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Abstract: Quasi-periodic cocycles with a diophantine frequency and with values in
SL(2,R) are shown to be almost reducible as long as they are close enough to a constant, in
the topology of k times differentiable functions, with k great enough. Almost reducibility
is obtained by analytic approximation after a loss of differentiability which only depends
on the frequency and on the constant part. As in the analytic case, if their fibered rotation
number is diophantine or rational with respect to the frequency, such cocycles are in fact
reducible. This extends Eliasson’s theorem on Schrödinger cocycles to the differentiable
case.

1 Introduction

This work is focused on SL(2,R)-valued quasi-periodic cocycles. We mean by quasi-
periodic cocycle the fundamental solution of a linear system with quasi-periodic coeffi-
cients:

∀(t, θ) ∈ R× T
d,

d

dt
X t(θ) = A(θ + tω)X t(θ); X0(θ) = Id (1)

where A is continuous on the d-dimensional torus Td, matrix-valued and ω ∈ Rd is a
rationally independent vector. In this case we say that X is the cocycle associated to A.
In this paper we will have a particular interest in the case when A is sl(2,R)-valued since
in this case it is possible to compute the fibered rotation number of the cocycle and have
information on the rotational behaviour of the solutions of (1).

It is interesting to define an equivalence relation on cocycles as follow: if A,B ∈ C0(Td, gl(n,C)),
one says that A and B are conjugated in the sense of cocycles, or just conjugated, if there
exists a map Z which is continuous on the torus 2Td = Rd/2Zd such that

∀θ ∈ 2Td,
d

dt
Z(θ + tω)|t=0 = A(θ)Z(θ)− Z(θ)B(θ) (2)
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This kind of conjugation preserves some important dynamical invariants, as we will see
later on. A natural question arises when dealing with a cocycle: can it be conjugated, in
the sense of cocycles, to a system with constant coefficients? When it is so, one says that
the solution cocycle is reducible. More precisely, a cocycle X solution of (1) is reducible
if (2) holds for some constant B. In this case we also say that A is reducible to B by Z,
which is equivalent to

∀(t, θ) ∈ R× 2Td, X t(θ) = Z(θ + tω)−1etBZ(θ) (3)

It is well known since the theory of Floquet that every periodic cocycle (i.e, in the notation
above, when d = 1) is reducible (notice that we have allowed one period doubling in
our definition of reducibility). However, the presence of at least two incommensurable
frequencies in the coefficient of the system gives rise to non-reducible cocycles.
To mend this difficulty, some authors have considered the problem of almost reducibility
of quasi-periodic cocycles. In some topology C, a cocycle is said to be almost reducible if
it can be conjugated, in the sense above, with Z of class C, to another cocycle which is
C-arbitrarily close to a constant cocycle.
Many results about reducibility and almost reducibility of quasi-periodic cocycles have
been obtained in the perturbative case, i.e the case when the vector ω satisfies a diophan-
tine condition and (1) has the following form:

d

dt
X t(θ) = (A+ F (θ + tω))X t(θ); X0(θ) = 0 (4)

where the coefficient A+F (θ+tω) is close enough to a constant, with a closeness condition
related to the diophantine condition on ω:

|| F ||C≤ ǫ(n, d, ω, A) (5)

Then, if C stands for some analytic topology, it is known that

• every cocycle is almost reducible ([4], [2])

• almost all cocycles are reducible, when considering a generic one-parameter family
([3], [7] completed with [1])

• reducible cocycles are dense ([2])

• in the SO(3)-valued case, also non reducible cocycles are dense ([5]).

In fact, [3] also investigates the link between reducibility and the rotational behaviour of
the solutions, showing that Schrödinger cocycles are reducible if and only if their fibered
rotation number either satisfies a diophantine condition or is rational with respect to ω;
this result was extended to general SL(2,R)-valued cocycles in [6].

Here we shall adopt the perturbative framework, but in a finitely differentiable topology,
a framework in which little is yet known. The aim of this work is to show that in the
perturbative regime described by (4) and (5), for cocycles which are sufficiently smooth
but finitely differentiable, say Ck for some k ≥ k0(d, ω, A), and have values in SL(2,R),
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all cocycles are almost reducible in a finitely differentiable topology Ck−D with a loss of
differentiability D which is independent of the initial regularity k; in fact, we state this
theorem in such a way that it also holds for cocycles with values in other Lie groups. More
precisely, we will prove, for G amongst SL(2,C), SL(2,R), O(n), GL(n,C), U(n), letting
G be its Lie algebra:

Theorem 1.1 Let A ∈ G. There exists k0, D ∈ N such that if k ≥ k0, there exists ǫ0 > 0
such that if F ∈ Ck(Td,G) and || F ||k≤ ǫ0, then there exist Z∞ ∈ Ck−D(Td, G) and

Ā∞ ∈ Ck−D(Td,G) such that

∀θ ∈ T
d, ∂ωZ∞(θ) = (A+ F (θ))Z∞(θ)− Z∞(θ)Ā∞(θ) (6)

and Ā∞ is the limit, in Ck−D(Td,G), of reducible functions.

