
HAL Id: hal-00533000
https://hal.science/hal-00533000v1

Submitted on 4 Nov 2010 (v1), last revised 2 Apr 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical study of a thin liquid film flowing down an
inclined wavy plane

Alexandre Ern, Rémi Joubaud, Tony Lelièvre

To cite this version:
Alexandre Ern, Rémi Joubaud, Tony Lelièvre. Numerical study of a thin liquid film flowing
down an inclined wavy plane. Physica D: Nonlinear Phenomena, 2011, 240 (21), pp.1714-1723.
�10.1016/j.physd.2011.07.007�. �hal-00533000v1�

https://hal.science/hal-00533000v1
https://hal.archives-ouvertes.fr


Numerical study of a thin liquid film flowing down an

inclined wavy plane

Alexandre Erna, Rémi Joubauda, Tony Lelièvrea

aUniversité Paris-Est, CERMICS, Ecole des Ponts, 6 & 8 Av. B. Pascal, 77455

Marne-la-Vallée cedex 2, France

Abstract

We investigate the stability of a thin liquid film flowing down an inclined
wavy plane using a direct numerical solver based on a finite element/arbitrary
Lagrangian Eulerian approximation of the free-surface Navier–Stokes equa-
tions. We study the dependence of the critical Reynolds number for the
onset of surface wave instabilities on the inclination angle, the waviness
parameter, and the wavelength parameter, focusing in particular on mild
inclinations and relatively large waviness so that the bottom does not fall
monotonously. In the present parameter range, shorter wavelengths for the
bottom undulation stabilize the flow, while the amplitude of undulation es-
sentially acts through the flow rate. The dependence of the critical Reynolds
number evaluated with the Nusselt flow rate on the inclination angle is more
complex than the classical relation (5/6 times the cotangent of the inclina-
tion angle), but this dependence can be recovered if the actual flow rate at
critical conditions is used instead.
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1. Introduction

The original motivation for this work is the derivation of hydrological
models to predict overland flows within small agricultural watersheds where
the flow direction is not only controlled by the topography but also, within
the fields, by the presence of ridges and furrows created by tillage opera-
tions [11]. Such a study is currently being carried over by soil engineers
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together with applied mathematicians within the project METHODE [7].
Within this project, we investigate here more specifically instabilities that
can occur when a thin gravity-driven film flows down an inclined wavy plane
representing the furrows within a cultivated field. Film flow along wavy walls
has other interesting engineering applications, for instance in two-phase heat
exchangers [12]. However, in the present work, we focus on mildly inclined
planes as encountered in agricultural watersheds.

Thin gravity-driven films flowing down an inclined flat plane provide one
of the simplest configurations where hydrodynamics instabilities can occur,
even at relatively low flow rates. This setting exhibits a rich phenomenology
and, as such, has prompted a substantial amount of theoretical, experimen-
tal, and numerical work over the past decades, aiming at predicting the onset
of instability and also at analyzing the development and possible disorga-
nization of the waves at the surface of the liquid film. The first theoretical
description of the flow down a perfectly flat incline can be traced back to the
seminal work of Nusselt who studied film condensation on vertical walls [8].
A particular stationary solution of the free-surface Navier–Stokes equations
is indeed the so-called Nusselt flow which is a boundary layer type flow
featuring constant height, parabolic velocity profile, while the flow rate is
determined by balancing the work of gravity with viscous dissipation. Fur-
ther understanding of surface wave instabilities was achieved in the works of
Benjamin [1] and Yih [15], still in the case of a perfectly flat inclined plane.
One of the main results was the condition for the flat Nusselt solution to be
unstable against long wavelength infinitesimal perturbations (that is, wave-
lengths that are large compared to the thickness of the film) in terms of a
critical Reynolds number Rec = (5/6) cot θ. Here, θ denotes the angle of
the inclined plane with the horizontal line, while the constant 5/6 depends
on the definition for the Reynolds number, the present value being obtained
using the film thickness as reference length and the Nusselt velocity as ref-
erence velocity. Concerning more recent work, without being exhaustive, let
us mention the experimental work of Liu and Gollub [6] and the numeri-
cal work of Ramaswamy, Chippada and Joo [9] investigating the transition
from nearly sinusoidal permanent waveforms to solitary humps as well as
complex wave processes such as wave merging and wave splitting. We also
mention the work of Ruyer-Quil and Manneville [10] who proposed a new
class of models (so-called higher-order shallow-water models) to formulate
the free-surface flow problem and obtained results in good agreement with
both experiments and direct numerical simulations.

In contrast to the above literature dedicated to flows over inclined flat
planes, much less studies are available in the case of flows over inclined wavy
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planes. Important results in this direction have been achieved by Wierschem,
Aksel, and Scholle [13, 14] using an analytical approach, similar in spirit to
that of Yih [15] for a flat plane, based on an expansion of the free-surface
Navier–Stokes equations in which the wavelength parameter (essentially the
ratio of the film thickness to the wavelength of the bottom undulations)
serves as the perturbation parameter. The main result is that the critical
Reynolds number for the onset of surface waves is higher than that for a flat
bottom. In other words, the waviness in the topography has a stabilizing
effect on the flow (although, under certain conditions, the film flow can
be destabilized locally at steeper slopes). Analytical formulas for the film
thickness, velocities and pressure profiles are also derived. However, one
limitation of the above analysis is the requirement of monotonously falling
bottom contours, that is, for a given inclination angle, the waviness of the
topography cannot be too large. This prevents the application of the above
results to the setting of interest here where the agricultural field exhibits
a mild inclination while the furrows induce a sufficiently large waviness so
that the bottom contour can raise locally.

