)

)1/2

|〈g, φ1
R〉|

2




1/2

Let us state a lemma that will handle those sums.

Lemma 7.2. Let R be a fixed dyadic cube of the space of homogeneous type X. We have the
following summing property

∑

Q;l(Q)=l(R)
ρ(Q,R)≥l(R)

µ(Q)

(
l(Q)

ρ(Q,R)

)α 1

µ(Q,R)
. 1.

Furthermore, if p ∈ N, we have the stronger summing property

∑

Q;l(Q)=δpl(R)
ρ(Q,R)≥l(R)

µ(Q)

(
l(Q)

ρ(Q,R)

)α 1

µ(Q,R)
. δpα,

which, by summing over p ∈ N, yields

∑

Q;l(Q)≤l(R)
ρ(Q,R)≥l(R)

µ(Q)

(
l(Q)

ρ(Q,R)

)α 1

µ(Q,R)
. 1.

The exponent α can be replaced by any α′ > 0.

Proof. It is enough to prove the second inequality. The idea is to split the sum for δ−ml(R) ≤
ρ(Q,R) < δ−m−1l(R),m ∈ N (here and subsequently, we then write that ρ(Q,R) ∼ δ−ml(R)):
write

∑

Q;l(Q)=δpl(R)
ρ(Q,R)≥l(R)

µ(Q)

(
l(Q)

ρ(Q,R)

)α 1

µ(Q,R)
= δpα

∑

m≥0

∑

Q;l(Q)=δpl(R)

ρ(Q,R)∼δ−ml(R)

µ(Q)

(
l(R)

ρ(Q,R)

)α 1

µ(Q,R)

. δpα
∑

m≥0

δmα
∑

Q;l(Q)=δpl(R)

ρ(Q,R)∼δ−ml(R)

µ(Q)

µ(Q,R)

. δpα
∑

m≥0

δmα
∑

Q;l(Q)=δpl(R)

ρ(Q,R)∼δ−ml(R)

µ(Q)

µ(B(zR, δ−ml(R)))
,

where zR denotes the center of the cube R. All those cubes Q are non overlapping as they are
of the same generation, and they are all contained in a ball of comparable measure to the ball
B(zR, δ

−ml(R)). We therefore have

∑

Q;l(Q)=δpl(R)

ρ(Q,R)∼δ−ml(R)

µ(Q)

µ(B(zR, δ−ml(R)))
. 1,

and summing then over m ∈ N, we get the desired estimate. Moreover, it is clear that α can be
replaced by any α′ > 0. �
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Now let us go back to our argument. For a fixed cube R, we write

∑

Q spa 2
l(Q)=l(R)

αQ,R

(
µ(Q)

µ(R)

)1/2

=
∑

Q spa 2;l(Q)=l(R)
ρ(Q,R)≥l(R)

µ(Q)

(
l(Q)

ρ(Q,R)

)α 1

µ(Q,R)
+

∑

Q spa 2;l(Q)=l(R)
ρ(Q,R)<l(R)

(
µ(Q)

µ(R)

)1/2

.

Lemma 7.2 insures that the first sum is uniformly bounded, and the second sum is bounded as
well, because such cubes Q and R have comparable measure (they are neighbors), and any given
cube R has a uniformly bounded number of neighbors. We thus have for any given cube R,

∑

Q spa 2
l(Q)=l(R)

αQ,R

(
µ(Q)

µ(R)

)1/2

. 1,

and similarly, for any given cube Q,

∑

R spa 1
l(R)=l(Q)

αQ,R

(
µ(R)

µ(Q)

)1/2

. 1.

Therefore,

|〈f, U1g〉| .


 ∑

Q spa 2

|〈f, φ2
Q〉|

2




1/2
 ∑

R spa 1

|〈g, φ1
R〉|

2




1/2

. µ(Q0).

Estimate of 〈f, U2g〉. Remark that by duality, 〈f, U3g〉 is estimated in the same way. Refering
to estimate (B.2) of Lemma B.1, we have

|〈f, U2g〉| .
∑

Q spa 2;R dpa 1
l(R)=l(Q)

αQ,R µ(R)
1
2 |〈f, φ2

Q〉|.

We split this sum into two parts, depending on whether ρ(Q,R) ≥ l(Q) or not. By the Cauchy-
Schwarz inequality and Lemma 7.2, we have

∑

Q spa 2;R dpa 1
l(R)=l(Q)

ρ(Q,R)≥l(Q)

αQ,R µ(R)
1
2 |〈f, φ2

Q〉| .



∑

Q spa 2

|〈f, φ2
Q〉|

2
∑

R dpa 1;l(R)=l(Q)
ρ(Q,R)≥l(Q)

µ(R)

(
l(R)

ρ(Q,R)

)α 1

µ(Q,R)




1/2

×



∑

R dpa 1

µ(R)
∑

Q spa 2;l(Q)=l(R)
ρ(Q,R)≥l(R)

µ(Q)

(
l(Q)

ρ(Q,R)

)α 1

µ(Q,R)




1/2

.


 ∑

Q spa 2

|〈f, φ2
Q〉|

2




1/2

×


 ∑

R dpa 1

µ(R)




1/2

. µ(Q0),

the last inequality being a consequence of the fact that
∑

R dpa 1 µ(R) . µ(Q0). The remaining
sum is easy to estimate: since for a fixed Q there is a uniformly bounded number of neighbors
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R, one can write

∑

Q spa 2;R dpa 1
l(R)=l(Q)

ρ(Q,R)<l(Q)

µ(R)
1
2 |〈f, φ2

Q〉| .



∑

Q spa 2

∑

R dpa 1

R⊂Q̂;l(R)=l(Q)

|〈f, φ2
Q〉|

2




1/2

∑

R dpa 1

∑

Q spa 2

Q⊂R̂;l(Q)=l(R)

µ(R)




1/2

.


 ∑

Q spa 2

|〈f, φ2
Q〉|

2




1/2
 ∑

R dpa 1

µ(R)




1/2

. µ(Q0).

Estimate of 〈f, U4g〉. This term is pretty easy to handle. Indeed, applying the coefficient
estimate (B.3), we have

|〈f, U4g〉| .
∑

Qdpa 2;Rdpa 1
l(R)=l(Q)

αQ,R µ(Q)
1
2 µ(R)

1
2

.
∑

Qdpa 2




∑

R dpa 1;l(R)=l(Q)
ρ(Q,R)<l(Q)

µ(Q)
1
2 µ(R)

1
2 + µ(Q)

∑

R dpa 1;l(R)=l(Q)
ρ(Q,R)≥l(Q)

µ(R)

(
l(R)

ρ(Q,R)

)α 1

µ(Q,R)




.
∑

Qdpa 2

µ(Q) . µ(Q0),

where we have used Lemma 7.2 and once again the fact that any fixed cube Q has a uniformly
bounded number of neighbors.

7.3. Analysis of V . As in the previous subsection, we write

〈f, V g〉 =
∑

j≥0

〈D2
j f, TE

1
j g〉 = 〈f, V1g〉 + 〈f, V2g〉+ 〈f, V3g〉+ 〈f, V4g〉,

with

〈f, V1g〉 =
∑

Q spa 2;R pa 1
l(R)=l(Q)

〈f, φ2
Q〉〈b

2φ2
Q, T (b

11R)〉
[g]R
[b1]R

,

〈f, V2g〉 =
∑

Q spa 2

∑

l(P 1
i )≥l(Q)

〈f, φ2
Q〉〈b

2φ2
Q, T (b

1
P 1
i
)〉[g]P 1

i
,

〈f, V3g〉 =
∑

Q dpa 2;R pa 1
l(R)=l(Q)

〈ξ2Qf, T (b
11R)〉

[g]R
[b1]R

,

〈f, V4g〉 =
∑

Qdpa 2

∑

l(P 1
i )≥l(Q)

〈ξ2Qf, T (b
1
P 1
i
)〉[g]P 1

i
.

The term V1 will be the most difficult term, it is where a parapoduct appears, which will require
the use of hypothesis (3.4) to be controlled.
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Estimate of 〈f, V4g〉. We split the sum into two parts, as before, depending on the distance
between P 1

i and Q. When ρ(P 1
i , Q) ≥ l(P 1

i ), we have, by the coefficient estimate (B.6),

∑

Qdpa 2

∑

l(P1
i
)≥l(Q)

ρ(P1
i
,Q)≥l(P1

i
)

|〈ξ2Qf, T (b
1
P 1
i
)〉[g]P 1

i
| .

∑

P 1
i

∑

Q dpa 2;l(Q)≤l(P1
i
)

ρ(Q,P1
i
)≥l(P1

i
)

µ(P 1
i )

1
2µ(Q)

1
2αQ,P 1

i

.
∑

P 1
i

µ(P 1
i )

∑

Q dpa 2;l(Q)≤l(P1
i
)

ρ(Q,P1
i
)≥l(P1

i
)

µ(Q)

(
l(Q)

ρ(Q,R)

)α 1

µ(Q,R)

.
∑

P 1
i

µ(P 1
i ) . µ(Q0),

where we have once again used Lemma 7.2 to obtain the third inequality, and the 1−packing
property of the P 1

i to get the last one. It then remains to estimate the sum

〈f, V4,1g〉 =
∑

P 1
i

∑

Q dpa 2;l(Q)≤l(P1
i
)

ρ(Q,P1
i
)<l(P1

i
)

〈ξ2Qf, T (b
1
P 1
i
)〉[g]P 1

i
=
∑

P 1
i

∑

P⊂
̂
P1
i

l(P )=l(P1
i
)

∑

Q dpa 2
Q⊂P

〈ξ2Qf, T (b
1
P 1
i
)〉[g]P 1

i
,

which we will do below, when we take care of the term V2,1.

Estimate of 〈f, V3g〉. This term is easy to handle. Indeed, applying the coefficient estimate
(B.4), and the fact that the mean of b1 is bounded below uniformly on the pa 1 cubes R, we
have

|〈f, V3g〉| .
∑

Qdpa 2

∑

Rpa 1
l(R)=l(Q)

|〈ξ2Qf, T (b
11R)〉|

|[g]R|

|[b1]R|

.
∑

Qdpa 2

∑

Rpa 1
l(R)=l(Q)

αQ,R µ(Q)
1
2 µ(R)

1
2

.
∑

Qdpa 2

µ(Q)
∑

R pa 1;l(R)=l(Q)
ρ(R,Q)≥l(R)

µ(R)

(
l(R)

ρ(Q,R)

)α 1

µ(Q,R)
+
∑

Qdpa 2

µ(Q)
1
2

∑

R pa 1;l(R)=l(Q)
ρ(R,Q)<l(R)

µ(R)
1
2

.
∑

Qdpa 2

µ(Q) +
∑

Qdpa 2

µ(Q) . µ(Q0),

where once more the last line is a consequence of Lemma 7.2, the fact that neighbor cubes
have comparable measure, that any dyadic cube Q has a uniformly bounded number of such
neighbors, and the CX−packing property of the dpa 2 cubes (5.4).
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Estimate of 〈f, V2g〉. First, let us examine the part of the sum when the cubes P 1
i and Q are

close, that is

〈f, V2,1g〉 =
∑

P 1
i

∑

Q spa 2;l(Q)≤l(P1
i
)

ρ(Q,P1
i
)<l(P1

i
)

〈f, φ2
Q〉〈b

2φ2
Q, T (b

1
P 1
i
)〉[g]P 1

i

=
∑

P 1
i

∑

P⊂
̂
P1
i

l(P )=l(P1
i
)

∑

Q spa 2
Q⊂P

〈f, φ2
Q〉〈b

2φ2
Q, T (b

1
P 1
i
)〉[g]P 1

i
.

We put this sum together with the term left to estimate 〈f, V4,1g〉 to get

Σ =
∑

P 1
i

[g]P 1
i

∑

P⊂
̂
P1
i

l(P )=l(P1
i
)



∑

Q spa 2
Q⊂P

〈f, φ2
Q〉〈b

2φ2
Q, T (b

1
P 1
i
)〉+

∑

Q dpa 2
Q⊂P

〈ξ2Qf, T (b
1
P 1
i
)〉


 .

By definition, we have

∑

Q spa 2
Q⊂P

〈f, φ2
Q〉〈b

2φ2
Q, T (b

1
P 1
i
)〉+

∑

Q dpa 2
Q⊂P

〈ξ2Qf, T (b
1
P 1
i
)〉 = 〈Π2(f1P ), T (b

1
P 1
i
)〉 − [f ]P 〈b

21P , T (b
1
P 1
i
)〉.