Theorem 1.1 is about almost reducibility of differentiable cocycles. It easily implies density
of reducible cocycles near a constant. The reason why it holds for those Lie groups is that
it is based on another theorem which holds for many classical Lie groups (see [2]), but we
can apply it here only when no period doubling is needed, that is to say, in the complex
case or in the 2-dimensional case.

Focusing now on the 2-dimensional case, we will show that given a sl(2,R)-valued
cocycle, if its fibered rotation number satisfies a diophantine condition or is rational with
respect to ω, then it is in fact reducible, thus extending Eliasson’s theorem of [3] to the
differentiable case:

Theorem 1.2 Let A ∈ sl(2,R). There exists k0, D ∈ N such that if k ≥ k0 and F ∈
Ck(Td, sl(2,R)), there exists ǫ0 > 0 such that if || F ||k≤ ǫ0 and the fibered rotation

number ρ(A+F ) has the form 2π〈m,ω〉, m ∈ Zd or satisfies a diophantine condition with

respect to ω:

∃κ > 0, ∀m ∈ Z
d \ {0}, | ρ(A + F )− 2π〈m,ω〉 |≥ κ

| m |τ
where τ is the diophantine exponent of ω, then the cocycle associated to A+F is reducible

in Ck−D(Td, SL(2,R)).

The demonstration of Theorem 1.1 relies essentially on a proposition shown in [2], which
was used as an inductive lemma in a KAM scheme to show almost reducibility for some
analytic and Gevrey cocycles. Here, we use it to get a good control on a sequence of
analytic cocycles which, following an idea of Zehnder ([8]), are constructed in such a way
that they approach a given differentiable cocycle. Since they are shown to be conjugated
to something which becomes closer and closer to a constant, one finally gets almost
reducibility for their limit in a topology with a finite loss of differentiability with respect
to the initial topology.

The specificity of SL(2,R), however, is that the eigenvalues of the constant part get closer
to 0 every time that, in the KAM scheme, a resonance is removed. Thus, non reducibility
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implies that the fibered rotation number of the limit cocycle cannot be diophantine, and
so, by invariance through conjugation in the sense of cocycles, neither can the fibered
rotation number of the initial cocycle, which gives Theorem 1.2. We then easily get an
application to Schrödinger cocycles inspired by [3].

1.1 Definitions and assumptions

Throughout this paper, we will make the following assumption.

Assumption: there exists 0 < κ < 1 and τ ≥ max(1, d− 1) such that

∀m ∈ Z
d \ {0}, | 〈m,ω〉 |≥ κ

| m |τ (7)

The numbers κ and τ will be fixed from now on. This is a diophantine condition on ω.
We shall define other types of diophantine conditions, which refer to the vector ω.

Definition: Let z ∈ R; we say that z is diophantine with respect to ω ∈ R
d and we

write z ∈ DCω if there exists κ′ > 0, τ ′ > max(1, d− 1) such that for all m ∈ Zd \ {0},

| z − 2π〈m,ω〉 |≥ κ′

| m |τ ′ (8)

We will also denote by DCω(τ) the set of numbers z ∈ R such that there exists κ′ > 0
satisfying, for all m ∈ Zd \ {0},

| z − 2π〈m,ω〉 |≥ κ′

| m |τ (9)

The following diophantine condition is also known as "second Melnikov condition" and
refers to the spectrum of a matrix:

Definition: Let A ∈ gl(n,C) and {α1, . . . , αn} its spectrum. Let κ′ > 0, N ∈ N; we
say that A has a DCN

ω (κ′, τ) spectrum if

∀1 ≤ j, k ≤ n, ∀m ∈ Z
d \ {0}, | m |≤ N ⇒| Im(αj)− Im(αk)− 2π〈m,ω〉 |≥ κ′

| m |τ (10)

If A ∈ sl(2,R) with spectrum {±α}, this reduces to

∀m ∈ Z
d \ {0}, | m |≤ N ⇒| 2 Im(α)− 2π〈m,ω〉 |≥ κ′

| m |τ (11)

Definition: We will denote by Mω the set of numbers which are rational with respect
to ω, i.e

Mω = {2π〈m,ω〉, m ∈ Z
d} (12)

It has a module structure, therefore it is sometimes called the frequency module.