The present work’s principal aim is to fill this gap using direct numerical
simulations of the free-surface Navier–Stokes equations. For completeness,
a brief comparison with a shallow-water model is also discussed. As in [13],
the deviation from the flat topography is modeled using a sinusoidal pertur-
bation. Since close to the instability threshold, surface waves are essentially
streamwise surface undulations free of spanwise modulations [10], the nu-
merical simulations are performed in a two-dimensional setting. Moreover,
the flow domain stretches over one wavelength of the sinusoidal perturbation
of the topography, and along its lateral sides, periodic boundary conditions
are enforced. Within this domain, the free-surface Navier–Stokes equations
are solved numerically using finite elements for space discretization and an
Arbitrary Lagrangian Eulerian (ALE) method to track the free surface. We
are especially interested in studying the critical Reynolds number for the
onset of surface wave instabilities as a function of the mean inclination an-
gle of the topography, the waviness parameter measuring the amplitude of
the deviation from the flat topography, and the wavelength parameter men-
tioned above. Herein, we do not consider surface tension effects, that is,
we assume that the capillary length is smaller than the wavelength of the
bottom undulations. We refer to [13] for a study including surface tension,
where it is found that owing to its stabilizing effect, the latter can slightly
alter the critical Reynolds number.

To determine the critical Reynolds number, we proceed as follows. Two
stable configurations are simulated first by selecting two values for the vis-
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cosity that are large enough. In both cases, we observe that perturbations
decay exponentially in time at the free surface; the critical value for the
Reynolds number is then obtained by extrapolation on the viscosity in such
a way that the extrapolated decay rate vanishes. To evaluate the Reynolds
number, a reference length and a reference velocity must be specified. For
the former, it is natural to use the mean film thickness based on volume con-
servation. For the latter, we observe that the flow rate at steady-state is not
known a priori. As for the Nusselt flow over an inclined flat plane, the flow
rate results from the balance between the work of gravity and viscous dissi-
pation, but an analytical calculation of the viscous dissipation is no longer
possible for wavy planes because the flow profile is no longer parabolic and it
depends on the streamwise coordinate. A quite reasonable choice, as in [13],
is to use as reference velocity the Nusselt flow velocity over a flat plane with
the same inclination angle. However, in certain configurations especially for
strong amplitudes of the bottom undulations, our results indicate that the
computed flow rate can differ from the Nusselt flow rate by up to 25%. One
interesting result presented hereafter is that the ratio of critical Reynolds
number (with Nusselt flow velocity) to cot θ still mildly depends on θ, while
this dependence almost disappears if the actual flow rate is used. Moreover,
long wavelength disturbances are more prone to destabilize the flow. Finally,
higher amplitudes for the bottom undulations lead to larger values for the
critical Reynolds number evaluated with the Nusselt flow velocity, while the
Reynolds number evaluated with the actual flow rate is almost independent
of the waviness parameter.

The rest of this work is organized as follows. In Section 2 we present
the physical setting in more detail. In Section 3 we briefly recall the main
features of the finite element/ALE discretization of the free-surface Navier–
Stokes equations. Finally, in Section 4 we describe the numerical protocol
to determine the critical Reynolds number and discuss our results.

2. Physical setting

In this section, we describe the geometric set-up for solving the free-
surface Navier–Stokes equations. We also briefly recall the Nusselt flow
solution over an inclined flat plane and specify the time and length scales
to formulate the governing equations in non-dimensional form.

2.1. Free-surface Navier–Stokes equations

Referring to Figure 1, we consider the movement of a two-dimensional
thin film flowing down a rigid surface of finite length L periodized with L
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periodicity. This surface consists of a plane inclined with angle 0 ≤ θ ≤ π/2
and perturbed sinusoidally. The Cartesian coordinates are denoted by x =
(x1, x2) where x1 follows the inclined plane. By periodicity, x1 belongs to
the torus T = R/LZ. With the sinusoidal perturbation, the elevation of the
topography along the x2-axis is given by

b(x1) = A sin

(

2πx1

L

)

, x1 ∈ T. (1)

Γin(t)

Γout(t)

Σ(t)

Γbot
x1

x2

θ

g

h

Ω(t)

Fig. 1: Geometric set-up.

At any time t ≥ 0, the fluid occupies a domain denoted by Ω(t). The
boundary ∂Ω(t) of Ω(t) is partitioned as follows (see Figure 1):

Σ(t) = {x ∈ T× R, x2 = h(t, x1)} ,

Γbot = {x ∈ T× R, x2 = b(x1)} ,

Γin/out(t) = {x ∈ T× R, x1 ∈ {0, L}, 0 ≤ x2 ≤ h(t, 0)} .