We can assume that P is pa 2 (else the above sum reduces to 0), so that, using (3.3) for T (b1
P 1
i
)

on P ⊂ P̂ 1
i , we get

|〈b21P , T (b
1
P 1
i
)〉| . ‖b2‖Lq(P )‖T (b

1
P 1
i
)‖Lq′ (P ) . µ(P ).

Observe that since the P 2
j contained in P are non overlapping dyadic subcubes of P ,

‖Π2(f1P )‖
q
Lq(P ) . ‖f‖qLq(P ) +

∑

P 2
j ⊂P

‖b2P 2
j
‖qLq(P ) . µ(P ) +

∑

P 2
j ⊂P

µ(P 2
j ) . µ(P ),

and thus, applying again (3.3) for T (b1
P 1
i
) on P , we have |〈Π2(f1P ), T (b

1
P 1
i
)〉| . µ(P ), giving the

expected bound on 〈f, (V2,1 + V4,1)g〉.
We now estimate the sum in 〈f, V2g〉 running over the pairs of cubes Q and P 1

i which are far
away from one another. Applying the coefficient estimate (B.7) and then the Cauchy-Schwarz
inequality, one gets

∑

P 1
i

∑

Q spa 2;l(Q)≤l(P1
i
)

ρ(Q,P1
i
)≥l(P1

i
)

|〈f, φ2
Q〉| |〈b

2φ2
Q, T (b

1
P 1
i
)〉[g]P 1

i
| .

∑

P 1
i

∑

Q spa 2;l(Q)≤l(P1
i
)

ρ(Q,P1
i
)≥l(P1

i
)

|〈f, φ2
Q〉|µ(P

1
i )

1
2 αQ,P 1

i

.
∑

P 1
i

∑

Q spa 2;l(Q)≤l(P1
i
)

ρ(Q,P1
i
)≥l(P1

i
)

{
|〈f, φ2

Q〉|
µ(P 1

i )
1/2

µ(Q,P 1
i )

1/2

l(Q)α/2

ρ(Q,P 1
i )

α/2

}{
µ(P 1

i )
1
2

µ(Q)1/2

µ(Q,P 1
i )

1/2

l(Q)α/2

ρ(Q,P 1
i )

α/2

}

. S
1/2
1 . S

1/2
2 ,
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with

S1 =
∑

Q spa 2

|〈f, φ2
Q〉|

2
∑

P1
i
;l(P1

i
)≥l(Q)

ρ(P1
i
,Q)≥l(P1

i
)

µ(P 1
i )

µ(Q,P 1
i )

(
l(Q)

ρ(Q,P 1
i )

)α

,

S2 =
∑

P 1
i

µ(P 1
i )

∑

Q spa 2;l(Q)≤l(P1
i
)

ρ(Q,P1
i
)≥l(P1

i
)

µ(Q)

µ(Q,P 1
i )

(
l(Q)

ρ(Q,P 1
i )

)α

.

By Lemma 7.2 and the 1−packing property of the P 1
i , we have already S2 .

∑
i µ(P

1
i ) . µ(Q0).

For the first sum, we have to work a bit more. The result is obtained applying another summing
lemma:

Lemma 7.3. Let Q be a fixed dyadic cube of the space of homogeneous type X. Let p ∈ N. We
have the following summing property

∑

R;l(R)=δ−pl(Q)
ρ(R,Q)≥l(R)

µ(R)

(
l(Q)

ρ(Q,R)

)α 1

µ(Q,R)
. δpα,

which, by summing over p ∈ N, immediately yields

∑

R;l(R)≥l(Q)
ρ(R,Q)≥l(R)

µ(R)

(
l(Q)

ρ(Q,R)

)α 1

µ(Q,R)
. 1.

Proof. Observe that since ρ(Q,R) ≥ l(R) ≥ l(Q), we have µ(Q,R) ≈ µ(B(zQ, ρ(zQ, y))) for all
y ∈ R, with zQ denoting the center of the cube Q. In the same way, ρ(Q,R) ≈ ρ(zQ, y) for all
y ∈ R. Therefore, we can write

∑

R;l(R)=δ−pl(Q)
ρ(R,Q)≥l(R)

(
l(Q)

ρ(Q,R)

)α µ(R)

µ(Q,R)
.

∑

R;l(R)=δ−pl(Q)
ρ(R,Q)≥l(R)

∫

R

(
l(Q)

ρ(zQ, y)

)α dµ(y)

µ(B(zQ, ρ(zQ, y)))

.

∫

ρ(zQ,y)>l(R)

(
l(Q)

ρ(zQ, y)

)α dµ(y)

µ(B(zQ, ρ(zQ, y)))

.
∑

m>0

∫

ρ(zQ,y)∼δ−ml(R)

(
l(Q)

δ−ml(R)

)α dµ(y)

µ(B(zQ, δ−ml(R)))

.

(
l(Q)

l(R)

)α ∑

m>0

δmαµ(B(zQ, δ
−m−1l(R)))

µ(B(zQ, δ−ml(R)))
. δpα.

The second inequality comes from the fact that the cubes R are non overlapping as they are all
of the same generation. Then we obtained the third inequality by splitting the integral over the
coronae ρ(zQ, y) ∼ δ−ml(R), and the last line follows easily. �

Going back to our argument, Lemma 7.3 ensures that S1 .
∑

Q spa 2 |〈f, φ
2
Q〉|

2 . µ(Q0), and it

thus concludes the estimation of the term 〈f, V2g〉.

Estimate of 〈f, V1g〉. This is the most difficult term. Recall that

〈f, V1g〉 =
∑

Q spa 2;Rpa 1
l(R)=l(Q)

〈f, φ2
Q〉〈b

2φ2
Q, T (b

11R)〉
[g]R
[b1]R

.
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We split it into three parts: write

〈f, V1g〉 = 〈f, V1,1g〉+ 〈f, V1,2g〉+ 〈f, V1,3g〉,

with

〈f, V1,1g〉 =
∑

Q spa 2 and non pa 1
R pa 1

l(R)=l(Q)

〈f, φ2
Q〉〈b

2φ2
Q, T (b

11R)〉
[g]R
[b1]R

,

〈f, V1,2g〉 =
∑

Q spa 2 and pa 1

〈f, φ2
Q〉〈b

2φ2
Q, T (b

11Q)〉
[g]Q
[b1]Q

,

〈f, V1,3g〉 =
∑

Q spa 2
andpa 1

∑

R pa 1;R 6=Q
l(R)=l(Q)


〈f, φ

2
Q〉〈b

2φ2
Q, T (b

11R)〉
[g]R
[b1]R

+〈f, φ2
Q〉〈b

2φ2
Q, T (b

1(1Q−
∑

R′ pa 1
l(R′)=l(Q)

1R′))〉
[g]Q
[b1]Q


.

Estimate of 〈f, V1,1g〉. Remark first that Q non pa 1 means Q ⊂ P 1
i for some i. Hence,

〈f, V1,1g〉 =
∑

P 1
i

∑

Q spa 2

Q⊂P1
i

∑

R pa 1
l(R)=l(Q)

〈f, φ2
Q〉〈b

2φ2
Q, T (b

11R)〉
[g]R
[b1]R

.

Now, applying the coefficient estimate (B.5) and the fact that the mean of b1 is uniformly
bounded below on the pa 1 cubes, we obtain

|〈f, V1,1g〉| .
∑

P 1
i

∑

Q spa 2

Q⊂P1
i

∑

Rpa 1
l(R)=l(Q)

αQ,R |〈f, φ2
Q〉|µ(R)

1
2 .

Fix P 1
i , and observe that the cubes R involved in this sum are necessarily outside of P 1

i . Split

the sum for the cubes R that are contained in P̂ 1
i , and those that are outside of P̂ 1

i . We first
show that

I =
∑

Q spa 2

Q⊂P1
i

∑

Rpa 1;l(R)=l(Q)

R∩
̂
P1
i
=∅

αQ,R |〈f, φ2
Q〉|µ(R)

1
2 . µ(P 1

i ).

For such pairs of cubes (Q,R), as Q ⊂ P 1
i we necessarily have ρ(Q,R) ≥ ρ(P 1

i , R) ≥ l(P 1
i ), and

µ(Q,R) & µ(P 1
i , R), so that, applying the Cauchy-Schwarz inequality, one gets

I .
∑

Q spa 2

Q⊂P1
i

∑

R pa 1;l(R)=l(Q)

ρ(R,P1
i
)≥l(P1

i
)

|〈f, φ2
Q〉|µ(R)

1
2

l(R)α

ρ(P 1
i , R)α

µ(Q)
1
2µ(R)

1
2

µ(P 1
i , R)

.




∑

Q spa 2

Q⊂P1
i

∑

R pa 1
l(R)=l(Q)

ρ(R,P1
i
)≥l(P1

i
)

|〈f, φ2
Q〉|

2 l(R)α

ρ(P 1
i , R)α

µ(R)

µ(P 1
i , R)




1/2


∑

Q spa 2

Q⊂P1
i

∑

Rpa 1
l(R)=l(Q)

ρ(R,P1
i
)≥l(P1

i
)

µ(Q)
l(R)α

ρ(P 1
i , R)α

µ(R)

µ(P 1
i , R)




1/2

By Lemma 7.2, we get

∑

Rpa 1;l(R)=l(Q)

ρ(R,P1
i
)≥l(P1

i
)

(
l(R)

ρ(P 1
i , R)

)α µ(R)

µ(P 1
i , R)

.

(
l(Q)

l(P 1
i )

)α

. 1.
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Therefore,

I .



∑

Q spa 2

Q⊂P1
i

|〈f, φ2
Q〉|

2




1/2

∑

Q spa 2

Q⊂P1
i

µ(Q)

(
l(Q)

l(P 1
i )

)α




1/2

. ‖f‖L2(P 1
i )



∑

m≥0

δmα
∑

Q⊂P1
i

l(Q)=δml(P1
i
)

µ(Q)




1/2

. µ(P 1
i ).

We are left to show that

II =
∑

Q spa 2

Q⊂P1
i

∑

R pa 1;l(R)=l(Q)

R⊂
̂
P1
i

αQ,R |〈f, φ2
Q〉|µ(R)

1
2 . µ(P 1

i ).

We again split this sum for the cubes Q that are at a distance less than l(Q) to the complement
of P 1

i , and for those that are not. In the first case, for a fixed such cube Q, there are the cubes R
which are neighbors of Q - they come in a uniformly bounded number and they have a measure
comparable to that of Q - and there are the cubes R at a distance greater than l(Q) of Q. Write

II1 =
∑

Q spa 2;Q⊂P1
i

ρ(Q,(P1
i
)c)<l(Q)

∑

R pa 1;l(R)=l(Q)

R⊂
̂
P1
i

αQ,R |〈f, φ2
Q〉|µ(R)

1
2

.
∑

Q spa 2;Q⊂P1
i

ρ(Q,(P1
i
)c)<l(Q)

|〈f, φ2
Q〉|




µ(Q)

1
2 +

∑

R pa 1;l(R)=l(Q)

R⊂
̂
P1
i
;ρ(R,Q)≥l(Q)

µ(Q)
1
2

µ(R)

µ(Q,R)

(
l(R)

ρ(Q,R)

)α





.
∑

Q spa 2;Q⊂P1
i

ρ(Q,(P1
i
)c)<l(Q)

|〈f, φ2
Q〉|µ(Q)

1
2 .





∑

Q spa 2;Q⊂P1
i

ρ(Q,(P1
i
)c)<l(Q)

µ(Q)





1/2


∑

Q spa 2;Q⊂P1
i

ρ(Q,(P1
i
)c)<l(Q)

|〈f, φ2
Q〉|

2





1/2

,

applying Lemma 7.2 to get the second inequality and then the Cauchy-Schwarz inequality to

get the last one. By Lemma 5.2,
∑

Q⊂P 1
i
|〈f, φ2

Q〉|
2
. ‖f‖2

L2(P 1
i )

. µ(P 1
i ). Furthermore,

∑

Q⊂P1
i

ρ(Q,(P1
i
)c)<l(Q)

µ(Q) =
∑

m≥0

∑

Q⊂P1
i
;l(Q)=δml(P1

i
)

ρ(Q,(P1
i
)c)<δml(P1

i
)

µ(Q)

.
∑

m≥0

µ
(
{x ∈ P 1

i : ρ(x, (P 1
i )

c) . δml(P 1
i )}
)

.
∑

m≥0

δmηµ(P 1
i ) . µ(P 1

i ),
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by the small boundary condition (6) of Lemma 2.1, so that, as desired, we have II1 . µ(P 1
i ).