Now we recall the definition of the fibered rotation number of an SL(2,R)-valued cocycle:

4



Definition: Let A ∈ Ck(Td, sl(2,R)). We will denote by ρ(A) and refer to as the
fibered rotation number of the cocycle X associated to A the number

ρ(A) = lim
t→+∞

1

t
Arg(X t(θ)φ)

where Arg is the variation of the argument.

Remark:

• This number does not depend on the choice of φ (see [3], appendix);

• If A and B are conjugated in the sense of cocycles, then ρ(A) = ρ(B) + 〈m,ω〉 for
some m ∈ 1

2
Zd;

• if A is reducible to B by some function Z, then ρ(A) coïncides with the Floquet
exponent of A i.e the modulus of the imaginary part of the eigenvalues of B (which
is well-defined only modulo 1

2
Mω).

Notations: The usual operator norm will be denoted by || . ||. In the space Ck(Td, gl(n,C))
of k times differentiable matrix-valued functions on the torus, we will use the norm

|| F ||k= sup
k′≤k;θ∈Td

|| dk′F (θ) ||

For any map Z ∈ C1(2Td, gl(n,C)) we will denote by ∂ωZ the derivative of Z in the
direction ω:

∀θ ∈ 2Td, ∂ωZ(θ) =
d

dt
Z(θ + tω)|t=0

2 A lemma on analytic cocycles

We first recall a proposition which will be used as inductive step in the proof of Theorem
1.1. It was proved in [2] (Proposition 2.14).

Notations: In the following proposition, for r > 0 and any set E, we will denote by
Cω

r (T
d, E) the space of functions which are analytic on a "strip" {z = (z1, . . . , zd) ∈ Cd, |

Im z1 |< r, . . . , | Imzd |< r}, 1-periodic in Re z1, . . . ,Re zd and whose restriction on R
d

has values in E. The writing Cω
r (2T

d, E) will stand for functions which are analytic on a
strip and E-valued on Rd, but only 2-periodic in Re z1, . . . ,Re zd.

The norm in Cω
r (2T

d, gl(n,C)) will be written | . |r.

We shall fix a Lie group G amongst GL(n,C), U(n), SL(2,C), SL(2,R), O(2) and denote
by G its Lie algebra.

To simplify the statements, we shall use the following technical abreviations:
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









N(r, ǫ) = 1
2πr

| log ǫ|
R(r, r′) = 1

(r−r′)8
804(1

2
n(n− 1) + 1)2

κ′′(r, r′, ǫ) = κ

n(8R(r,r′)
1
2n(n−1)+1

N(r,ǫ))τ

(13)

Proposition 2.1 Let

• A ∈ G,

• r ≤ 1
2
, r′′ ∈ [95

96
r, r[,

• Ā, F̄ ∈ Cω
r (T

d,G) and Ψ ∈ Cω
r (2T

d, G),

• ǫ = |F̄ |r,

There exists C > 0 depending only on n, d, κ, τ and there exists D ∈ N depending only on

n, d, τ such that if

1. Ā is reducible to A by Ψ,

2.

ǫ ≤ C

(||A||+ 1)D
(r − r′′)D (14)

3. |Ψ|r ≤ (1
ǫ
)−

1
2
(r−r′′) et |Ψ−1|r ≤ (1

ǫ
)−

1
2
(r−r′′),

then there exist

• ǫ′ ∈ [ǫR(r,r′′)n
2

, ǫ100];

• Z ′ ∈ Cω
r′′(2T

d, G),

• Ā′, F̄ ′ ∈ Cω
r′′(2T

d,G),

• Ψ′ ∈ Cω
r (2T

d, G),

• A′ ∈ G

satisfying the following properties:

1. Ā′ is reducible by Ψ′ to A′,

2. |F̄ ′|r′′ ≤ ǫ′,

3. |Ψ′|r′′ ≤ ( 1
ǫ′
)
1
4
(r−r′′) and |Ψ′−1|r′′ ≤ ( 1

ǫ′
)
1
4
(r−r′′),

4. ||A′|| ≤ ||A||+ | log ǫ |
(

1
r−r′′

)D
;

5.

∂ωZ
′ = (Ā + F̄ )Z ′ − Z ′(Ā′ + F̄ ′) (15)
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6.

|Z ′ − Id|r′′ ≤
1

C

(

(1 + ||A||)| log ǫ|
r − r′′

)D

ǫ1−4(r−r′′) (16)

and so does (Z ′)−1 − Id.