Here, Σ(t) is the air/liquid interface to which we will refer as the free surface,
h is the fluid thickness evolving with time (by periodicity, h(t, 0) = h(t, L)),
Γbot is the rigid bottom (with b defined by (1)), and Γin/out(t) are the lateral
boundaries associated with periodicity. We observe that only Γbot is time-
independent. In what follows, n denotes the unit outward vector normal to
∂Ω. In view of the ALE framework to be considered later, it is convenient
to relate the current frame Ω(t) to a reference frame Ω̂. To this purpose,
we assume that for any time t ≥ 0, there exists a smooth and bĳective
map Ât from a reference domain Ω̂ to the current domain Ω(t) such that
Ât(Ω̂) = Ω(t). The inverse map (with respect to the space variable) of Ât
is denoted Â−1

t . The velocity of the domain ŵ is defined as

ŵ(t, x̂) =
∂

∂t
Ât(x̂). (2)
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To any function ψ(t, ·) defined on the current frame Ω(t) is associated the
function ψ̂(t, ·) defined on the reference domain Ω̂ by ψ̂(t, x̂) = ψ(t, Ât(x̂)).
For example, the velocity of the domain w on the current frame is defined
as

w(t,x) = ŵ(t, Â−1
t (x)). (3)

By periodicity,
w(t, ·)|Γin(t) = w(t, ·)|Γout(t), (4)

with w(t, ·) ·n|Γin/out(t) = 0, and since the bottom represents a rigid surface,

w(t, ·)|Γbot
= 0. (5)

We assume the fluid to be Newtonian, isothermal, and incompressible.
Its motion is governed by the Navier–Stokes equations which express the
conservation of momentum and mass in the form

{

∂t(ρu) + div(ρu⊗ u)− divσ(u, p) = ρg,

div(u) = 0.
(6)

Here, u is the fluid velocity with Cartesian components (u1, u2), ρ the den-
sity, σ(u, p) the stress tensor given by

σ(u, p) = −pId + 2ηE(u), (7)

where p is the pressure, η the (dynamic) viscosity, E(u) = 1
2(∇u + ∇uT )

the linearized strain tensor, and finally, the gravity forces are given by

g = gΘ =

(

g sin θ
−g cos θ

)

, (8)

with g the constant of gravity acceleration. The Navier–Stokes equations (6)
are complemented with initial conditions specifying u(t = 0) and Ω(t = 0)
and with boundary conditions. The latter enforce no-penetration and no-slip
conditions at the bottom

u = 0 on Γbot, (9)

zero stress at the free surface (thereby neglecting surface tension)

σ(u, p)n = 0 on Σ(t), (10)

and periodicity for velocity and the normal component of σ(u, p) on Γin/out(t).
Finally, the fact that the free surface Σ(t) is a material line is expressed by
the kinematic condition

w · n = u · n on Σ(t). (11)
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There are several possibilities to define the domain velocity w inside Ω(t)
matching the boundary conditions (4), (5), and (11). A simple choice based
on solving a scalar Poisson problem is presented in Section 3.

2.2. Volume and energy conservation

Two classical properties of the free-surface Navier–Stokes equations are
volume and energy conservation. The former can simply be expressed as

d

dt
|Ω(t)| = 0. (12)

Moreover, the energy balance takes the form

d

dt
K(t) + Pv(t) =

∫

Ω(t)
ρg · u dx, (13)

where K(t) denotes the kinetic energy of the fluid at time t given by

K(t) =
1

2

∫

Ω(t)
ρ|u|2 dx, (14)

and Pv(t) the viscous dissipation at time t given by

Pv(t) =

∫

Ω(t)

η

2

∣

∣

∣∇u+∇uT
∣

∣

∣

2
dx. (15)

For completeness, we briefly recall the derivation of these two properties [4].
In the present ALE framework, the Reynolds transport formula states that
for any smooth function ϕ depending on time t and space x,

d

dt

∫

Ω(t)
ϕdx =

∫

Ω(t)
∂tϕdx+

∫

∂Ω(t)
ϕw · n dσ, (16)

and accounting for periodicity and rigid bottom yields

d

dt

∫

Ω(t)
ϕdx =

∫

Ω(t)
∂tϕdx+

∫

Σ(t)
ϕw · n dσ. (17)

Taking ϕ ≡ 1, using the kinematic condition (11) together with incompress-
ibility and periodicity yields (12). Turning to energy balance, we multiply
the momentum conservation equation in (6) by u and integrate over Ω(t) to
infer
∫

Ω(t)
∂t(ρu) · u dx+

∫

Ω(t)
div(ρu⊗ u) · u dx−

∫

Ω(t)
div(σ(u, p)) · u dx

=

∫

Ω(t)
ρg · u dx. (18)
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For the first term, we use the Reynolds transport formula with ϕ ≡ 1
2ρ|u|

2

yielding

∫

Ω(t)
∂t(ρu) · u dx =

d

dt

∫

Ω(t)

1

2
ρ|u|2 dx−

∫

Σ(t)

1

2
ρ|u|2w · n dσ. (19)

For the second term, we integrate by parts and use incompressibility to
obtain

∫

Ω(t)
div(ρu⊗ u) · u dx =

∫

Σ(t)

1

2
ρ|u|2u · n dσ, (20)

and proceeding similarly for the third term yields

−

∫

Ω(t)
div(σ(u, p)) ·u dx =

∫

Ω(t)

η

2

∣

∣

∣∇u+∇uT
∣

∣

∣

2
dx−

∫

∂Ω(t)
σ(u, p)n ·u dσ,

(21)
and the second term on the right-hand side of (21) vanishes owing to the
boundary conditions. Collecting these expressions and using the kinematic
condition (11) yields the energy balance (13).