The sum left to estimate is

II2 =
∑

Q spa 2;Q⊂P1
i

ρ(Q,(P1
i
)c)≥l(Q)

∑

Rpa 1;l(R)=l(Q)

R⊂
̂
P1
i

|〈f, φ2
Q〉|µ(Q)

1
2

µ(R)

µ(Q,R)

(
l(Q)

ρ(Q,R)

)α

.

For such couples of cubes (Q,R), we have necessarily ρ(Q,R) ≥ ρ(Q, (P 1
i )

c) ≥ l(Q) as R and
P 1
i are disjoint. For a fixed cube Q, we thus see that

∑

R⊂
̂
P1
i
;l(R)=l(Q)

ρ(R,Q)≥l(Q)

µ(R)

µ(Q,R)

(
l(Q)

ρ(Q,R)

)α

.

(
l(Q)

ρ(Q, (P 1
i )

c)

)α/2 ∑

R⊂
̂
P1
i
;l(R)=l(Q)

ρ(R,Q)≥l(Q)

µ(R)

µ(Q,R)

(
l(R)

ρ(Q,R)

)α/2

.

(
l(Q)

ρ(Q, (P 1
i )

c)

)α/2

,

by Lemma 7.2. Applying the Cauchy-Schwarz inequality, we thus have

II2 .
∑

Q spa 2;Q⊂P1
i

ρ(Q,(P1
i
)c)≥l(Q)

|〈f, φ2
Q〉|µ(Q)

1
2

(
l(Q)

ρ(Q, (P 1
i )

c)

)α
2

.





∑

Q spa 2;Q⊂P1
i

ρ(Q,(P1
i
)c)≥l(Q)

|〈f, φ2
Q〉|

2





1/2


∑

Q spa 2;Q⊂P1
i

ρ(Q,(P1
i
)c)≥l(Q)

(
l(Q)

ρ(Q, (P 1
i )

c)

)α

µ(Q)





1/2

Lemma 5.2 ensures that the first term is bounded by µ(P 1
i )

1/2. For the second term, observe
that

∑

Q⊂P1
i

ρ(Q,(P1
i
)c)≥l(Q)

(
l(Q)

ρ(Q, (P 1
i )

c)

)α

µ(Q) =
∑

m∈N;j∈Z

m≥j>j0

δα(m−j)
∑

Q∈Em,j

µ(Q),

where, for m ∈ N, j ∈ Z, with m ≥ j > j0,

Em,j = {Q ⊂ P 1
i :

l(Q)

l(P 1
i )

= δm and δj l(P 1
i ) ≤ ρ(Q, (P 1

i )
c) < δj−1l(P 1

i )},

and j0 is such that δj0 ≥ C1 > δj0+1, with C1 the constant intervening in Lemma 2.1. Indeed, for
the cubes Q intervening in the above sum, we always have ρ(Q, (P 1

i )
c) < diam(P 1

i ) ≤ C1l(P
1
i ),

which forces j > j0. Observe that if x ∈ Q ⊂ Em,j, then ρ(x, (P 1
i )

c) ≤ ρ(Q, (P 1
i )

c) + l(Q) ≤
δj−1l(P 1

i ) + δml(P 1
i ) . δj l(P 1

i ) since m ≥ j. Thus the cubes of Em,j pave a corona {x ∈ P 1
i :

ρ(x, (P 1
i )

c) . δj l(P 1
i )}. But by the small boundary condition (6) of Lemma 2.1, this corona has

its measure bounded by δjηµ(P 1
i ). Therefore,

∑

Q⊂P1
i

ρ(Q,(P1
i
)c)≥l(Q)

(
l(Q)

ρ(Q, (P 1
i )

c)

)α

µ(Q) .
∑

m∈N;j∈Z

m≥j>j0

δαmδ(η−α)jµ(P 1
i ) .

∑

j>j0

δ(η−α)jδαjµ(P 1
i ) . µ(P 1

i ),

which gives us the bound II2 . µ(P 1
i ). Summing then all these terms in i, and applying the

1−packing property of the P 1
i , we obtain the expected bound |〈f, V1,1g〉| . µ(Q0).
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Estimate of 〈f, V1,2g〉. This is where the paraproduct appears, and unfortunately, a non trivial
error term. Write

〈f, V1,2g〉 =
∑

Q spa 2 and pa 1

〈f, φ2
Q〉〈b

2φ2
Q, T (b

1)〉
[g]Q
[b1]Q

−
∑

Q spa 2 and pa 1

〈f, φ2
Q〉〈b

2φ2
Q, T (b

11⋃
l(P1

i
)≥l(Q)

P 1
i
)〉

[g]Q
[b1]Q

= I + II.

Observe that for the pa 1 cubes Q, the set of coefficients formed by
(

[g]Q
[b1]Q

)
Q

is uniformly

bounded. It is easy to see that the hypotheses of Lemma 5.3 are verified (with b = b2). Indeed,
as a consequence of (5.3), we have C{P 2

j }
(b2) . 1. Moreover, on F = Q0\∪P 2

j , it is clear that b
2

is uniformly bounded as a consequence of Lebesgue differentiation theorem. We can thus apply
Lemma 5.3 to the term I, with ν = q, and it gives us the bound

|I| . ‖f‖Lq(Q0)‖T (b
1)‖Lq′ (Q0)

. µ(Q0).

Next, we can rewrite the second term involving a sum over the cubes P 1
i . We split it into two

parts, depending as usual on whether or not the cubes Q and P 1
i are at a distance less than

l(P 1
i ). Applying the coefficient estimate (B.8), one gets
∣∣∣∣∣∣∣∣

∑

P 1
i

∑

Q spa 2 and pa 1

l(Q)≤l(P1
i
);ρ(Q,P1

i
)≥l(P1

i
)

〈f, φ2
Q〉〈b

2φ2
Q, T (b

11P 1
i
)〉

[g]Q
[b1]Q

∣∣∣∣∣∣∣∣
.
∑

P 1
i

∑

Q spa 2 and pa 1

l(Q)≤l(P1
i
);ρ(Q,P1

i
)≥l(P1

i
)

|〈f, φ2
Q〉|µ(P

1
i )

1
2 αQ,P 1

i
.

Remark that we already estimated this sum when we were taking care of the term 〈f, V2g〉. We
have seen that it is bounded by µ(Q0). For the remaining sum, observe that since a pa 1 cube
Q is disjoint with any P 1

i , such a cube which is at a distance less than l(P 1
i ) to P 1

i is necessarily
contained inside one of the neighbors of P 1

i . We thus have left to estimate the term

∑

P 1
i

∑

P⊂
̂
P1
i
\P1

i
l(P )=l(P1

i
)

∑

Q spa 2 and pa 1
Q⊂P

〈f, φ2
Q〉〈b

2φ2
Q, T (b

11P 1
i
)〉

[g]Q
[b1]Q

.

Fix P 1
i and P . Set F = P\ ∪ P 2

j , and decomposing

b2 = b21F +
∑

P 2
j ⊂P :ρ(P 2

j ,P
1
i )≥l(P 2

j )

b21P 2
j
+

∑

P 2
j ⊂P :ρ(P 2

j ,P
1
i )<l(P 2

j )

b21P 2
j
,

write
∑

Q spa 2 and pa 1
Q⊂P

〈f, φ2
Q〉〈b

2φ2
Q, T (b

11P 1
i
)〉

[g]Q
[b1]Q

= Σ1 +Σ2 +Σ3.

As in Lemma 5.3, denote by L the operator appearing in these sums. For the first term, apply
the boundedness of L given by Lemma 5.3 to get

|Σ1| =
∣∣∣〈Lf, b21FT (b11P 1

i
)〉
∣∣∣ . ‖f‖Lp′ (P )‖b

21FT (b
11P 1

i
)‖Lp(P )

. µ(P )1/p
′
‖b1‖Lp(P 1

i )
. µ(P 1

i ),

where the second inequality comes from the Hardy inequality (2.8), and the fact that b21F ∈
L∞(P ), and the last inequality from the fact that by (5.3), b11P 1

i
∈ Lp(P 1

i ), and P,P 1
i have
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comparable measure. For the second term Σ2, remark that for any fixed j, as P 2
j is strictly

contained in any spa 2 cube, Lf is constant on P 2
j . Thus we can write

|Σ2| =

∣∣∣∣∣∣∣∣∣∣

∑

P2
j
⊂P

ρ(P2
j
,P1

i
)≥l(P2

j
)

[Lf ]P 2
j
〈b21P 2

j
, T (b11P 1

i
)〉

∣∣∣∣∣∣∣∣∣∣

.
∑

P2
j
⊂P

ρ(P2
j
,P1

i
)≥l(P2

j
)

∫

P 1
i

∫

P 2
j

|[Lf ]P 2
j
b2(x)b1(y)|

λ(x, y)
dµ(x)dµ(y).

For a fixed j such that ρ(P 2
j , P

1
i ) ≥ l(P 2

j ), as l(P 1
i ) ≥ l(P 2

j ), observe that for a fixed y ∈ P 1
i ,

supx∈P 2
j
λ(x, y) ≈ infx∈P 2

j
λ(x, y) uniformly in y and j. Therefore, we can integrate in x to get

∫

P 2
j

|[Lf ]P 2
j
||b2(x)|dµ(x) ≤ |[Lf ]P 2

j
|µ(P 2

j ) ≤

∫

P 2
j

|Lf(x)|dµ(x),

and we obtain

|Σ2| .
∑

P 2
j ⊂P

∫

P 2
j

∫

P 1
i

|[Lf(x)||b1(y)|

λ(x, y)
dµ(y)dµ(x) .

∫

P

∫

P 1
i

|[Lf(x)||b1(y)|

λ(x, y)
dµ(y)dµ(x)

. ‖Lf‖Lp′(P )‖b
1‖Lp(P 1

i )
. µ(P 1

i ),

where the last line is obtained applying the Hardy inequality (2.6), the boundedness of L, and
(5.5) for b1 on P 1

i . Only the third term Σ3 remains. This is the term for which we will need to
use the stronger weak boundedness property (3.4) (and it is the only time in the proof we use
it!). We do not see how to estimate this term without this extra property. As for Σ2, write

Σ3 =
∑

P2
j
⊂P

ρ(P2
j
,P1

i
)<l(P2

j
)

[Lf ]P 2
j
〈b21P 2

j
, T (b11P 1

i
)〉 =

〈
b2




∑

P2
j
⊂P

ρ(P2
j
,P1

i
)<l(P2

j
)

[Lf ]P 2
j
1P 2

j




, T (b11P 1
i
)

〉
.

Apply (3.4) to get

|Σ3| .

∥∥∥∥∥∥∥

∑

P 2
j ⊂P

[Lf ]P 2
j
1P 2

j

∥∥∥∥∥∥∥
ν

µ(P 1
i )

1
ν′ .



∑

P 2
j ⊂P

µ(P 2
j )[|Lf |

ν ]P 2
j




1/ν

µ(P 1
i )

1
ν′

. ‖Lf‖Lν(P ) µ(P 1
i )

1
ν′ . µ(P 1

i ),

where once again we have used the boundedness of L given by Lemma 5.3. It remains only to
sum over the neighbors P of P 1

i , which come in a uniformly bounded number, and then over
the P 1

i (recall that they realize a 1-packing of Q0), to obtain as desired

|II| .
∑

i

µ(P 1
i ) . µ(Q0).
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Estimate of 〈f, V1,3g〉. This is the only term left to estimate to complete the proof. For Q spa
2 and pa 1, and R pa 1 of the same generation, set

βQ,R =




〈f, φ2

Q〉〈b
2φ2

Q, T (b
11R)〉 if Q 6= R

〈f, φ2
Q〉〈b

2φ2
Q, T (b

1(1Q −
∑

R′ pa 1
l(R′)=l(Q)

1R′))〉 if Q = R,

so that the definition of V1,3 rewrites

〈f, V1,3g〉 =
∑

Q spa 2
and pa 1

∑

R pa 1
l(R)=l(Q)

βQ,R
[g]R
[b1]R

.

Observe that for any fixed spa 2 and pa 1 cube Q,
∑

R pa 1
l(R)=l(Q)

βQ,R = 0.