Moreover,

• if G = o(2) or u(n), the same holds with the weaker condition

ǫ ≤ C(r − r′′)D (17)

instead of (14);

• if G = sl(2,C) or sl(2,R), then either Ψ′−1Ψ is the identity or || A′ ||≤ κ′′(r, r′′, ǫ)+

ǫ
1
2 .

The proof of Proposition 2.1 given in [2] also implies the following:

If A has a DCN
ω (κ′′, τ) spectrum with N = N(r, ǫ) and κ′′ = κ′′(r, r′′, ǫ), then Ψ = Ψ′.

By construction, functions Ψ and Ψ′ also satisfy the following, in case G = sl(2,R):

If Ψ satisfies:

for all A,A′ ∈ C0(Td, sl(2,R)), ∂ωΨ = AΨ−ΨA′ ⇒ ρ(A) = ρ(A′)+2π〈m,ω〉 for some
m ∈ 1

2
Zd

then Ψ′ satisfies the same property:

for all A,A′ ∈ C0(Td, sl(2,R)), ∂ωΨ
′ = AΨ′ − Ψ′A′ ⇒ ρ(A) = ρ(A′) + 2π〈m′, ω〉 for

some m′ ∈ 1
2
Zd

with m = m′ if and only if Ψ = Ψ′.

Moreover, looking more closely at the proof of Proposition 2.1 in [2], one has for G =
sl(2,C) or sl(2,R):

|| Ψ′−1Ψ(AΨ−1Ψ′ − ∂ω(Ψ
−1Ψ′))− A′ ||≤

√
ǫ (18)

therefore (since the rotation number of a constant cocycle is given by the imaginary part
of its spectrum)

| ρ(A)− ρ(A′) + 2π〈m′ −m,ω〉 |≤
√
ǫ (19)
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3 Almost reducibility

First we need a numerical lemma:

Lemma 3.1 Let C > 0, D, k ∈ N,ǫj =
1
jk

. There exists a k1 such that if k ≥ k1, then for

all j ≥ 2,

C[j(j + 1) | log ǫj |]Dǫ
1− 4

j(j+1)

j ≤ 1

j2
(20)

Proof: Equation (20) is equivalent to

C[j(j + 1)k log j]D(
1

j
)k(1−

4
j(j+1)

) ≤ 1

j2
(21)

There exists k1 such that for all k ≥ k1, j ≥ 2,

C
kD

j(
k
2
−3D)

≤ 1

j2
(22)

so (20) holds. �

We will now state the main result for G among GL(n,C), U(n), SL(2,C), SL(2,R), O(2).
We shall denote by G the Lie algebra associated to G.

Theorem 3.2 Let A ∈ G. There exists k0, D
′ ∈ N only depending on n, d, κ, τ, A such

that for all k ≥ k0 and F ∈ Ck(Td,G), there exists ǫ0 depending only on n, d, κ, τ, A, k
such that if ||F ||k ≤ ǫ0, then there exist

• Z∞ ∈ Ck−D′

(Td, G),

• Ā∞ ∈ Ck−D′

(Td,G),

• a sequence (Āj)j≥1 of functions in Ck−D′

(Td,G),

• a sequence (Ψj)j≥1 of functions in Ck−D′

(Td, G),

• a sequence (Aj)j≥1 of elements of G

such that

1. Ā∞ is the limit in Ck−D′

(Td,G) of the sequence Āj,

2. the functions Āj are reducible to Aj by Ψj,

3.

∂ωZ∞(θ) = (A+ F (θ))Z∞(θ)− Z∞(θ)Ā∞(θ) (23)

Moreover, in the case G = sl(2,R), there exist

• a sequence (Mj)j≥1 of elements of 1
2
Zd
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• unbounded sequences (Nj)j≥1 and (Rj)j≥1 of integers

• and a summable sequence (κj)j≥1

such that

• for all A1, A2 ∈ C0(Td, sl(2,R)) and all j,

∂ωΨj = A1Ψj −ΨjA2 ⇒ ρ(A1) = ρ(A2) + 2π

j
∑

l=1

〈Ml, ω〉

• either Aj has a DC
Nj
ω (κj , τ) spectrum, which implies that Mj = 0 or Mj−1 = 0, or

Rj−1Nj−1 < Mj ≤ Nj and in that case σ(Aj) ⊂ B(0, κj−1);

• | ρ(Aj+1)− (ρ(Aj) + 2π〈Mj, ω〉) |≤ κj;

• if there exists J ≥ 1 such that Mj = 0 for all j ≥ J , then A+ F is reducible.

In this statement, properties 1, 2 and 3 are sufficient to get Theorem 1.1, but the other
properties will be used in the application to SL(2,R)-valued cocycles.