2.3. Nusselt flow

In the case of a perfectly flat inclined plane, that is, A = 0 in (1), the free-
surface Navier–Stokes equations with the above boundary conditions admit
a well-known stationary solution, referred to as the Nusselt flow, for which
the film thickness is constant and the velocity profile is parabolic. Denoting
by hN the film thickness, the velocity takes the form u(x) = ϕ(x2)e1 where
e1 denotes the Cartesian basis vector associated with the first coordinate.
The function ϕ which determines the vertical velocity profile is given by

ϕ(x2) =
3

2

QN
hN

(

2x2

hN
−

(

x2

hN

)2
)

, x2 ∈ [0, hN ], (22)

where QN =
∫ hN

0 ϕ(x2) dx2 is the flow rate so that QN/hN is the mean flow
velocity. The flow rate results from the energy balance (13) at steady-state,
and a straightforward computation yields

QN =
1

3

ρg sin θ

η
h3
N . (23)

2.4. Scaling and non-dimensionalization

In the case of an inclined wavy plane, an analytic expression of the
steady-state solution of the free-surface Navier–Stokes equations (if such a
solution exists) is no longer available. In particular, the film thickness is no
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longer constant, and the velocity profile is no longer parabolic. To formulate
the equations in non-dimensional form, we use as reference length the mean
film thickness in space. Owing to the volume conservation property (12),
this reference length does not depend on time and can be determined from
the initial fluid domain Ω0. In what follows, we denote this reference length
by h∗. Furthermore, a reasonable choice for the reference velocity, say U∗, is
the mean flow velocity corresponding to the Nusselt flow with film thickness
h∗, so that using (23) we obtain

U∗ =
1

3

ρg sin θ

η
h2
∗. (24)

Finally, we classically consider the advective time scale t∗ = h∗/U∗ for the
reference time and the Bernoulli scaling ρU2

∗ for the pressure. With the
above choices for the various scales, the free-surface Navier–Stokes equa-
tions (6) can be rewritten in the following non-dimensional form (for sim-
plicity, we use the same notation for non-dimensional quantities):











∂tu+ div(u⊗ u)− div

(

2

Re
E(u)

)

+∇p =
1

Fr2 Θ,

div(u) = 0,

(25)

with the Reynolds number defined by

Re :=
ρU∗h∗
η

=
1

3
(sin θ)

ρ2gh3
∗

η2
, (26)

while the Froude number is such that

Fr2 :=
U2
∗

h∗g
=

1

3
(sin θ)Re, (27)

owing to the scaling chosen for the velocity.
Henceforth, we are particularly interested in the critical value of the

Reynolds number for the onset of surface wave instabilities. We want to in-
vestigate the dependence of this critical Reynolds number on the inclination
angle θ and on two additional geometric parameters related to the topog-
raphy, namely the waviness parameter ζ and the wavelength parameter ξ
defined by

ζ := 2π
A

L
, ξ := 2π

h∗
L
. (28)

The parameter ξ is also sometimes referred to as the thin-film parameter.
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3. Finite element/ALE solver

We now briefly describe the numerical method used to solve the free-
surface Navier–Stokes equations. More details can be found in [3, 4, 5].

3.1. Weak ALE formulation

The weak ALE formulation is derived using test functions that do not
depend on time in the reference frame Ω̂ whereas they do on the current
frame Ω(t). More precisely, letting T be the simulation time, for all t ∈
(0, T ), the test spaces for velocity and pressure are defined using functions
defined on the reference domain Ω̂ as follows:

Vt = {v : Ω(t)→ R2; v(x) = v̂(Â−1
t (x)); v̂ ∈ V̂ }, (29)

Mt = {q : Ω(t)→ R; q(x) = q̂(Â−1
t (x)); q̂ ∈ M̂}, (30)

where V̂ := {v̂ ∈ H1(Ω̂)2; v̂|Γbot
= 0; v̂ periodic} and M̂ := L2(Ω̂). Then,

for all t ∈ [0, T ], we look for a map Ât : Ω̂ → Ω(t) and for functions
(u(t), p(t)) such that (u(t), p(t)) ∈ Vt×Mt with

∫ T
0

∫

Ω(t)(p
2 + |∇u|2) dx dt <

+∞ and for all (v, q) in Vt ×Mt,







































d

dt

∫

Ω(t)
u · v dx+

∫

Ω(t)
(u−w) · ∇u · v dx−

∫

Ω(t)
div(w)u · v dx

+

∫

Ω(t)

2

Re
E(u) : E(v) dx−

∫

Ω(t)
p div(v) dx =

∫

Ω(t)

1

Fr2 Θ · v dx,

∫

Ω(t)
q div(u) dx = 0,

(31)
together with the initial conditions Â0(Ω̂) = Ω0 and u(t = 0, ·) = u0. We
recall that the domain velocity w satisfies the boundary conditions (4), (5),
and (11).

3.2. Time and space discretization

The discretization is based on finite elements in space and a semi-implicit
Euler scheme in time. Let δt be the time step, taken constant for simplic-
ity. We denote by tn = nδt the n-th discrete time. Given the velocity un

discretized with finite elements at time tn, we determine the mesh velocity
w
n as described below by (36). Then, we introduce the map

An,n+1 : Ωn ∋ y 7−→ x = y + δtwn(y) ∈ Ωn+1, (32)
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which can be seen as an approximation of the map Âtn+1 ◦ Â−1
tn . Given the

spatial mesh at the discrete time tn, sayMn, the map An,n+1 allows one to
define the mesh at the discrete time tn+1, sayMn+1, by transporting each
node ofMn from Ωn to Ωn+1.