Recall that for any pa 1 cube R, [g]R = [Π1g]R by (5.8) of Lemma 5.6, allowing us to replace
[g]R by [Π1g]R in the above sum. Recall also that

Π1g = E1
0g +

∑

l≥0

D1
l g.

Fix a pa 1 cube R. As b1∆1
Sg and ξ1Sg have mean 0, it is clear that [D1

l g]R = 0 as soon as
l ≤ l(R), which implies [Π1g]R = [E1

0g]R +
∑

l>l(R) [D
1
l g]R. Note that [E1

0g]R = [g]Q0 [b
1]R.

Furthermore, if l > l(R), there is a unique cube SR of generation l such that R ⊂ SR. If SR is
spa 1, then [D1

l g]R = [b1∆1
SR

g]R = [b1]R〈g, φ
1
SR

〉[φ1
SR

]R, since ∆1
SR

g is constant on the children

of SR and therefore on R as well. Else, SR is dpa 1 (R being pa 1 it cannot be contained in a
P 1
i ), and then [D1

l g]R = [ξ1SR
g]R. Consequently, we can write

〈f, V1,3g〉 =
∑

Q spa 2
and pa 1

∑

Rpa 1
l(R)=l(Q)

βQ,R
[Π1g]R
[b1]R

=
∑

Q spa 2
and pa 1

∑

Rpa 1
l(R)=l(Q)

βQ,R
1

[b1]R





∑

S spa 1;l(S)>l(Q)
S⊃R,S 6=R

[b1]R〈g, φ
1
S〉[φ

1
S ]R





+
∑

Q spa 2
and pa 1

∑

Rpa 1
l(R)=l(Q)

βQ,R
1

[b1]R





∑

S dpa 1;l(S)>l(Q)
S⊃R,S 6=R

[ξ1Sg]R





+
∑

Q spa 2
and pa 1

[g]Q0

∑

R pa 1
l(R)=l(Q)

βQ,R.

The last sum is equal to zero because of the summing property of the βQ,R we stated above. We
have thus decomposed our term into two parts: 〈f, V1,3g〉 = 〈f, V1,3,1g〉+ 〈f, V1,3,2g〉.

Estimate of 〈f, V1,3,1g〉. Inverting the sums over R and S, one gets

〈f, V1,3,1g〉 =
∑

Q spa 2
and pa 1

∑

S spa 1
l(S)>l(Q)

∑

Rpa 1;l(R)=l(Q)
R⊂S,R 6=S

βQ,R〈g, φ
1
S〉[φ

1
S ]R.

Next, we want to use the pseudo-annular decomposition used in [AY]. To achieve this, let us
introduce some more notation. For N ∈ N, Q spa 2, S spa 1 with l(S) > l(Q), and R pa 1 with
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l(R) = l(Q) and R ⊂ S,R 6= S, set

βN
Q,S,R =





βQ,R if ρ(Q,R) ∼ δ−N+1l(R)

−
∑

R pa 1;l(R)=l(Q)
R⊂S;R 6=S

ρ(R,Q)∼δ−N+1l(R)

βQ,R if Q = R

0 else.

where as before ρ(R,Q) ∼ δ−N+1l(R) means δ−N+1l(R) ≤ ρ(R,Q) < δ−N l(R). Obviously, for
N = 0, the cubes R such that ρ(Q,R) ∼ δl(R) simply are the cubes R at distance less than l(R)
of Q. Remark that everything has been done so that for all N ∈ N, for fixed Q and S,

∑

R pa 1;l(R)=l(Q)
R⊂S;R 6=S

βN
Q,S,R = 0.

Now, set

γNQ,S =
∑

R pa 1;l(R)=l(Q)
R⊂S;R 6=S

βN
Q,S,R〈g, φ

1
S〉[φ

1
S ]R,

and

〈f, V N
1,3,1g〉 =

∑

Q spa 2
and pa 1

∑

S spa 1
l(S)>l(Q)

γNQ,S,

so that V1,3,1 =
∑

N∈N V N
1,3,1. We will prove that for all N ≥ 0

|〈f, V N
1,3,1g〉| . (N + 1)δNαµ(Q0),

and it will give us the expected bound for V1,3,1 by summing over N ∈ N. To prove this result,
we split the sum into two parts depending on the relative sizes of Q and S:

〈f, V N
1,3,1g〉 =

∑

Q spa 2
and pa 1

∑

S spa 1

δN+3<
l(Q)
l(S)

≤δ

γNQ,S +
∑

Q spa 2
and pa 1

∑

S spa 1
l(Q)
l(S)

≤δN+3

γNQ,S = I + II.

For the first term, fix cubes Q and S. Remark that for a cube R 6= Q, βN
Q,S,R 6= 0 ⇒ ρ(Q,R) ≥

δ−N+1l(R), so that applying the coefficient estimate (B.5), one gets

|βN
Q,S,R| . |〈f, φ2

Q〉|αQ,R µ(R)
1
2 . |〈f, φ2

Q〉|µ(Q)
1
2

µ(R)

µ(Q,R)

(
l(Q)

ρ(Q,R)

)α

. |〈f, φ2
Q〉|µ(Q)

1
2 δNα µ(R)

µ(Q,R)
.

Remark also that we have |〈g, φ1
S〉[φ

1
S ]R| . |〈g, φ1

S〉|µ(S)
− 1

2 as a consequence of properties (1)
and (2) of Lemma 5.1. Finally, observe that γNQ,S 6= 0 ⇒ ρ(Q,S) ≤ δ−N l(Q), because else all

the βN
Q,S,R are equal to zero. Now, combining all this, write

|I| . δNα
∑

Q spa 2

∑

S spa 1

δN+3<
l(Q)
l(S)

≤δ

ρ(Q,S)≤δ−Nl(Q)

|〈f, φ2
Q〉||〈g, φ

1
S 〉|

(
µ(Q)

µ(S)

) 1
2 ∑

R pa 1
l(R)=l(Q)

R⊂S
ρ(R,Q)∼δ−Nl(Q)

µ(R)

µ(Q,R)

. δNα S
1/2
1 × S

1/2
2 ,
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where

S1 =
∑

Q spa 2

∑

S spa 1

δN+3<
l(Q)
l(S)

≤δ

ρ(Q,S)≤δ−Nl(Q)

|〈f, φ2
Q〉|

2 ∑

R pa 1
l(R)=l(Q)

R⊂S
ρ(R,Q)∼δ−Nl(Q)

µ(R)

µ(Q,R)

S2 =
∑

Q spa 2

∑

S spa 1

δN+3<
l(Q)
l(S)

≤δ

ρ(Q,S)≤δ−Nl(Q)

|〈g, φ1
S〉|

2 µ(Q)

µ(S)

∑

R pa 1
l(R)=l(Q)

R⊂S
ρ(R,Q)∼δ−Nl(Q)

µ(R)

µ(Q,R)
.

Let us first consider S1. Observe that for a fixed cube Q of center zQ, if ρ(Q,R) ∼ δ−N l(Q),

then µ(Q,R) ≈ µ(B(zQ, δ
−N l(Q))). Therefore

∑

R pa 1
l(R)=l(Q)

R⊂S
ρ(R,Q)∼δ−Nl(Q)

µ(R)

µ(Q,R)
.

1

µ(B(zQ, δ−N l(Q)))

∑

R⊂S
l(R)=l(Q)

µ(R) .
µ(S)

µ(B(zQ, δ−N l(Q)))
.

Then, the cubes S of a fixed generation, at a distance less than δ−N l(Q) of Q, and of a diameter
not exceeding δ−N−3l(Q), pave a ball of a measure comparable to µ(B(zQ, δ

−N l(Q))). So,
summing over those cubes S, and then summing over those N + 3 generations, we get

S1 . (N + 1)
∑

Q spa 2

|〈f, φ2
Q〉|

2
. (N + 1)‖f‖2L2(Q0)

. (N + 1)µ(Q0).

For S2, it is the same idea. Observe that for a fixed cube S of center zS , if ρ(Q,R) ∼ δ−N l(Q),
then µ(Q,R) ≈ µ(B(zR, δ

−N l(Q))), where zR is the center of the cube R. But since S has a
diameter not exceeding δ−N−3l(Q),, we even have µ(Q,R) ≈ µ(B(zS , δ

−N l(Q))). Therefore

µ(Q)

µ(S)

∑

R pa 1
l(R)=l(Q)

R⊂S
ρ(R,Q)∼δ−Nl(Q)

µ(R)

µ(Q,R)
.

µ(Q)

µ(B(zS , δ−N l(Q)))
.

Now, summing once more over cubes Q of the same generation, then summing over those N +3
generations, and at last summing over the cubes S spa 1, we also get

S2 . (N + 1)µ(Q0),

which finally gives us the bound

|I| . (N + 1)δNαµ(Q0),

for all N ∈ N. We now estimate the term

II =
∑

Q spa 2
and pa 1

∑

S spa 1
l(Q)
l(S)

≤δN+3

γNQ,S.

Fix such cubes Q and S. For any cube R strictly contained inside S, we know that φ1
S is

constant over R. Denote by fr(S) the union of the boundaries S′\S′ of all the children S′ of S.
If ρ(Q, fr(S)) > δ−N−1l(Q), then either Q ∩ S = ∅, which implies that all the βN

Q,S,R are equal

to zero, and γNQ,S as well, or Q ⊂ S. In this case, if βN
Q,S,R 6= 0, then ρ(Q,R) ≤ δ−N l(Q), and

with the assumption we made it implies that R is in the same child of S as Q. Therefore, for all
the βN

Q,S,R non equal to zero, [φ1
S ]R has the same value, and γNQ,S = [φ1

S ]Q
∑

R βN
Q,S,R = 0. Thus
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γNQ,S 6= 0 ⇒ ρ(Q, fr(S)) ≤ δ−N−1l(Q). Now, if that condition is satisfied, applying the coefficient

estimate (B.5), we have

|βN
Q,S,R| . |〈f, φ2

Q〉|µ(Q)
1
2 δNα µ(R)

µ(Q,R)
,

and

∑

R⊂S;l(R)=l(Q)

ρ(R,Q)∼δ−Nl(Q)

|βN
Q,S,R||[∆

1
Sg]R| . |〈f, φ2

Q〉| |〈g, φ
1
S 〉|

(
µ(Q)

µ(S)

) 1
2

δNα
∑

l(R)=l(Q)

ρ(R,Q)∼δ−Nl(Q)

µ(R)

µ(B(zQ, δ−N l(Q)))

. δNα|〈f, φ2
Q〉| |〈g, φ

1
S〉|

(
µ(Q)

µ(S)

) 1
2

.

Therefore, if we introduce the set EN
t,S =

⋃
P∈θNt,S

P , where

θNt,S = {P ⊂ Q0; l(P ) = tl(S) and ρ(P, fr(S)) ≤ (δ−N−1t)l(S)},

we have

|γNQ,S| . δNα|〈f, φ2
Q〉| |〈g, φ1

S〉|

(
µ(Q)

µ(S)

) 1
2

1Q⊂EN
l(Q)
l(S)

,S

.