Proof: • By [8], there exists a sequence (Fj)j≥1, Fj ∈ Cω
1
j

(Td,G) and a universal

constant C ′, such that











||Fj − F ||k → 0 when j → +∞
|Fj| 1

j
≤ C ′||F ||k

|Fj+1 − Fj| 1
j+1

≤ C ′(1
j
)k||F ||k

(24)

Moreover, this sequence is obtained from F regardless of its regularity, i.e if k ≤ k′ and
F ∈ Ck′, then properties (24) hold with k′ instead of k (since Fj is the convolution of F
with a map which does not depend on k).

Let C > 0, D be as in Proposition 2.1. One can assume C ≤ 1. Recall that these numbers
only depend on n, d, κ, τ, A. For all r > r′ > 0, let

ǫ′0(r, r
′) = C(r − r′)D

For all j ≥ 1, let

ǫj = ǫ′0(
1

j
,

1

j + 1
)

Let k1 be as in Lemma 3.1 and let k0 ≥ k1 be a number depending only on n, d, κ, τ, A
such that for all j ≥ 2,

C

jk0
≤ ǫj
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Assume k ≥ k0 and let

ǫ′j =
C

jk

and

αj =
4

j(j + 1)

• First step: Assume that

C ′||F ||k ≤ ǫ′2 =
C

2k
(25)

(notice that this condition on ||F ||k only depends on n, d, κ, τ, A, k). Then

|F2| 1
2
≤ ǫ′2 ≤ ǫ2

therefore, by Proposition 2.1, there exist

• ǫ′′2 ≤ |F2|1001
2

• Z2 ∈ Cω
1
3

(Td, G),

• Ā2 ∈ Cω
1
3

(Td,G)

• F̄2 ∈ Cω
1
3

(Td,G)

• Ψ2 ∈ Cω
1 (2T

d, G)

• A2 ∈ G

such that

1. Ā2 is reducible to A2 by Ψ2,

2. | F̄2 | 1
3
≤ ǫ′′2 ≤ 1

2
ǫ′3,

3. | Ψ2 | 1
3
≤
(

1
ǫ′′2

)α2

, as well as Ψ−1
2

4.
∂ωZ2 = (A+ F2)Z2 − Z2(Ā2 + F̄2) (26)

5.

|Z2 − Id| 1
3
≤ 1

C

(

4

α2
(1 + ||A||)| log |F2| 1

2
|
)D

|F2|1−α2
1
2

(27)

as well as Z−1
2 ,

10



6. and if G = sl(2,R), Ψ2 satisfies: for all A,A′ ∈ C0(Td, sl(2,R)),

∂ωΨ2 = AΨ2 −Ψ2A
′ ⇒ ∃M1 ∈

1

2
Z
d, ρ(A) = ρ(A′) + 2π〈M1, ω〉 (28)

Property (27) implies

|Z2 − Id| 1
3
≤ 1

C

(

4

α2

(1 + ||A||)| log ǫ′2|
)D

(ǫ′2)
1−α2 (29)

as well as for Z−1
2 . Lemma 3.1 then implies that |Z2 − Id| 1

3
≤ 1

4
.

• Induction step: Let j ≥ 2. Suppose that there exists

• Aj ∈ G

• Ψj ∈ Cω
1 (2T

d, G)

• Āj ∈ Cω
1

j+1

(Td,G) et F̄j ∈ Cω
1

j+1

(Td,G)

• Z̄j ∈ Cω
1

j+1

(Td, G),

such that

1. Āj is reducible to Aj by Ψj

2. | Ψj | 1
j+1

≤ |F̄j |−αj

1
j+1

3. |F̄j| 1
j+1

≤ 1
2
ǫ′j+1

4. |Z̄j − Id| 1
j+1

≤∑j

l=2
1
l2

5. if G = sl(2,R), for all A,A′ ∈ C0(Td, sl(2,R)),

∂ωΨj = AΨj−ΨjA
′ ⇒ ∃M1, . . . ,Mj−1 ∈

1

2
Z
d, ρ(A′) = ρ(A)+2π〈M1+· · ·+Mj−1, ω〉

(30)

6. and

∂ωZ̄j = (A+ Fj)Z̄j − Z̄j(Āj + F̄j) (31)