For space discretization, we consider at each discrete time tn mixed finite
element spaces spanned by functions defined on Ωn to approximate velocity
and pressure, say V nh and Mnh . We strongly impose the essential velocity
boundary condition on the bottom and enforce periodicity of the veloci-
ties by eliminating the corresponding degrees of freedom. We consider the
Q2/Q1 setting, that is, continuous piecewise biquadratic finite elements for
the velocity and continuous piecewise bilinear finite elements for the pres-
sure. Using discontinuous piecewise affine finite elements for the pressure
is also possible. The present choice yields faster convergence rates for the
linear solver. Moreover, consistently with the weak ALE framework, the test
functions follow the displacement of the domain given by An,n+1, so that
the test functions at the discrete time tn+1 are in

V n+1
h = {v : Ωn+1 → R2; v(x) = v(A−1

n,n+1(x)); v ∈ V nh }, (33)

Mn+1
h = {q : Ωn+1 → R; q(x) = q(A−1

n,n+1(x)); q ∈Mnh }. (34)

Finally, we discretize (31) in time with a semi-implicit Euler scheme. Thus,
given un ∈ V nh , Ωn, wn, and Ωn+1, we seek for (un+1, pn+1) ∈ V n+1

h ×Mn+1
h

such that for all (v, q) ∈ V n+1
h ×Mn+1

h ,







































































1

δt

∫

Ωn+1

u
n+1 · v dx+

∫

Ωn+1

(ũn − w̃n) · ∇un+1 · v dx

−

∫

Ωn+1

div(w̃n)un+1 · v dx+

∫

Ωn+1

2

Re
E(un+1) : E(v) dx

−

∫

Ωn+1

pn+1div(v) dx+

∫

Ωn+1

1

2
div(ũn)un+1 · v dx

=
1

δt

∫

Ωn
u
n · (v ◦ A−1

n,n+1) dx+

∫

Ωn+1

1

Fr2 Θ · v dx,
∫

Ωn+1

qdiv(un+1) dx = 0,

(35)

where ũn = un ◦ A−1
n,n+1 and w̃n = wn ◦ A−1

n,n+1. In practice, all these
integrals are easy to evaluate since they involve functions defined at the
same discrete time (either tn or tn+1) and, therefore, functions discretized
on the same mesh, thereby avoiding any re-interpolation. Furthermore, the
term

∫

Ωn+1
1
2div(ũn)un+1 · v dx is analogous to the well-known consistent

modification introduced by Temam for the convective term to recover at
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the discrete level the skew-symmetry property of the advection term and
ensure better stability properties. The resolution of the linear system (35)
in (un+1, pn+1) is performed by a GMRES iterative procedure with an ILU
preconditioner and (un, pn) as the initial guess. The most important compu-
tational task consists in building the matrix and the right-hand side, which
change from one time step to another because of the moving mesh. Finally,
we notice that even if the space discretization of the linearized Navier–Stokes
system is implicit, the explicit computation of the domain velocity leads to
a CFL-like restriction on the time step.

3.3. Computing the domain velocity

To complete the presentation of the numerical scheme, it remains to
describe how the domain velocity wn is computed matching the boundary
conditions (4), (5), and (11). In addition, An,n+1 defined from wn by (32)
must be sufficiently smooth so that the mesh remains regular enough for
finite element computations. For the present problems, a simple method
is to solve a Poisson problem. This approach can be seen as a simple de-
vice to extrapolate smoothly the mesh velocity from the boundaries to the
whole domain. Moreover, we choose the mesh displacement to be along
one direction only (along the coordinate axis associated with x2), so that
w
n = (0, wn2 ) and we solve the following scalar Poisson problem for wn2 :



































−∆wn2 = 0 in Ωn,

wn2 =
u
n · nh
nh,2

on Σ(tn),

wn2 = 0 on Γbot,

wn2 periodic on Γin/out(t
n).

(36)

This problem is discretized using the same finite element space as for the
components of the discrete velocity un. Moreover, the Dirichlet boundary
condition on Σ(tn) is, as usual, enforced nodally, which requires to define
an approximate normal vector nh (with Cartesian components (nh,1, nh,2))
at each node of Σ(tn). The vector nh can be defined in such a way that the
Stokes formula holds true, thereby ensuring exact volume conservation at
the discrete level; we refer to [5, §5.1.3.2] for further details.

3.4. Complete algorithm

We can now write the complete algorithm. Suppose that Ωn and (un, pn)
are known. Then wn, Ωn+1, and (un+1, pn+1) are computed as follows:
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(i) Compute the terms defined on Ωn (such as 1
δt

∫

Ωn u
n · v dx) in the

system (35).

(ii) Compute wn = (0, wn2 ) by solving (36).

(iii) Move the nodes of the mesh according to An,n+1 defined by (32).

(iv) Compute the remaining terms (defined on Ωn+1) in the system (35).

(v) Solve (35) to determine (un+1, pn+1).