Remark that if x ∈ P , with P ∈ θNt,S , then ρ(x, fr(S)) . ρ(P, fr(S)) + l(P ) . (δ−N−1t)l(S) +

tl(S) . (δ−N−1t)l(S) as N ≥ 0. Thus, by the small boundary condition (6) of Lemma 2.1,
µ(EN

t,S) . (δ−N−1t)ηµ(S). Let β > 0 be such that η − 2β > 0, and let λ l(Q)
l(S)

= (δ−N−1+j)β

whenever l(Q)
l(S) = δj . Now, by the Cauchy-Schwarz inequality, write

|II| . δNα





∑

Q spa 2
and pa 1

∑

S spa 1
l(Q)
l(S)

≤δN+3

|〈f, φ2
Q〉|

2
λ2

l(Q)
l(S)

1Q⊂EN
l(Q)
l(S)

,S





1
2




∑

Q spa 2
and pa 1

∑

S spa 1
l(Q)
l(S)

≤δN+3

|〈g, φ1
S〉|

2
λ−2

l(Q)
l(S)

µ(Q)

µ(S)
1Q⊂EN

l(Q)
l(S)

,S





1
2

Observe that for a fixed cube Q and a fixed value of l(S), the number of cubes S such that
Q ⊂ EN

l(Q)
l(S)

,S
is uniformly bounded. Therefore

∑

Q spa 2
and pa 1

∑

S spa 1
l(Q)
l(S)

≤δN+3

|〈f, φ2
Q〉|

2
λ2

l(Q)
l(S)

1Q⊂EN
l(Q)
l(S)

,S

.
∑

Q spa 2

|〈f, φ2
Q〉|

2 ∑

j≥N+3

(δ−N−1+j)2β
∑

S spa 1
l(Q)
l(S)

=δj

1Q⊂EN
l(Q)
l(S)

,S

.
∑

Q spa 2

|〈f, φ2
Q〉|

2
. µ(Q0).
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We can similarly bound the second sum: we have
∑

Q spa 2
and pa 1

∑

S spa 1
l(Q)
l(S)

≤δN+3

|〈g, φ1
S〉|

2
λ−2

l(Q)
l(S)

µ(Q)

µ(S)
1Q⊂EN

l(Q)
l(S)

,S

.
∑

S spa 1

|〈g, φ1
S〉|

2 ∑

j≥N+3

(δ−N−1+j)−2β
∑

Q spa 2

l(Q)=δjl(S)

Q⊂EN
δj,S

µ(Q)

µ(S)

.
∑

S spa 1

|〈g, φ1
S〉|

2 ∑

j≥N+3

(δ−N−1+j)−2β
µ(EN

δj ,S
)

µ(S)

.
∑

S spa 1

|〈g, φ1
S〉|

2 ∑

j≥N+3

(δ−N−1+j)η−2β

.
∑

S spa 1

|〈g, φ1
S〉|

2
. µ(Q0).

We thus proved that |II| . δNαµ(Q0), and therefore for all N ∈ N, we have as expected
|〈f, V N

1,3,1g〉| . (N + 1)δNαµ(Q0). Summing over N ∈ N, this handles the term 〈f, V1,3,1g〉.

Estimate of 〈f, V1,3,2g〉. Remember that by definition of the ”buffer” functions ξ1Sg, if R ⊂ S′,

S′ ∈ S̃, we have [ξ1Sg]R = aS′ [b1]R, where aS′ denotes the coefficient uniformly bounded by
‖g‖∞ ≤ 1 introduced in Lemma 5.5. Therefore

〈f, V1,3,2g〉 =
∑

Q spa 2
and pa 1

∑

S dpa 1
l(S)>l(Q)

∑

S′∈S̃

∑

R pa 1;l(R)=l(Q)

R⊂S′

βQ,R aS′

=
∑

Q spa 2
and pa 1

∑

S dpa 1
l(S)>l(Q)

∑

S′∈S̃

aS′ µ(S)
1
2

∑

R pa 1;l(R)=l(Q)

R⊂S′

βQ,R µ(S)−
1
2 .

Remark that by the CX−packing property (5.4) of the dpa 1 cubes,
∑

S dpa 1

∑

S′∈S̃

∣∣∣aS′ µ(S)
1
2

∣∣∣
2
.
∑

S dpa 1

µ(S) . µ(Q0).

That is all we need to apply exactly the same argument we applied to 〈f, V1,3,1g〉, i.e. applying
the pseudo-annular decomposition of V1,3,2 into operators V N

1,3,2, estimating those operators, and
then summing over N ∈ N. Indeed, the crucial point was that we could bound the coefficients

|〈g, φ1
S〉[φ

1
S ]R| by |〈g, φ1

S〉|µ(S)
− 1

2 , and then that the |〈g, φ1
S〉| were square summable over the

spa 1 cubes S. We have the same square summability property here, and everything works
out in the same way, so that though we will omit the detail, we obtain the expected estimate
|〈f, V1,3,2g〉| . µ(Q0). This completes the proof of Theorem 3.1.

8. Two particular cases

8.1. Perfect dyadic operators. The notion of perfect dyadic operators was introduced in
[AHMTT]. We recall the definition.

Definition 8.1. Perfect dyadic singular integral operators (pdsio).
We say that T is a perfect dyadic singular integral operator on X if it satisfies the following
properties:

(1) T is a linear continuous operator from Dα to D′
α.

(2) T has a kernel K satisfying the size condition (2.1).
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(3) 〈g, Tf〉 is well defined for pairs of functions (f, g) ∈ Lp
c(X) × Lp′

c (X) for 1 < p < +∞
and if, furthermore, they are integrable with support on disjoint dyadic cubes (up to a
set of measure 0)

〈g, Tf〉 =

∫ ∫

X×X
g(x)K(x, y)f(y)dµ(x)dµ(y).

(4) For all (f, g) as above, if f has support in a dyadic cube Q and mean 0, then 〈g, Tf〉 = 0
whenever the support of g does not meet Q (up to a set of measure 0).

A pdsio has in a sense its singularity adapted to the dyadic grid. As was proven in [AHMTT]
in the setting of the real line (but there is no difficulty adapting it to a space of homogeneous
type), pdsio satisfy Theorem 3.1 without having to suppose conditions (3.4), (3.5), and with
(3.7) instead of (3.3). Looking at our proof, it is easy to recover this result. Indeed, most of
the terms we had to estimate simply vanish if one considers pdsio, and only the diagonal terms
remain, which makes the proof a lot more straightforward. Here is how one estimates those
diagonal terms. Consider for example the term

〈b2φb2

Q , T (b1φb1

Q )〉 =
∑

Q′∈Q̃,R′∈Q̃

[φb2

Q ]Q′〈b21Q′ , T (b11R′)〉[φb1

Q ]R′ ,

when Q is a spa 1 and spa 2 cube. It remains to compute 〈b21Q′ , T (b11R′)〉. If Q′ 6= R′,
one cannot use the Hardy type inequality (2.7) directly because the exponents p, q can happen
to be uncompatible if 1/p + 1/q > 1, but one can circumvent this as follows: observe that∫
(b11R′ − [b1]R′1R′)dµ =

∫
(b21Q′ − [b2]Q′1Q′)dµ = 0, so that

(8.1) 〈b21Q′ , T (b11R′)〉 = 〈b21Q′ , T (1R′)〉[b1]R′ = [b2]Q′〈1Q′ , T (1R′)〉[b1]R′ .

Now, we can apply (2.7) because 1Q′ , 1R′ ∈ L∞(X). If Q′ = R′, using the fact that T is perfect
dyadic, write

〈b21Q′ , T (b11Q′)〉 = 〈b21Q′ − [b2]Q′b2Q′ , T (b11Q′)〉+ [b2]Q′〈b2Q′ , T (b11Q′ − [b1]Q′b1Q′)〉

+ [b2]Q′ [b1]Q′〈b2Q′ , T (b1Q′)〉

= 〈b21Q′ − [b2]Q′b2Q′ , T (b1)〉+ [b2]Q′〈T ∗(b2Q′), b11Q′ − [b1]Q′b1Q′〉

+ [b2]Q′ [b1]Q′〈b2Q′ , T (b1Q′)〉,

and all those terms are easily estimated applying (3.2), (3.3) (on same Q′) and the fact that Q′

is pa 1 and pa 2. We thus always have

|〈b21Q′ , T (b11R′)〉| . µ(Q′)1/2µ(R′)1/2 . µ(Q′),

because these cubes have comparable measure as they are children of the same cube. Conse-

quently, using the L∞ estimates of the functions φb2

Q , φb1

Q seen in Section 5.1, we still have the
estimate ∣∣∣〈b2φb2

Q , T (b1φb1
Q )〉
∣∣∣ . 1,

and all this argument remains valid when 1/p + 1/q > 1. All the other terms can be treated in
the same way: to put it roughly, when considering pdsio and estimating terms where one had
to use (3.6), one can always reduce to considering L∞ functions by substracting the mean value
of the functions involved, and then apply the Hardy inequality (2.7) to those L∞ functions.

Similarly, one needs not suppose an integrability of T (biQ) over Q̂, an integrability condition

over Q suffices. Putting all this together, we recover Theorem 6.8 of [AHMTT], with a different
proof.
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Remark 8.2. The identity (8.1) shows that, whenever T is a pdsio, if Q 6= R are neighbors and
supp f ⊂ Q, supp g ⊂ R, then for all 1 ≤ p, q ≤ +∞, we have

|〈Tf, g〉| ≤ |〈T1Q, 1R〉| |[f ]Q| |[g]R| ≤ Cµ(Q)
1− 1

p
− 1

q ‖f‖p‖g‖q.

Such an inequality is wrong when 1/p + 1/q > 1 for standard sio. This indicates that pdsio do
not approximate well standard sio in this range of exponents.

8.2. The case 1/p + 1/q ≤ 1. We have stated in Section 3 that when 1/p + 1/q ≤ 1, Theorem
3.1 is valid under the hypotheses (3.1), (3.2) and (3.7). This is Theorem 3.4 of [AY]. Let us
prove this statement. We already pointed out that in that particular case, hypotheses (3.3) and
(3.4) come as a consequence of (3.1), (3.2) and (3.7) (see Proposition 3.3). However we cannot
directly show (3.5), which we obviously need in order to estimate all the diagonal terms. The
proof thus has to be adapted slightly. More precisely, we need to include a stronger control in
stopping time Lemma 5.5: we need to control also the maximal function (non dyadic) of b1, as
we want the means [|Mb1|p]Q̂ to be uniformly bounded on the pa 1 cubes Q. To achieve this,

the stopping time has to be on whether

(i) [|b1|]Q < δ

or

(ii) [|T (b1)|q
′
]Q + sup

E
[|Mb1|p]E > C,

for dyadic subcubes Q of Q0 for appropriately chosen δ > 0 and C < +∞, and where the

supremum runs over the unions E of dyadic cubes such that Q ⊂ E ⊂ Q̂. This can easily be
done and we refer to [Ho1] for the detail. Once having this additional control, the diagonal
terms of (3.5) can be estimated as follows. If R is a pa 1 and pa 2 dyadic cube, write

〈b21R, T (b
11R)〉 = [b2]R〈T

∗(b2R), b
11R〉+ 〈h, T (b1)〉 − 〈h, T (b11

R̂\R
)〉 − 〈h, T (b11

R̂c)〉,

where h = b21R − [b2]Rb
2
R. Remark that by the controls given by the stopping time, we have

‖h‖qq . µ(R). For the first term, use (3.3) for T ∗(b2R) on R, (5.3) for b1 and b2 on R, and p′ ≤ q:

|[b2]R〈T
∗(b2R), b

11R〉| . ‖T ∗(b2R)‖Lp′ (R)‖b
1‖Lp(R) . µ(R).

For the same reasons, the second term is also bounded:

|〈h, T (b1)〉| . ‖h‖q‖T (b
1)‖Lq′ (R) . µ(R).

Apply (2.7) to the third term, q′ ≤ p, and the control on Mb1 given by the stopping-time to get

|〈h, T (b11R̂\R)〉| . ‖h‖q‖T (b
11R̂\R)‖Lq′ (R) . ‖h‖q‖b

1‖Lq′ (R̂)

. ‖h‖q‖Mb1‖Lq′ (R̂) . µ(R).

Finally, for the last term, since h has mean 0, we can apply (2.5) to get

|〈h, T (b11R̂c)〉| .

∫

x∈R
|h(x)|

∫

y∈R̂c

|b1(y)|

(
l(R)

ρ(x, y)

)α 1

λ(x, y)
dµ(y)dµ(x)

.

∫

x∈R
|h(x)|

∑

j≥0

2−jα

∫

2j l(R)≤ρ(x,y)<2j+1 l(R)
|b1(y)|

1

λ(x, y)
dµ(y)dµ(x)

.

∫

x∈R
|h(x)|

∑

j≥0

2−jα 1

µ(B(x, 2j+1l(R)))

∫

B(x,2j+1l(R))
|b1(y)|dµ(y)dµ(x)

.

∫

x∈R
|h(x)| |Mb1(x)|dµ(x) . ‖h‖Lq(R)‖Mb1‖Lq′ (R) . µ(R),
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where once again we have used the control on Mb1 given by the stopping time and q′ ≤ p.
Summing up, we obtain as desired

|〈b21R, T (b
11R)〉| . µ(R),

for the pa 1 and pa 2 cubes R. This allows us to estimate all the diagonal terms appearing in
our argument, which we previously took care of by applying hypothesis (3.5). It means that
when 1/p + 1/q ≤ 1, we do not need to assume (3.5), nor (3.4), and this proves Theorem 3.1
under (3.1), (3.2) and (3.7).