11



Then

∂ωZ̄j = (A+ Fj+1)Z̄j − Z̄j(Āj + Z̄−1
j (Fj+1 − Fj)Z̄j + F̄j) (32)

and moreover, by (24),

|Z̄−1
j (Fj+1 − Fj)Z̄j + F̄j | 1

j+1
≤ 1

2
ǫ′j+1 +

4

jk
C ′||F ||k (33)

which implies, by assumption (25), that

|Z̄−1
j (Fj+1 − Fj)Z̄j + F̄j | 1

j+1
≤ ǫ′j+1 (34)

so one can apply Proposition 2.1: denoting ǫ̃j = |Z̄−1
j (Fj+1 − Fj)Z̄j + F̄j | 1

j+1
, there exists

• ǫ′′j+1 ≤ ǫ̃100j

• Zj+1 ∈ Cω
1

j+2

(Td, G),

• Āj+1 ∈ Cω
1

j+2

(Td,G) and F̄j+1 ∈ Cω
1

j+2

(Td,G)

• Ψj+1 ∈ Cω
1 (2T

d, G)

• Aj+1 ∈ G

such that

1. Āj+1 is reducible by Ψj+1 to Aj+1,

2. |F̄j+1| 1
j+2

≤ ǫ′′j+1 ≤ (ǫ′j+1)
100 ≤ 1

2
ǫ′j+2

3. | Ψj+1 | 1
j+2

≤ (ǫ′′j+1)
−αj+1 ≤ |F̄j+1|−αj+1

1
j+2

4.
∂ωZj+1 = (Āj + Z̄−1

j (Fj+1 − Fj)Z̄j + F̄j)Zj+1 − Zj+1(Āj+1 + F̄j+1) (35)

5.

|Zj+1 − Id| 1
j+2

≤ 1

C

(

4

αj+1

(1 + ||A||)| log ǫ̃j |
)D

(ǫ̃j)
1−αj+1 (36)

6. if G = sl(2,R), for all A,A′ ∈ C0(Td, sl(2,R)),

∂ωΨj+1 = AΨj+1−Ψj+1A
′ ⇒ ∃M1, . . . ,Mj ∈

1

2
Z
d, ρ(A′) = ρ(A)+2π〈M1+· · ·+Mj, ω〉

(37)

7. if Aj has a DC
Nj
ω (κj , τ) spectrum, with Nj =

j+1
2π

| log ǫ̃j | and κj =
κ

2[8R2
jNj ]τ

with

Rj = 4((j + 1)(j + 2))8804, then Ψj+1 = Ψj.
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8. | ρ(Aj+1)− ρ(Aj) + 2π〈Mj, ω〉) |≤ κj .

Property (36) implies

|Zj+1 − Id| 1
j+2

≤ C̃
(

(j + 2)2| log ǫ̃j|
)D

(ǫ̃j)
1−αj+1 (38)

so by lemma 3.1, |Zj+1 − Id| 1
j+2

≤ 1
(j+1)2

. Let Z̄j+1 = Z̄jZj+1. Then

|Z̄j+1 − Id| 1
j+2

≤| Zj+1 − Id | 1
j+2

+ | Zj+1 | 1
j+2

| Z̄j − Id | 1
j+2

≤
j+1
∑

l=2

1

l2
(39)

Property (36) also implies

|Zj+1 − Id| 1
j+2

≤ C̃
(

(j + 2)2| log ǫ̃j |
)D

(ǫ̃j)
1−αj+1

≤ C̃
(

(j + 2)2| log(ǫ′j+1)|
)D

(ǫ′j+1)
1−αj+1

≤ C̃ ′k2D(j + 1)k(αj+1−1)+3D

(40)

• Conclusion: So for all j ≥ 2, there exist

• Z̄j, Zj ∈ Cω
1

j+1

(Td, G),

• Āj ∈ Cω
1

j+1

(Td,G) and F̄j ∈ Cω
1

j+1

(Td,G)

• Ψj ∈ Cω
1 (2T

d, G),

• Aj ∈ G

such that

1. Z̄j = Z1 . . . Zj

2. Āj is reducible to Aj by Ψj

3. |F̄j| 1
j+1

≤ ǫ′j+1

4. | Ψj | 1
j+1

≤ |F̄j |−αj

1
j+1

5.
∂ωZ̄j(θ) = (A + Fj(θ))Z̄j(θ)− Z̄j(θ)(Āj(θ) + F̄j(θ)) (41)

6.
|Z̄j − Id| 1

j+1
≤ 1; |Z̄−1

j − Id| 1
j+1

≤ 1 (42)
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7. and

|Zj − Id| 1
j+1

≤ C̃ ′k2Djk(αj−1)+3D
(43)

Moreover there exists a sequence (Mj)j≥1 of elements of 1
2
Zd such that for all j ≥ 1,