4. Results

In this section we present our numerical protocol to compute the critical
Reynolds number for the onset of surface wave instabilities. Then, we discuss
our results concerning the dependence of the critical Reynolds number on the
inclination angle θ, the waviness parameter ζ, and the wavelength parameter
ξ. A brief comparison with a shallow-water model is also presented at the
end of the section.

We consider structured quadrangular meshes with typically 240 mesh
cells in the x1-direction and 30 cells in the x2-direction. Typical non-
dimensional time steps δt are in the interval [10−3, 5 × 10−3]. We have
verified the convergence of our numerical solutions by halving the mesh size
and the time step in the most unfavorable cases for the Reynolds number
(e.g., Re = 90.9, θ = π/180, ζ = 0.033π, and ξ = 0.083π).

4.1. Numerical protocol

The numerical protocol to determine the critical Reynolds number con-
sists of an extrapolation procedure relying on the time evolution of the
free surface returning to equilibrium in stable flow configurations where the
Reynolds number is close to, but smaller than, the critical threshold. First,
a low enough Reynolds number (yielding a stable flow) is selected by choos-
ing a large enough value for the viscosity, and a steady-state solution is
computed. Then, this steady-state solution is used as an initial condition
for a new calculation with a higher Reynolds number (lower viscosity). If
the Reynolds number is still below the critical value, the solution will relax
to a new steady-state. Consider a fixed observation point x1 ∈ T. Then,
referring to Figure 2, after a short transient of duration T1, we observe that
the film thickness at x1, say f(t) := h(t, x1), exhibits the following behavior
in time

f(t) ≃ ϕa,B,M,ω(t) := a cos(ωt) exp(−Bt) +M, t ≥ T1, (37)
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for scalar positive real numbers a, B, M , and ω (a being the amplitude of
the signal, B the rate of decay, M the mean value, and ω the frequency).
The time T1 can be taken as the time needed by the flow to cross two times
the periodic domain, that is, T1 = 2L/U∗. Recalling the time scale t∗ =
h∗/U∗, this yields in non-dimensional form T1/t∗ = 2L/h∗ = 4π/ξ. In the
present context, the most interesting coefficient appearing in (37) is B, which
will be used to determine the critical Reynolds number by extrapolation
as described below. We also observe from Figure 2 that the amplitude of
oscillations is quite small, less than a percent. For larger Reynolds number,
e.g., in the case θ = π

180 where Re ∼ 65, the amplitude is of the order of a
few percent.
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Fig. 2: Example of relaxation back to equilibrium for a generic point on the free surface
(corresponding to x1 = 0) with T1 ∼ 48t∗; Re = 15.29, θ = 4π

180
, ζ = 0.016π, ξ = 0.083π.

A simple and cost-effective way to determine the coefficients a, B, and
M is to consider the local maxima of f for t ∈ [λ∗T1, λ

∗T1], where T1 is
defined above, while λ∗ and λ∗ (with 1 ≤ λ∗ < λ∗) are parameters defining
the observation window in time (see below). This yields a series of pairs
{(ti, f(ti))}1≤i≤I such that f is locally maximal at ti (the corresponding
points are indicated in Figure 2 for λ∗ = 1 and λ∗ = 6). Then, the coeffi-
cients a, B, and M are obtained by minimizing the least-squares error

I
∑

i=1

(

f(ti)− ϕa,B,M (ti)
)2
, (38)

where ϕa,B,M (t) = a exp(−Bt) + M . The result is presented in Figure 3
for a typical flow configuration and shows excellent agreement. Finally,
the coefficient ω can be obtained by a Fast Fourier Transform (FFT) of
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the function (f(t) −M) exp(Bt)/a. The result is shown in Figure 4 and is
quite satisfactory: a marginal part of the energy of the Fourier transform is
present at low frequency and corresponds to the initial transient behavior,
while most of the energy concentrates around a single frequency; the second
harmonic is also slightly visible.
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Fig. 3: Fitting of the local maxima of f : the bullets correspond to the points marked in
Figure 2, and the solid line represents the function ϕa,B,M with the coefficients a, B, and
M determined from the least-squares fit.
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Fig. 4: FFT of the function (f(t)−M) exp(Bt)/a.

The above numerical protocol can be used for all the points at the free
surface. We have verified in all cases that the computed coefficients do
not vary more than a few percent when another point x1 is considered.
In the numerical results reported below, we have used the mean value in
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space over all the mesh nodes on the free surface to evaluate the coefficient
B. Incidentally, we notice that the exponential decay regime takes longer
to establish for higher Reynolds numbers, typically leading to observation
windows with parameters up to λ∗ = 2λ∗ = 20, while the choice λ∗ = 2λ∗ =
10 is sufficient at moderate Reynolds numbers.

While we will mainly use the coefficient B obtained from the above
protocol, we observe that the coefficient M is also useful since it provides
the value for the film thickness at steady-state at the observation point
x1, without actually running the computations until steady-state (see, e.g.,
Figure 7 for an illustration). The flow rate at steady-state can also be
obtained by applying the same procedure on the time-dependent flow rate.