9. Hardy type inequalities on spaces of homogeneous type

9.1. A closer look at the Hardy inequalities. We introduced in the previous sections some
Hardy type inequalities which we will review in detail now. First, let us give the proof of Lemma
2.4.

Proof of Lemma 2.4. 2 Let I be the integral in (2.6). We prove that for all 1 < r, s < ∞, we
have

I .
〈
(Mµ(|f |

r))1/r , |g|
〉
+
〈
|f |, (Mµ(|g|

s))1/s
〉
,

and the Hardy-Littlewood maximal theorem then gives the desired result, choosing 1 < r < ν
and 1 < s < ν ′. Without loss of generality, we can assume f, g ≥ 0. We have

I =

∫

x∈Q′

ρ(x,Q)>0

g(x)

∫
y∈Q

ρ(y,Q′)≤ρ(x,Q)

f(y)

λ(x, y)
dµ(y)dµ(x) +

∫
y∈Q

ρ(y,Q′)>0

f(y)

∫
x∈Q′

ρ(y,Q′)>ρ(x,Q)

g(x)

λ(x, y)
dµ(x)dµ(y)

Indeed, µ ({x ∈ Q′ | ρ(x,Q) = 0}) = µ ({y ∈ Q | ρ(y,Q′) = 0}) = 0, because of the property (6)
of Lemma 2.1: we have for example

{x ∈ Q′ | ρ(x,Q) = 0} ⊂
⋂

j∈N

{x ∈ Q′ | ρ(x,Q′c) ≤ 2−jδk},

and all those sets have their measure bounded by µ(Q′)2−jη −→
j→∞

0. By symmetry, it is

enough to estimate the first integral for example, which we call I1. For x ∈ Q′, let Ex =
{y ∈ Q | ρ(y,Qc) ≤ ρ(x,Q)}. For a fixed x in Q′, we prove that for all 1 < r < ∞,

I1(x) =

∫

y∈Ex

K(x, y)f(y)dµ(y) . Mµ(f
r)(x)1/r.

Consider the dyadic subcubes Q′ of Q, which are maximal for the relation l(Q′) ≤ ρ(Q′, x). Call
them Ql

α(x). They realize a partition of the cube Q, as for every y ∈ Q, there exists a sufficiently
small cube Qy containing y such that l(Qy) ≤ ρ(x,Q) ≤ ρ(x,Qy), and Qy is then included in
one of those maximal Ql

α(x). The case where there is a unique cube Ql
α(x) = Q means that

l(Q) ≤ ρ(x,Q). Then λ(x, y) ≥ µ(B(x, l(Q))) while Q ⊂ B(x,Cl(Q)) for some dimensional
constant C. Hence I1(x) . Mµf(x). The second case is when Q is not a maximal cube. By

maximality, if Ql−1
β ⊂ Q is the unique parent of a Ql

α(x), then we have ρ(x,Ql−1
β ) < l(Ql−1

β ),

and thus ρ(x,Ql
α(x)) . ρ(x,Ql−1

β ) + l(Ql−1
β ) . l(Ql−1

β ) = δ−1l(Ql
α(x)). Note that this implies

ρ(x,Q) ≤ ρ(x,Ql
α(x)) . δl with implicit constant independent of x and l. For a fixed l, let

C l(x) =
⋃

α:Ql
α(x)∩Ex 6=∅

Ql
α(x).

2We thank J.-M. Martell for the suggestion of using Whitney coverings that led to an improvement of our
earlier argument.
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Observe that if y ∈ Ql
α(x)∩Ex, then ρ(y, (Ql

α(x))
c) ≤ ρ(y,Qc) ≤ ρ(x,Q). Thus, µ(Ql

α(x)∩Ex) .(
ρ(x,Q)

δl

)η
µ(Ql

α(x)) by the small boundary property (6) of Christ’s dyadic cubes stated in Lemma

2.1. Summing over the cubes in C l(x), we have

µ(C l(x) ∩ Ex) .

(
ρ(x,Q)

δl

)η

µ(C l(x)) .

(
ρ(x,Q)

δl

)η

µ(B(x, δl)),

the last inequality being a consequence of doubling and the fact that each of the cubes Ql
α(x)

in C l(x) is of length δl and at a distance comparable to δl from x, so that C l(x) ⊂ B(x,Cδl)
for some C independent of l and x. Now, write

I1(x) .
∑

l

∫

Cl(x)∩Ex

|f(y)|

µ(B(x, ρ(x, y)))
dµ(y)

.
∑

l

1

µ(B(x, δl))

∫

B(x,Cδl)
|f |1Cl(x)∩Ex

dµ

.
∑

l

(
1

µ(B(x, δl))

∫

B(x,Cδl)
|f |rdµ

)1/r (
µ(C l(x) ∩ Ex)

µ(B(x, δl))

) 1
r′

. Mµ(|f |
r)(x)1/r

∑

l

(
ρ(x,Q)

δl

) η
r′

. Mµ(|f |
r)(x)1/r ,

where the third inequality is obtained by applying the Hölder inequality with r > 1, and the
last one comes from the fact that ρ(x,Q) . δl for the integers l involved in the summation. This
concludes our proof. �

Now let us study more precisely the Hardy property (3.8) we introduced in Section 4. It is
not completely clear when (3.8) is true in a general space of homogeneous type. It obviously
depends on how the sets B and Bc see each other in X. By analogy with Christ’s dyadic cubes,
we shall assume that the outer and inner layers {x ∈ B|ρ(x,Bc) ≤ ε} and {y ∈ Bc|ρ(y,B) ≤ ε}
tend to zero in measure as ε → 0, and in a scale invariant way.

Definition 9.1. Layer decay and relative layer decay properties.
Let (X, ρ, µ) be a space of homogeneous type. For a ball B in X, denote Bε = {x ∈ B|ρ(x,Bc) ≤
ε} ∪ {y ∈ Bc|ρ(y,B) ≤ ε} the union of the inner and outer layers.

• We say that X has the layer decay property if there exist constants η > 0, C < +∞
such that for every ball B = B(z, r) in X and every ε > 0, we have

(9.1) µ(Bε) ≤ C
(ε
r

)η
µ(B(z, r)).

• We say that X has the relative layer decay property if there exist constants η > 0,
C < +∞ such that for every ball B = B(z, r) in X, every ball B(w,R) not containing
z, and every ε > 0, we have

(9.2) µ (Bε ∩B(w,R)) ≤ C
( ε

R

)η
µ(B(w,R)).

The layer decay property already appeared in [B1] (with only µ ({x ∈ B|ρ(x,Bc) ≤ ε}) in the
left hand side of (9.1)). Remark that (9.2) implies (9.1). As a matter of fact, let z ∈ X, r >
0, 0 < ε < r, denote B = B(z, r) and suppose that ε < r/2 (else the inequality is trivial). By
the Vitali covering lemma, if Bε is non empty, there exist points wk ∈ Bε such that the balls
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B(wk, r/10) are mutually disjoint and Bε is covered by the union ∪kB(wk, r/2). Now, write

µ(Bε) = µ(Bε ∩ (∪kB(wk, r/2))) ≤
∑

k

µ(Bε ∩B(wk, r/2))

.
∑

k

(ε
r

)η
µ(B(wk, r/2)) .

(ε
r

)η∑

k

µ(B(wk, r/10))

.
(ε
r

)η
µ(B),

where the second inequality comes from (9.2), the third from the doubling property of µ, and
the last from the disjointness of the balls B(wk, r/10) and the fact that they are all inside a ball
of measure comparable to µ(B).

Remark also that the condition z /∈ B(w,R) cannot be dropped in the relative layer decay
property (take a very small B(z, r) contained in a large B(w,R)). If z ∈ B(w,R), the only
general conclusion could be a bound like C(ε/r)ηµ(B(z, r)).

It turns out that the relative layer decay property constitutes a sufficient condition for the
Hardy property (3.8), as is shown by the following proposition.

Proposition 9.2. Let (X, ρ, µ) be a space of homogeneous type, and suppose that X has the
relative layer decay property. Then the Hardy property (3.8) is satisfied on X.

Proof. The proof is quite similar to the proof of Lemma 2.5, with modifications owing to the fact
one cannot use exact coverings with balls as for dyadic cubes. Let again I denote the integral
in (3.8). Fix a ball B of center z and radius r > 0, and functions f, g respectively supported on

2B\B and B with f ∈ Lν , g ∈ Lν′ . As before, we can assume that f, g ≥ 0 and it suffices to
prove that for all 1 < σ, s < ∞, we have

(9.3) I .
〈
(Mµ(f

σ))1/σ , g
〉
+
〈
f, (Mµ(g

s))1/s
〉
.

The hypotheses imply µ(B\B) = 0 and allow us to write

I =

∫

x∈B
ρ(x,Bc)>0

g(x)

∫
y∈2B\B

ρ(y,B)≤ρ(x,Bc)

f(y)

λ(x, y)
dµ(y)dµ(x) +

∫
y∈2B\B
ρ(y,B)>0

f(y)

∫

x∈B
ρ(y,B)>ρ(x,Bc)

g(x)

λ(x, y)
dµ(x)dµ(y).

Let us begin by estimating the first term. Fix x ∈ B. As before, let Ex = {y ∈ 2B\B | ρ(y,B) ≤ ρ(x,Bc)}.
We decompose the integral in y over coronae at distance 2jρ(x,Bc) from x:

I1(x) =

∫

y∈Ex

f(y)

λ(x, y)
dµ(y)

.
∑

j≥0

∫
y∈Ex

2jρ(x,Bc)≤ρ(x,y)<2j+1ρ(x,Bc)

f(y)

µ(B(x, ρ(x, y)))
dµ(y)

.
∑

j≥0

z/∈B(x,2j+1ρ(x,Bc))

Mµ(f
σ)(x)1/σ

(
µ(Ex ∩B(x, 2j+1ρ(x,Bc)))

µ(B(x, 2j+1ρ(x,Bc)))

) 1
σ′

+
∑

j≥0

z∈B(x,2j+1ρ(x,Bc)))

1

µ(B(x, 2j+1ρ(x,Bc)))

∫
y∈Ex

2jρ(x,Bc)≤ρ(x,y)<2j+1ρ(x,Bc)

fdµ,

where the last inequality is obtained applying the Hölder inequality with σ > 1. Observe
that there are at most four integers j ≥ 0 such that z ∈ B(x, 2j+1ρ(x,Bc))) and Ex ∩ {y ∈
Bc|2jρ(x,Bc) ≤ ρ(x, y) < 2j+1ρ(x,Bc)} 6= ∅. Indeed, let j0 be the first such integer, which
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implies ρ(x, z) ≤ 2j0+1ρ(x,Bc), and let j ≥ j0 be another one. Let y ∈ Ex∩{y ∈ Bc|2jρ(x,Bc) ≤
ρ(x, y) < 2j+1ρ(x,Bc)}. Using y ∈ Ex, we have ρ(z, y) ≤ r + ρ(y,B) ≤ r + ρ(x,Bc). Also,
r ≤ ρ(x, z)+ρ(x,Bc). Hence ρ(z, y) ≤ ρ(x, z)+2ρ(x,Bc). Using 2jρ(x,Bc) ≤ ρ(x, y), we obtain

2jρ(x,Bc) ≤ ρ(x, y) ≤ ρ(x, z) + ρ(z, y) ≤ 2ρ(x, z) + 2ρ(x,Bc) ≤ (2j0+2 + 2)ρ(x,Bc),

hence j ≤ j0 + 3.
Consequently, applying (9.2), we have

I1(x) . Mµ(f
σ)(x)1/σ

∑

j≥0

(
ρ(x,Bc)

2j+1ρ(x,Bc)

) η
σ′

+ 4Mµf(x) . Mµ(f
σ)(x)1/σ ,

so the first integral is controlled by 〈g, (Mµ(f
σ))1/σ〉. The argument for the second integral is

entirely similar using the symmetry of our assumptions (and 4 above becomes 3). This proves
(9.3). Remark that this argument only uses (9.2) for R ≤ 2r. �

Remark 9.3. An interesting remark is that if f and g are taken in Lν1(X) and Lν2(X) with

1/ν1 +1/ν2 < 1 (and g no longer in Lν′1), then if I denotes the integral in (3.8), the normalised
inequality

1

µ(B)
I . ‖f‖

Lν1 (2B\B, dµ
µ(B)

)
‖g‖

Lν2 (B, dµ
µ(B)

)

is true in any space of homogeneous type only satisfying (9.1). The proof is much easier: let
B = B(z, r) be a ball in X, f be supported in 2B\B, with f ∈ Lν1(2B\B), g be supported in
B with g ∈ Lν2(B), denote 1/ν = 1 − 1/ν1 − 1/ν2, Sj = {x ∈ B : ρ(x,Bc) ≤ 2−jr}. Observe
that by (9.1), µ(Sj) . 2−jηµ(B), and splitting the integral in y over coronae at distance 2−jr
from x, write

I .
∑

j≥−2

∫

x∈B
|g(x)|

∫
y∈2B\B

2−j−1r<ρ(x,y)≤2−jr

|f(y)|

µ(B(x, 2−jr))
dµ(y)dµ(x)

.
∑

j≥−2

∫

x∈Sj

|g(x)|Mµf(x)dµ(x) .
∑

j≥−2

∫

x∈X
|g(x)|Mµf(x)1Sj (x)dµ(x)

. ‖f‖ν1‖Mµg‖ν2
∑

j≥−2

µ(Sj)
1/ν ,

where we have applied the Hölder inequality to get the last line. It remains to sum in j to obtain
the desired estimate. The same remark with identical proof holds if B, 2B\B are replaced by

Q, Q̂\Q for Q a dyadic cube.