• if Aj has a DC
Nj
ω (κj , τ) spectrum, with Nj =

j+1
2π

| log ǫ̃j | and κj =
κ

2[8R2
jNj ]τ

with

Rj = 4((j + 1)(j + 2))8804, then Ψj+1 = Ψj and Mj = 0;

• for all A,A′ ∈ C0(Td, sl(2,R)),

∂ω(Ψj+1Ψ
−1
j ) = AΨj+1Ψ

−1
j −Ψj+1Ψ

−1
j A′ ⇒ ρ(A) = ρ(A′) + 2π〈Mj , ω〉 (44)

and either Mj = 0 (if and only if Ψj = Ψj+1), or Mj−1 = 0, or

Rj−1Nj−1 < Mj ≤ Nj

• | ρ(Aj+1)− ρ(Aj) + 2π〈Mj, ω〉) |≤ κj .

• Convergence: Now we have to compute the topology in which the sequence (Z̄j) defined
above is Cauchy. Since

|Z̄j − Z̄j+1| 1
j+2

≤ |Z̄j| 1
j+1

|Zj+1 − Id| 1
j+2

≤ C̃ ′k2D(j + 1)k(αj+1−1)+3D
(45)

then for all k′ ∈ N,

||Z̄j − Z̄j+1||k′ ≤ C3(j + 1)k(αj+1−1)+3D+k′+1 (46)

for some C3 independent of j, so the sequence (Z̄j) is Cauchy in the Ck′ topology if there
exists an j such that for all j′ ≥ j,

k′ + 1 + k(αj′+1 − 1) + 3D < 0 (47)

Let k′ = k − 3D − 2. If j′ > 4k, then (47) holds, therefore (Z̄j) is Cauchy in the Ck′

topology.

Let Z∞ be the limit of (Z̄j) in the Ck′ topology. Taking the limit in (41), one gets

∂ωZ∞(θ) = (A+ F (θ))Z∞(θ)− Z∞(θ)Ā∞(θ) (48)

where Ā∞ ∈ Ck′(Td,G) is the limit in Ck′(Td,G) of functions Āj such that

14



∂ωΨj = ĀjΨj −ΨjAj (49)

• Reducibility: If there exists J ≥ 1 such that Ψj+1 = Ψj for all j ≥ J , then, taking
the limit in (49), one finds a matrix A∞ satisfying

∂ωΨJ = Ā∞ΨJ −ΨJA∞

so Ā∞ is reducible, and therefore A + F is reducible. �

4 Application to the fibered rotation number

Proposition 4.1 Let Ā ∈ C0(Td, sl(2,R)). There exists k,D′ only depending on d, κ, τ, ˆ̄A(0)

and ǫ0 only depending on d, κ, τ, ˆ̄A(0), k such that if Ā ∈ Ck(Td, sl(2,R)), if ρ(Ā) ∈
DCω(τ) ∪Mω and if || Ā− ˆ̄A(0) ||k≤ ǫ0, then the cocycle associated to Ā is reducible in

Ck−D′

(Td, SL(2,R)).

Proof: We shall apply Theorem 3.2 with A = ˆ̄A(0) and F = Ā − ˆ̄A(0). Let

k0, D
′ only depending on d, κ, τ, ˆ̄A(0) as in Theorem 3.2, k ≥ k0 and ǫ0 only depend-

ing on d, κ, τ, ˆ̄A(0), k as in Theorem 3.2. If || Ā − ˆ̄A(0) ||k≤ ǫ0, there exists Z∞ ∈
Ck−D′

(Td, SL(2,R)), Ā∞ ∈ Ck−D′

(Td, sl(2,R)) such that if

∂ωZ∞ = ĀZ∞ − Z∞Ā∞

and Ā∞ is the limit of a sequence of maps (Āj) which are reducible to Aj by Ψj .

Let (Mj), (κj), (Nj) be sequences as in Theorem 3.2. We shall proceed by contradiction;
suppose that the cocycle associated to Ā is not reducible: then there exists a sequence
(jl)l≥1 such that for all l, Ψjl+1 6= Ψjl (i.e Mjl 6= 0). Now by definition of the sequence
(Mj), for all j,

ρ(Aj) + 2π

j−1
∑

j′=1

〈Mj′, ω〉 = ρ(Āj)

so we have

| ρ(Āj)− ρ(Āj+1) |=| ρ(Aj+1)− (ρ(Aj)− 2π〈Mj , ω〉) ≤ κj

and therefore

| ρ(Āj)− ρ(Ā∞) |≤
∑

j′≥j

κj′

Suppose ρ(Ā) ∈ DCω(τ), then for all m ∈ Z
d \ {0},

| ρ(Ā)− 2π〈m,ω〉 |≥ κ′

| m |τ
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for some κ′; now there exists M ∈ Zd such that for all m ∈ Zd \ {0},

| ρ(Ā∞)− 2π〈m,ω〉 |=| ρ(Ā)− 2π〈m−M,ω〉 |
So, for all m ∈ Zd \ {M} and all l big enough,

| ρ(Ajl) + 2π

jl−1
∑

j′=1

〈Mj′, ω〉 − 2π〈m,ω〉 | +
∑

j′≥jl

κj′ ≥
κ′

| m−M |τ (50)