Let η1 and η2 be two values of the viscosity yielding, respectively, the
values Re1 and Re2 for the Reynolds number, and such that the flow is stable.
By the above numerical protocol, we obtain relaxation coefficients B1 and
B2, respectively. Then, we define the critical value of the Reynolds number,
Rec, as the value for which the decay coefficient B is zero. This value can
be determined by linear extrapolation on the viscosity, or equivalently on
Re−1/2 (see (26)), that is,

Re−1/2
c =

Re
−1/2
1 B2 − Re

−1/2
2 B1

B2 −B1
. (39)

For the extrapolated value to be accurate, Re
−1/2
1 and Re

−1/2
2 need to be

sufficiently close to the critical value Re
−1/2
c . We have verified in all cases

that these quantities departed by less than 5% from the computed value by
extrapolation. A similar extrapolation procedure is used to extrapolate the
steady-state flow rate at the critical Reynolds number, which we denote by
Qc.

4.2. Stability results

In this section, we study the dependence of the critical Reynolds number
on the inclination angle θ, the waviness parameter ζ, and the wavelength
parameter ξ. First, we fix ζ = 0.016π and ξ = 0.083π and let θ vary between
π

180 and 5π
180 . Figure 5 presents the results. We observe that the dependence

of the critical Reynolds number on the inclination angle θ is not through cot θ
since the ratio Rec/ cot θ decreases with θ. Since for Nusselt flow, this ratio
is actually determined by the vertical average of the quadratic streamwise
velocity, we can rescale the critical Reynolds number by using the extrap-
olated flow rate Qc instead of the Nusselt flow rate for flat incline Q∗; the
resulting Reynolds number, denoted by Re′c, is such that Re′c = Rec(Qc/Q∗).
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Fig. 5: Critical Reynolds number versus inclination angle θ; ζ = 0.016π and ξ = 0.083π.

As shown in Figure 5, the ratio Re′c/ cot θ is now practically independent
of cot θ. An interpretation of this result is that the velocity profile is still
relatively close to parabolic and that the main modification caused by the
topography waviness on the velocity profile is essentially through the flow
rate.
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Fig. 6: Qc/Q∗ versus inclination angle θ; ζ = 0.016π and ξ = 0.083π.

The ratio Qc/Q∗ is presented in Figure 6 as a function of inclination
angle, still for ζ = 0.016π and ξ = 0.083π. As expected, the waviness of
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Fig. 7: Free surface at steady-state for ζ = 0.016π and ξ = 0.083π; Left: Re = 65 and
θ = 1π/180; Right: Re = 14.5 and θ = 4π/180.

the topography has a more pronounced effect on the flow rate at smaller
inclination angles; our computations show that Qcri is about 25% smaller
than Q∗ for θ = π

180 . Furthermore, Figure 7 presents free surface profiles
at steady-state for two inclination angles (θ = π

180 and θ = 4π
180) and for a

Reynolds number lower than, but close to, the critical value. We observe that
the shapes of the two free surfaces are rather different. Indeed, although the
corresponding inclination angles are fairly close, the Reynolds number for
θ = π

180 is significantly larger, and the free surface height becomes minimal
much closer to the hump in the topography. Small oscillations are present
on the free surface for Re = 65; they result from slight inaccuracies on the
fitting coefficient M which can be improved by extending the observation
window in time.
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Fig. 8: Critical Reynolds number as a function of waviness parameter ζ; θ = 4π
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, ξ =
0.083π.
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Fig. 9: Free surface at steady-state for θ = 4π/180 and ξ = 0.083π; Left: Re = 16.5 and
ζ = 0.025π; Right: Re = 19 and ζ = 0.033π.

We now investigate the influence of the waviness parameter ζ on the
critical Reynolds number. We keep the inclination angle fixed at θ = 4π

180
and the wavelength parameter fixed at ξ = 0.083π. Results are presented in
Figure 8 for Rec and Re′c. The first observation is that the critical Reynolds
number Rec increases with the waviness parameter, indicating that the pres-
ence of waviness in the topography tends to stabilize the flow as in the case
of monotonously falling bottom [13]. Interestingly, the Reynolds number
Re′c evaluated with the critical flow rate is much less sensitive to ζ. This
observation hints to the fact that the main effect of waviness is lowering the
actual flow rate, thereby tempering somewhat the previous conclusion on the
stabilizing effect of waviness. The ratio Qc/Q∗ decreases with ζ from about
90% for ζ = 0.0166π to about 65% for ζ = 0.033π. Figure 9 presents free sur-
face profiles at steady-state for the waviness parameter equal to ζ = 0.025π
(left) and ζ = 0.033π (right); compare also with the right panel of Figure 7
corresponding to the lower value ζ = 0.0166π. The impact of the waviness
parameter on the shape of the steady-state free surface is clearly visible.

Finally, we investigate the influence of the wavelength parameter ξ on
the critical Reynolds number. We keep the inclination angle fixed at θ = 4π

180
and the waviness parameter fixed at ζ = 0.016π. Results are presented in
Figure 10 for Rec and Re′c. Both critical Reynolds numbers increase with
ξ, confirming that the flow is more easily destabilized at long wavelengths
in the present parameter range. The ratio Qc/Q∗ moderately depends on ξ,
increasing from 86% for ξ = 0.055π to 91% for ξ = 0.11π. Figure 11 presents
free surface profiles at steady-state for the larger wavelength parameter (ξ =
0.11π, left) and the smaller (ξ = 0.055π, right); compare also with the right
panel of Figure 7 corresponding to the intermediate value ξ = 0.083π. Notice
that the amplitude of bottom undulation is larger in the right panel than
in the left since both settings correspond to the same value for the waviness
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Fig. 10: Critical Reynolds number as a function of wavelength parameter ξ; θ = 4π
180

,
ζ = 0.016π.

parameter.