9.2. Geometric conditions ensuring the relative layer decay property. For obvious
practical reasons, we now would like to find sufficient geometric conditions assuring that (9.2)
is satisfied. Let us first give a couple of other definitions.

Definition 9.4. Annular decay and relative annular decay properties.
Let (X, ρ, µ) be a space of homogeneous type. For z ∈ X and r > 0, 0 < s < r, let Cr,r−s(z) =
B(z, r)\B(z, r − s).

• We say thatX has the annular decay property if there exist constants η > 0 and C < +∞
such that for every z ∈ X, r > 0, 0 < s < r, we have

(9.4) µ(Cr,r−s(z)) ≤ C
(s
r

)η
µ(B(z, r)).
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• We say that X has the relative annular decay property if there exist constants η > 0
and C < +∞ such that for every z ∈ X, r > 0, 0 < s < r, and every ball B(w,R) not
containing z, we have

(9.5) µ(Cr,r−s(z) ∩B(w,R)) ≤ C
( s

R

)η
µ(B(w,R)).

It is interesting to note that this condition (9.4) was made an assumption in [DJS] for the
first proof of the global Tb theorem in a space of homogeneous type. Similarly as for layer
decay properties, we have that (9.5) implies (9.4). It is also clear that the relative annular decay
property implies the relative layer decay property. In [B2], Buckley introduces the notion of
chain ball spaces and proves that under that condition, a doubling metric measure space has the
annular decay property. Colding and Minicozzi II already had proved that this property was
satisfied by doubling complete riemannian manifolds in [CM]. Tessera introduced a notion of
monotone geodesic property in [T], and proved that this property also entails the annular decay
property (called there the Føllner property for balls) in a doubling metric measure space. Lin,
Nakai and Yang recently showed in [LNY] that chain ball and a slightly stronger scale invariant
version of the monotone geodesic were equivalent. This motivates us to consider the monotone
geodesic property of [LNY] in the following. We recall this property here:

Definition 9.5. Let (X, ρ) be a metric space. We say that X has the monotone geodesic
property if there exists a constant 0 < C < +∞ such that for all u > 0 and all x, y ∈ X with
ρ(x, y) ≥ u, there exists a point z ∈ X such that

(9.6) ρ(z, y) ≤ Cu and ρ(z, x) ≤ ρ(y, x)− u.

Remark that C must satisfy C ≥ 1. Remark also that iterating this property, one gets that
for every x, y ∈ X with ρ(x, y) ≥ u, there exists a sequence of points y0 = y, y1, ..., ym = x such
that for every i ∈ {0, ...,m − 1}

ρ(yi+1, yi) ≤ Cu and ρ(yi+1, x) ≤ ρ(yi, x)− u.

It appears that the monotone geodesic property not only yields the annular decay property, but
also the stronger relative annular decay property as we next show.

Proposition 9.6. Let (X, ρ, µ) be a space of homogeneous type, and suppose that X has the
monotone geodesic property. Then X has the relative annular decay property.

It immediately yields the following corollary.

Corollary 9.7. Let (X, ρ, µ) be a space of homogeneous type. If X has the monotone geodesic
property, then the Hardy property 3.4 is satisfied on X.

Proof. It is a straightforward application of Proposition 9.2 and Proposition 9.6. �

Proof of Proposition 9.6. Let C0 ≥ 1 be the constant intervening in the monotone geodesic
property of the homogeneous type space X. We already know that X has the annular decay
property (see [T] for example), say with constants C1, η1 > 0. Note that (9.4) is still valid for all
η ∈ [0, η1], so that one can make η1 as small as we wish. We prove (9.5). The argument adapts
the one in [T]. Fix z ∈ X, r > 0, 0 < s < r, and w ∈ X, R > 0 such that z /∈ B(w,R). Observe
that if 6C0s ≥ R, (9.5) is trivial, so that we can freely assume 6C0s < R in the following. We
will prove (9.5) in two steps. We first show that there exist θ < 1 and C < +∞ such that for
all σ > 0 with 6C0σ < R, 2σ < r (and R < ρ(w, z)), we have

(9.7) µ(Cr,r−σ(z) ∩B(w,R)) ≤ θµ(Cr,r−2σ(z) ∩B(w,R)) + C
( σ
R

)η1
µ(B(w,R)).

Assuming these conditions on σ are met, we begin by establishing the existence of a dimensional
constant A > 0 such that

µ(Cr,r−σ(z) ∩B(w,R− 6C0σ) ≤ Aµ(Cr,r−2σ ∩B(w,R)).
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If Cr,r−σ(z)∩B(w,R−6C0σ) = ∅, there is nothing to do, so we will suppose that this intersection
is not empty. Let y ∈ Cr,r−σ(z) ∩ B(w,R − 6C0σ), and let 0 < u < min(σ/4, C0(r − σ)). Since
ρ(z, y) ≥ r − σ > u/C0, by monotone geodesicity of X there exist points y0 = y, y1, ..., ym = z
such that for every i ∈ {0, ...,m − 1},

ρ(z, yi+1) ≤ ρ(z, yi)−
u

C0
and ρ(yi, yi+1) ≤ u.

Let i0 be the first integer such that yi0 ∈ B(z, r − 3σ/2). Note that u < σ/4 implies i0 > 2.
Write

r − 3σ/2 ≤ ρ(z, yi0−1) ≤ ρ(z, y)−
(i0 − 1)u

C0
≤ r −

(i0 − 1)u

C0
,

so that 3σ
2 ≥ (i0−1)u

C0
, and

i0u ≤
i0

i0 − 1

3C0σ

2
< 3C0σ,

because i0 > 2. Thus ρ(y, yi0) ≤ i0u < 3C0σ and it follows that yi0 ∈ B(w,R − 3C0σ).
Furthermore,

ρ(z, yi0) ≥ ρ(z, yi0−1)− ρ(yi0−1, yi0) ≥ r −
3σ

2
− u ≥ r −

7σ

4
.

It means that for every y ∈ Cr,r−σ(z) ∩ B(w,R − 6C0σ), there exists y′ ∈ Cr−3σ/2,r−7σ/4(z) ∩

B(w,R − 3C0σ) such that ρ(y, y′) < 3C0σ. Then,

By = B(y′, σ/4) ⊂ Cr−σ,r−2σ(z) ∩B(w,R).

Now if we consider the union of all those balls By for y ∈ Cr,r−σ(z) ∩ B(w,R − 6C0σ), by the
Vitali covering lemma we can find points yk such that the balls Byk are mutually disjoint and⋃

y By ⊂
⋃

k 5Byk . But since for every k, ρ(yk, y
′
k) < 3C0σ,

Cr,r−σ(z) ∩B(w,R− 6C0σ) ⊂
⋃

k

CByk ,

with C = 5 + 12C0. Applying the doubling measure µ and remembering that the Byk are
mutually disjoint sets contained in Cr−σ,r−2σ(z) ∩B(w,R), we obtain

µ(Cr,r−σ(z) ∩B(w,R − 6C0σ)) ≤
∑

k

µ(CByk) ≤ A
∑

k

µ(Byk) ≤ Aµ(Cr−σ,r−2σ(z) ∩B(w,R)).

Applying the annular decay property inside the ball B(w,R), write then

µ(Cr,r−σ(z) ∩B(w,R)) = µ(Cr,r−σ(z) ∩B(w,R − 6C0σ)) + µ(CR,R−6C0σ(w))

≤ Aµ(Cr−σ,r−2σ(z) ∩B(w,R)) + C1

(
6C0σ

R

)η1

µ(B(w,R))

≤ A(µ(Cr,r−2σ(z) ∩B(w,R))− µ(Cr,r−σ(z) ∩B(w,R))) + C1

(
6C0σ

R

)η1

µ(B(w,R)),

so that (9.7) holds for θ = A
1+A < 1 and C = C1(6C0)η1

1+A < +∞.

The second step in the proof now consists in iterating this inequality. Let d = ρ(w,B(z, r)) ≥

0. Let us distinguish two cases. If d ≥
(
1−

(
s
R

) 1
2

)
R, then Cr,r−s(z)∩B(w,R) ⊂ CR,R−( s

R
)1/2R(w)

as one easily checks. Applying the annular decay property in the ball B(w,R), we have

µ(Cr,r−s(z) ∩B(w,R)) ≤ C1

( s

R

) η1
2
µ(B(w,R)),
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so that there is no iteration to make.

Suppose now that d <
(
1−

(
s
R

) 1
2

)
R. Observe that R ≤ ρ(w, z) ≤ r + d, so that R − d ≤ r.

Thus, if n is an integer such that 2ns < R−d
3C0

, we also have 2ns < r
3C0

< r, so that we can apply

(9.7) with σ = 2k−1s for k = 1, ..., n, and iterate to obtain

µ(Cr,r−s(z) ∩B(w,R)) ≤ θnµ(Cr,r−2ns(z) ∩B(w,R)) +

(
n−1∑

k=0

θk2kη1

)
C
( s

R

)η1
µ(B(w,R)).

Consequently, let n0 = [log2(
R−d
3C0s

)] − 1, where [x] denotes the integer part of x, note that

R− d > ( s
R )

1/2R, and write

µ(Cr,r−s(z) ∩B(w,R)) ≤ θn0µ(Cr,r−2n0s(z) ∩B(w,R)) +

(
n0−1∑

k=0

θk2kη1

)
C
( s

R

)η1
µ(B(w,R))

≤
1

θ2

(
3C0s

( s
R )

1/2R

)− log2 θ

µ(B(w,R)) +
C

1− θ2η1

( s

R

)η1
µ(B(w,R))

.
( s

R

) η1
2
µ(B(w,R)),

provided η1 < − log2 θ, which we may assume by a previous remark, and because we have
supposed 6C0s < R. �

Remark 9.8. (1) We have proven the desired result with η = η1/2 and η1 < − log2 θ, but
remark that we can clearly get η = η1 − ε for ε > 0 as small as desired (provided
η1 < − log2 θ).

(2) We have obtained a rather satisfying geometric condition ensuring that the Hardy prop-
erty 3.4 is satisfied: this monotone geodesic property is obviously satisfied by complete
riemannian manifolds, or by length spaces for example. We have also shown the stronger
relative annular decay property in such cases.

(3) Observe that conversely, the Hardy property does not imply the monotone geodesic
property. Let us give two basic examples to illustrate this. First consider the space
formed by the real line from which an arbitrary interval has been withdrawn, fitted with
the usual euclidean distance and Lebesgue measure. This space obviously does not have
the monotone geodesic property, as, to put it roughly, there is a hole in it. On the other
hand, this space clearly has the Hardy property, as a consequence of the Hardy property
being satisfied on the real line. The second example is a connected one: consider the
space made of the three edges of an arbitrary triangle in the plane, again fitted with the
euclidean distance and Lebesgue measure. This space has the Hardy property, once again
as a straightforward consequence of the fact that the unit circle has it and easy change
of variables. It easily follows from the fact that one of the angles must be less than π/2
that it does not have the monotone geodesic property: one of the pairs (x, y) with x a
vertex and y its orthogonal projection on the opposite side cannot meet condition (9.6).
In passing, it proves that this property is not stable by bi-Lipschitz mappings (see also
[T]).