Now by definition of the sequence (jl), for all l,

| ρ(Ajl)− 2π〈Mjl, ω〉 |< κjl

therefore

| ρ(Ajl) + 2π

jl−1
∑

j′=1

〈Mj′, ω〉 − 2π〈
jl
∑

j′=1

Mj′ , ω〉 | +
∑

j′≥jl

κj′ < 2
∑

j′≥jl

κj′ (51)

If one lets

κ′
l = 2

∑

j′≥jl

κj′[|
jl
∑

j′=1

Mj′ | + | M |]τ (52)

then

κ′
l > 2

∑

j′≥jl

κj′(jlRjl−1Njl−1+ | M |)τ > 0 (53)

and

| ρ(Ajl) + 2π

jl−1
∑

j′=1

〈Mj′, ω〉+
∑

j′≥jl

κjl − 2π〈
jl
∑

j′=1

Mj′, ω〉 |<
κ′
l

|∑jl
j′=1Mj′ −M |τ

(54)

The sequence κ′
l also satisfies

κ′
l ≤ 2

∑

j′≥jl

κj′[

jl
∑

j′=1

Nj′+ | M |]τ ≤ c(jlNjl+ | M |)τ
∑

j′≥jl

κj′ ≤ c′(jl
1

R2τ
jl

+ | M |τ
∑

j′≥jl

κj′)

where c, c′ do not depend on l. For l big enough, (54) contradicts (50) since (Mj)j≥1 is
unbounded and κ′

l tends to 0.

In the case when ρ(Ā) is rational with respect to ω, since Ā and Ā∞ are conjugated,
ρ(Ā∞) is also rational with respect to ω. Therefore, (50) still holds, with κ′ = κ, for M
such that ρ(Ā∞) = 〈M,ω〉, so one is led to the same contradiction. �
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Let us now consider the cocycle associated to the Schrödinger equation

d

dt
X(t) = (Aλ + F (tω))X(t) (55)

where Aλ =

(

0 −λ
1 0

)

and F (tω) =

(

0 V (tω)
0 0

)

with V ∈ Ck(Td) with k to be

determined later on.

Theorem 4.2 There exists k0 only depending on d, κ, τ such that if k ≥ k0 and if V ∈
Ck(Td), there exists ǫ0 only depending on d, κ, τ, k such that if || V ||k≤ ǫ0, then the

cocycle which is solution of (55) is

• almost reducible for all λ,

• reducible for all λ such that ρ(Aλ + F ) ∈ DCω(τ) ∪Mω.

Proof: • First case: λ ∈ [−2, 2]. The norm of Aλ is then bounded independently of
λ so it is enough to apply Theorem 3.2 with A = Aλ and F as above to deduce almost
reducibility; to infer reducibility if ρ(Aλ+F ) ∈ DCω(τ)∪Mω, apply Proposition 4.1 with
Ā = Aλ + F .

• Second case: | λ |> 2. Letting Y (t) =

(

1
2

−
√
λ
2

1
2

√
λ
2

)

X(t), one has

Y ′(t) =

(

1
2

−
√
λ
2

1
2

√
λ
2

)

(

0 V (tω)− λ
1 0

)(

1 1
− 1√

λ

1√
λ

)

Y (t)

= (Ã(λ) + F̃ (λ, tω))Y (t)

(56)

with

Ã(λ) =

(

0 −
√
λ√

λ 0

)

and

F̃ (λ, tω) =

(

−V (tω)

2
√
λ

V (tω)

2
√
λ

−V (tω)

2
√
λ

V (tω)

2
√
λ

)

Thus, one can apply Theorem 3.2 with A = Ã(λ) and F (tω) = F̃ (λ, tω) to get almost
reducibility if V is bounded in the Ck topology by some constant depending only on
d, κ, τ, k. One can also apply Proposition 4.1 with Ā = Ã(λ)+ F̃ (λ, tω) to get reducibility
in the case when ρ(Aλ + F ) ∈ DCω(τ) ∪Mω, since ρ(Aλ + F ) = ρ(Ã(λ) + F̃ (λ, .)). �
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