4.3. Comparison with a shallow-water model

For completeness, we present a brief comparison between the previous
ALE Navier–Stokes results and those obtained with a steady shallow-water
model. The latter is a simplified form drawn from a family of models derived
by Boutonet, Chupin, Noble, and Vila [2] where we omit, in particular,
surface tension and some high-order terms. The present steady shallow-
water model is one-dimensional (primes denote derivatives with respect to
x1) and expresses conservation of mass and momentum in the form















q′sw = 0,

h′sw

(

1−
6

5

q2
sw

gh3
sw cos θ

)

= tan θ − b′ − 3
η

ρ

qsw

g cos θh3
sw

,
(40)

where qsw is the flow rate and hsw the film thickness. The first equation
classically implies that qsw is constant. On the right-hand side of the sec-
ond equation, we recall from (1) that b′(x1) = ζ cos(2πx1/L), while the
third term is a friction term obtained assuming a Nusselt vertical veloc-
ity profile (see [2]). Using as before the quantities h∗ and h∗U∗ for non-
dimensionalization, where U∗ is the Nusselt flow velocity defined by (24),
the momentum balance equation becomes (the same notation is used for qsw
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Fig. 11: Free surface at steady-state for θ = 4π/180 and ζ = 0.016π; Left: Re = 15.2 and
ξ = 0.11π; Right: Re = 12.57 and ξ = 0.055π.

and hsw)

h′sw

(

1− q2
sw

2

5

tan θ

h3
sw

Re

)

= tan θ

(

1−
q2

sw

h3
sw

)

− b′, (41)

where the Reynolds number Re, which enters this equation as a parameter,
is again defined by (26). In the present setting, we additionally enforce hsw

to be periodic and have mean-value equal to 1 so as to fix the total volume of
fluid as for the free-surface Navier–Stokes equations. Numerically, we solve
for the constant qsw and the function hsw using an iterative procedure: given
a value for qsw and hsw(L/h∗) (at the right boundary), equation (41) is first
integrated backwards in x1 using a fourth-order Runge–Kutta method with a
spatial step equal to that used in the ALE Navier–Stokes calculations; then,
periodicity and volume conservation are checked and if they are not satisfied,
new values for qsw and hsw(L/h∗) are selected based on dichotomy. Since
each step of the iterative procedure only requires solving a one-dimensional
problem, the overall cost for computing qsw and hsw is much smaller than
that incurred by the ALE Navier–Stokes solver. The values for the Reynolds
number considered in the present comparison are small enough so that the
factor on the left-hand side of (41) does not vanish.

ξ Re qns qsw error

0.055π 12.6 0.867 0.868 4.03× 10−4

0.083π 13.8 0.895 0.893 1.83× 10−3

0.11π 14.5 0.916 0.912 4.22× 10−3

Tab. 1: Comparison of normalized flow rates obtained with the free-surface Navier–Stokes
model and the shallow-water model.
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Results are presented for θ = 4π/180, ζ = 0.016π, and the three wave-
length parameters considered previously. Table 4.3 compares the flow rate
qns obtained with the free-surface Navier–Stokes model with qsw. As ex-
pected, the error decreases as the wavelength parameter ξ becomes smaller;
quite interestingly, the agreement between both flow rates is extremely good
even for the higher values of ξ. Finally, Figure 12 compares free surface pro-
files and shows significant discrepancies. This is not surprising since the
present values for the wavelength parameter are not that small and since
viscous effects are still important. We observe that the two free surface pro-
files correspond, as required, to the same volume of water and that the film
thicknesses match relatively well at the inflection points of the topography.
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Fig. 12: Comparison of free surface profiles: solid line for Navier-Stokes and dashed line
for the shallow-water model; Re = 12.6, θ = 4π/180, ζ = 0.016π, and ξ = 0.055π.

5. Conclusions

In this work, we have investigated numerically the stability of a thin
liquid film flowing down an inclined wavy plane. We have used a direct
numerical solver based on a finite element/ALE approximation of the free-
surface Navier–Stokes equations. We have studied the dependence of the
critical Reynolds number for the onset of surface wave instabilities on the
inclination angle, the waviness parameter, and the wavelength parameter.
We have focused on a specific parameter range with mild inclination owing
to our targeted applications, but with relatively large waviness parameter
so that the bottom can raise locally. We have obtained quantitative values
for the critical Reynolds number using an extrapolation procedure based on
the return to equilibrium of stable flows. In the present parameter range,
higher amplitude and shorter wavelength for the bottom undulation stabilize
the flow, the main effect of waviness being to lower the flow rate. The
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dependence of the critical Reynolds number evaluated with the Nusselt flow
velocity on the inclination angle is more complex than through cot θ, but
this dependence is recovered if the actual flow rate at critical conditions
is used instead. Finally, we mention that the present numerical approach
to investigate flow stability still entails a substantial computational effort,
especially to conduct systematic parametric studies. A typical runtime of the
Navier-Stokes calculcation on a workstation DELL Poweredge 1950 quadcore
with 2×2.50 GHz cadenced processors to obtain a critical Reynolds number
(comprising the calculation of two stable flows relaxing back to steady-state)
ranges from 8 hours to a couple of days depending on the time step, Reynolds
number, and geometric parameters.
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