(4) The study of the first example we gave above motivates the following observation: to
prove the Hardy inequality on a space of homogeneous type X, it is enough to prove it on
a larger space X0 of which X is a subset, provided that X0 hasn’t got too much weight
compared to X. Let us precise that. Let (X0, ρ, µ) be a space of homogeneous type,
and let X ⊂ X0, fitted with the distance ρ′ = ρ|X and the measure ν = µ|X . Suppose
furthermore that the following measure compatibility condition is satisfied: for all x ∈ X
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and r > 0, µ(BX0(x, r)) . µ(BX0(x, r) ∩X) = ν(BX(x, r)). Then X inherits the Hardy
property 3.4 from X0. Indeed, under that condition, the kernels taken respectively on
X and X0, which we denote KX and KX0 , have comparable size: if x, y ∈ X,

KX(x, y) ≈ sup
BX∋x,y

1

ν(BX)
= sup

BX0
∋x,y

B centered inX

1

µ(BX0 ∩X)
. sup

BX0
∋x,y

1

µ(BX0)
≈ KX0(x, y).

It is clear then that the Hardy inequality is in that sense stable by restriction, provided
one does not withdraw too much from the initial space. To check that Property 3.4 is
satisfied by a space of homogeneous type X, it is thus enough to see if X can be seen as
a subset of a bigger space, satisfying the measure compatibility condition, on which the
Hardy inequality is known to be true, or on which one can prove the monotone geodesic
property for example.
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Appendix A. Wavelet representation of the adapted martingale difference

operators

We prove in this section Proposition 5.1.

Proof of Proposition 5.1. It follows essentially from results on pseudo-accretive sesquilinear forms
developed in [AT]. It is here simpler as everything is finite dimensional. Still, the uniform con-
trol of constants must be achieved. Let VQ be the space of complex-valued functions which are
constant on each dyadic child of Q (if Q has only one such child, then we are done and we
assume there is at least two), seen as a subspace of L2(X) and equipped with the complex L2

inner product. On VQ consider the bilinear form

B(f, g) =

∫

Q
f b g dµ =

∑

Q′∈Q̃

[f ]Q′ [b]Q′ [g]Q′µ(Q′).

Clearly, since for f ∈ VQ, ‖f‖
2
2 =

∑
[|f |2]Q′µ(Q′) and [|f |2]Q′ = [f ]Q′[f ]Q′ , we have

|B(f, g)| ≤ sup
Q′∈Q̃

|[b]Q′ | ‖f‖2 ‖g‖2,

and

inf
‖g‖2=1

|B(f, g)| ≥ inf
Q′∈Q̃

|[b]Q′ | ‖f‖2

by taking g ∈ VQ with

[g]Q′ =
[f ]Q′

‖f‖2

[b]Q′

|[b]Q′ |
.

Consider WQ ⊂ VQ equal to the orthogonal complement of C1Q and PWQ
the orthogonal pro-

jection of VQ onto WQ. Let also XQ = {g ∈ VQ;B(1Q, g) = 0}. Then C1Q ⊕ XQ = VQ is

a topological sum. Indeed, let cQ ∈ C such that c2Q
B(1Q,1Q)

µ(Q) = 1 which is possible because

|B(1Q, 1Q)| = |[b]Qµ(Q)| 6= 0. Then the splitting is given by f =
c2Q

µ(Q)B(f, 1Q)1Q + g, and

∥∥∥∥∥
c2Q

µ(Q)
B(f, 1Q)1Q

∥∥∥∥∥
2

≤ |c2Q| sup
Q′∈Q̃

|[b]Q′ |‖f‖2‖g‖2 ≤ (1 + |c2Q| sup
Q′∈Q̃

|[b]Q′ |)‖f‖2.

Let PXQ
be the projector on XQ associated to this splitting. Then it can be checked that PXQ

:

WQ → XQ is an isomorphism with inverse PWQ
: XQ → WQ. Set φ

0
Q =

1Q
µ(Q)1/2

and complete it to

an orthonormal basis of WQ, φ
1
Q, ..., φ

NQ−1
Q for ‖.‖2. Define φ̃b,s

Q by φ̃b,0
Q = cQφ

0
Q, φ̃

b,s
Q = PXQ

(φs
Q)

for s ≥ 1. For f ∈ XQ\{0}, let g ∈ VQ, ‖g‖2 = 1, such that B(f, g) ≥ infQ′∈Q̃ |[b]Q′ |‖f‖2 as

before. Let h =
PXQ

g

‖PXQ
g‖2

, as PXQ
g 6= 0 because otherwise g ∈ C1Q and B(f, g) = 0. Thus

h ∈ XQ, ‖h‖2 = 1, and

B(f, h) =
B(f, g)

‖PXQ
g‖2

≥
infQ′∈Q̃ |[b]Q′ |

‖PXQ
g‖2

‖f‖2.

By the Riesz representation theorem, there exists A ∈ L(XQ), ‖A‖ ≤ supQ′∈Q̃ |[b]Q′ |, such that

for all f, g ∈ XQ

B(f, g) = 〈Af, g〉 =

∫

Q
Af g dµ
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and the above argument says that A−1 ∈ L(XQ), and

‖A−1‖ ≤
‖PXQ

g‖2

infQ′∈Q̃ |[b]Q′ |
.

Set then φb,s
Q = tA−1φ̃b,s

Q for 1 ≤ s ≤ NQ − 1 where tA is the real transpose of A. It is quite

clear that φb,s
Q and φ̃b,s

Q satisfy (1), (2), (3), (4). It remains to prove (5) and (6). Remark that for
f ∈ XQ, we have obtained

f =

NQ−1∑

s=1

B(f, φb,s
Q )φ̃b,s

Q

and ‖f‖2 ≈
∑

|B(f, φb,s
Q )|2 (use f = PXQ

(
∑

B(f, φb,s
Q )φs

Q) and the bounds for the operators

PXQ
and PWQ

). Now, let f ∈ L1(X) and observe that ∆b
Qf ∈ VQ and

∫
Q b∆b

Qfdµ = 0.

Hence, ∆b
Qf ∈ XQ. It remains to show that B(∆b

Qf, φ
b,s
Q ) =

∫
Q fφb,s

Q dµ for s ≥ 1. Indeed,

B(Eb
Qf, φ

b,s
Q ) = 0, so that

B(∆b
Qf, φ

b,s
Q ) =

∑

Q′∈Q̃

B

(
[f ]Q′

[b]Q′
1Q′ , φb,s

Q

)
=
∑

Q′∈Q̃

[f ]Q′ [φb,s
Q ]Q′µ(Q′) =

∫

Q
fφb,s

Q dµ,

where we have used the fact that φb,s
Q is constant on each child Q′ of Q. �

Appendix B. Coefficient estimates

Let T be a singular integral operator. Let Q and R be two cubes of the space of homogeneous
type X. Remember that we introduced

µ(Q,R) = inf
x∈Q,y∈R

{µ(B(x, ρ(x, y))), µ(B(y, ρ(x, y)))} ,

and

αQ,R =

{
µ(Q)

1
2µ(R)

1
2

(
inf(l(Q),l(R))

ρ(Q,R)

)α
1

µ(Q,R) if ρ(Q,R) ≥ sup(l(Q), l(R))

1 if l(Q) = l(R), and ρ(Q,R) < l(Q).

We state the following lemma:

Lemma B.1. Let us assume the hypotheses of Theorem 3.1, and let Q,R be two pseudo-accretive
dyadic cubes in X, either strongly pseudo-accretive or degenerate pseudo-accretive with respect
to b1, b2 respectively, and depending on the nature of the inequality below. Let also P 1

i be one of
the stopping cubes with respect to b1. Then we have the following coefficient estimates: whenever
l(Q) = l(R),

(B.1)
∣∣∣〈b2φb2

Q , T (b1φb1

R )〉
∣∣∣ . αQ,R,

(B.2)
∣∣∣〈b2φb2

Q , T (ξ1Rg)〉
∣∣∣ . αQ,R µ(R)

1
2 ,

(B.3)
∣∣〈ξ2Qf, T (ξ1Rg)〉

∣∣ . αQ,R µ(Q)
1
2 µ(R)

1
2 ,

(B.4)
∣∣〈ξ2Qf, T (b11R)〉

∣∣ . αQ,R µ(Q)
1
2 µ(R)

1
2 ,

(B.5)
∣∣∣〈b2φb2

Q , T (b11R)〉
∣∣∣ . αQ,R µ(R)

1
2 ,
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and when ρ(Q,P 1
i ) ≥ l(P 1

i ) ≥ l(Q),

(B.6)
∣∣∣〈ξ2Qf, T (b1P 1

i
)〉
∣∣∣ . αQ,P 1

i
µ(Q)

1
2 µ(P 1

i )
1
2 ,

(B.7)
∣∣∣〈b2φb2

Q , T (b1P 1
i
)〉
∣∣∣ . αQ,P 1

i
µ(P 1

i )
1
2 ,

(B.8)
∣∣∣〈b2φb2

Q , T (b11P 1
i
)〉
∣∣∣ . αQ,P 1

i
µ(P 1

i )
1
2 ,

Proof. We detail the proof of the first inequality. Suppose first that we have ρ(Q,R) ≥ l(Q).

Since b2φb2
Q and b1φb1

R have mean 0, we can apply (2.5) to get the bound

∣∣∣〈b2φb2
Q , T (b1φb1

R )〉
∣∣∣ .

∫

Q
|b2φb2

Q |dµ

∫

R
|b1φb1

R |dµ

(
inf(l(Q), l(R))

ρ(Q,R)

)α 1

µ(Q,R)

. αQ,R,

the last inequality being a consequence of the L∞ estimates of the functions φb2
Q , φb1

R . In-

deed, Lemma 5.1 entails that ‖φb2
Q ‖∞ . µ(Q)−1/2, ‖φb1

R ‖∞ . µ(R)−1/2. Thus ‖b2φb2
Q‖L1(Q) .

µ(Q)−1/2‖b2‖L1(Q) . µ(Q)1/2 since Q is pa 2, and similarly for b1φb1

R .
Now, assume that ρ(Q,R) < l(Q). Write

〈b2φb2

Q , T (b1φb1

R )〉 =
∑

Q′∈Q̃,R′∈R̃

[φb2

Q ]Q′〈b21Q′ , T (b11R′)〉[φb1

R ]R′ .

If Q′ and R′ are neighbors, by the weak boundedness property (3.6) (we do not need the stronger
property (3.4) here), we have

|〈b21Q′ , T (b11R′)〉| . µ(R′).

If ρ(Q′, R′) ≥ l(R′), then write

|〈b21Q′ , T (b11R′)〉| ≤ |〈b21Q′ , T (b11R′ − [b1]R′1R′)〉|+ |[b1]R′ ||〈b21Q′ , T (1R′)〉|

. µ(Q′)µ(R′)

(
l(R′)

ρ(Q′, R′)

)α 1

µ(Q′, R′)
+ µ(R′)

. µ(R′).

To get the second inequality, we have applied (2.5) to the first term (which is possible because∫
(b11R′ − [b1]R′1R′)dµ = 0), and the Hardy inequality (2.7) to the second term. Then the last

inequality comes from the fact that ρ(Q′, R′) ≥ l(R′), and µ(Q′, R′) ≈ µ(Q̂) ≈ µ(Q′) as both Q′

and R′ are children of the neighbor cubes Q,R. Finally, using again the L∞ estimates of the
functions φ, and the fact that Q′, R′ have comparable measure, we have

∣∣∣〈b2φb2
Q , T (b1φb1

R )〉
∣∣∣ .

∑

Q′∈Q̃,R′∈R̃

µ(Q′)−
1
2µ(R′)µ(R′)−

1
2 . 1,

which was the desired estimate.
For the other estimates we asserted, it is exactly the same idea. Indeed, observe that we always
have at least one of the functions in the scalar product which has mean zero, allowing us to
conduct exactly the same argument as above when the cubes Q and R (or P 1

i ) are far away.
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Remark that the only thing that changes is the normalization of those functions, but it is
immediate to see that∫

R
|ξ1Rg|dµ . µ(R),

∫

Q
|ξ2Qf |dµ . µ(Q),

∫

R
|b11R| . µ(R),

∫

P 1
i

|b1P 1
i
| . µ(P 1

i ),

which yields all the desired estimates when the cubes are far away. Now when Q and R are
neighbors, it is also the same idea as above, and one only has to apply the weak boundedness
property (3.6) to get the desired estimates. We therefore omit the detail here. �
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