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Smooth moduli spaces of associative submanifolds

Damien Gayet

September 8, 2012

Abstract
Let M7 be a smooth manifold equipped with a G2-structure φ, and Y 3 be an closed compact
φ-associative submanifold. In [17], R. McLean proved that the moduli space MY,φ of the
φ-associative deformations of Y has vanishing virtual dimension. In this paper, we perturb
φ into a G2-structure ψ in order to ensure the smoothness of MY,ψ near Y . If Y is allowed
to have a boundary moving in a fixed coassociative submanifold X, it was proved in [7] that
the moduli space MY,X of the associative deformations of Y with boundary in X has finite
virtual dimension. We show here that a generic perturbation of the boundary condition X
into X ′ gives the smoothness of MY,X′ . In another direction, we use Bochner’s technique to
prove a vanishing theorem that forces MY or MY,X to be smooth near Y . For every case,
some explicit families of examples will be given.

MSC 2000: 53C38 (35J55, 53C21, 58J32).

Keywords: G2 holonomy; calibrated submanifolds; elliptic boundary problems; Bochner’s
technique

1 Introduction

In the Euclidian space (R7, g0) with its canonical coordinates (xi)i=1,··· ,7, consider the 3-form

φ0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356

and G2 the subgroup of SO(7) defined by G2 = {g ∈ SO(7), g∗φ0 = φ0}. If M is an oriented
spin 7-dimensional Riemannian manifold, its structure group can be reduced to G2 ⊂ SO(7).
Given a set of trivialization charts for TM compatible with G2, M inherits a nondegenerate
3-form φ and a metric g, which are the pullbacks of φ0 and g0 by these charts. We call the
pair (φ, g) a G2-structure. Moreover, TM inherits a vector product × defined by

∀u, v, w ∈ TM, 〈u× v,w〉 = g(u× v,w) = φ(u, v, w).

Note that in R7, the subspace R3 × {0} is stable under this vector product, which induces
the classical vector product on R3. When φ is closed and coclosed for g, the structure is
said to be torsion-free. In this situation, the holonomy of g is a subgroup of G2, see [12].

A 3-dimensional submanifold Y in (M,φ, g) is called φ-associative, or simply associative
when there is no ambiguity, if its tangent bundle is stable under the vector product associated
to φ. In other terms, φ restricted to Y is a volume form for Y . Likewise, a 4-dimensional
submanifold X is called coassociative if the fibers of its normal bundle are associative, or
equivalently, φ|TX vanishes.
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1.1 Genericity

Closed associative submanifolds.

Definition 1.1 Consider a smooth spin 7-manifold M and Y a smooth compact closed 3-
submanifold. For every G2-structure φ, define MY,φ to be the set of smooth φ-associative
submanifolds isotopic to Y .

It is known from [17] that the problem of associative deformations of a compact closed as-
sociative submanifold Y is related to an elliptic partial diffential equation, namely a twisted
Dirac operator, see Theorem 2.1. Hence for a fixed G2-structure φ, the moduli space MY,φ

has finite and vanishing virtual dimension. In general, the situation is obstructed. For
instance, consider the torus T3 × {t} in the flat torus (T7, φ0, g0) = T3 × T4. This is an
associative submanifold, and its moduli space MT3×{t} of associative deformations contains
at least the 4-dimensional T4. See also Proposition 4.6 for a more general situation in a
product of a Calabi-Yau manifold with S1.

A natural question is to find conditions which force the moduli space MY,φ to be smooth
at least near a φ-associative Y , or in other terms, which force the cokernel of the operator
to vanish. One way to solve this is to perturb the G2-structure and get generic smoothness.
It turns out that in general we cannot do this in the realm of torsion-free structures, see
Remark 2.4. On the other hand, G2-structures with closed 3-form φ seem to be rich enough
to work with, at least for the point of view of calibrated geometries, see [10]. Indeed, any
closed G2-structure φ defines a calibration, and when this form is closed, the calibrated
submanifolds, here the associative ones, do minimize the volume in their homology class.
As suggested to the author by D. Joyce, we will prove the following

Theorem 1.2 Let M be a manifold equipped with a closed G2-structure φ, and Y be a
smooth compact closed φ-associative submanifold. Then for every generic closed G2-structure
ψ close enough to φ, the moduli space MY,ψ contains a deformation Ỹ of Y and is smooth
near Ỹ , or is locally empty, that means that there are no ψ-associative submanifold close
enough to Y . In the first case, Ỹ is isolated among ψ-associative submanifolds isotopic to
Y .

A former result in this direction was proved by S. Abkulut and S. Salur [1], where the au-
thors allow a certain freedom for the definition of associativity.

Associative submanifolds with boundary. In [7], the authors showed that the problem
of associative deformations of an associative submanifold Y with boundary in a fixed coas-
sociative submanifold X is an elliptic problem of finite index. Moreover, they proved that
this virtual dimension equals the index of a natural Cauchy-Riemann operator related to
the complex geometry of the boundary, see Theorem 3.1 below. As in the case of a closed
associative, the situation can be obstructed. For instance, consider in (T7, φ0, g0) the T 2-
family of associative submanifolds

Yλ = {(x1, x2, x3, λ, µ, 0, 0), 0 ≤ x1 ≤ 1/2, x2, x3 ∈ S1}, (λ, µ) ∈ T 2.

The two components of the boundary of Yλ lie in the union X of the two coassociatives tori

Xi = {(i/2, x2, x3, x4, x5, 0, 0), x2, x3, x4, x5 ∈ S
1}, i = 0, 1.
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However the index of this problem vanishes, see [7] or Theorem 3.1. For more general ob-
structed situations, see Theorem 4.12.

As in the case of a closed associative, we can perturb the closed G2-structure φ of the
manifold M into ψ to ensure the smoothness of the moduli space. Note that in this case,
X has no reason to remain coassociative for the new structure. But it remains ψ-free, i.e
the tangent space of X does not contain any ψ-associative 3-plane, see [9] or [7, Section
5]. Indeed, φ-coassociativity implies φ-freedom, and for a submanifold to be φ-free is an
open condition in the variable φ. For any G2-structure φ, the problem of deformations of an
associative submanifold with boundary in a fixed φ-free submanifold is still elliptic [7] and,
in our present case, its index is the same as the index for the unperturbed situation.

Definition 1.3 Consider a manifold equipped with a G2-structure (φ, g) and Y a smooth
compact associative submanifold with boundary in a φ-free submanifold X. We denote by
MY,X the set of smooth associative submanifolds with boundary in X and isotopic to Y .

Instead of changing the G2-structure, we can move the boundary condition, namely X. Still,
if we demand that X remains coassociative, in general we can not get smoothness. Indeed,
it is known [17] that the moduli space of coassociative perturbations of X is smooth and
has the dimension b+2 (X) of the space of harmonic self-dual 2-forms on X. In the former
example of the flat torus, every coassociative deformation of X is a translation of the initial
situation, hence the problem remains obstructed. Now, since any perturbation of a φ-free
submanifold remains φ-free, we can fix φ and perturb X.

Theorem 1.4 Let Y be a smooth associative submanifold with boundary in a smooth coas-
sociative submanifold X. If the virtual dimension of MY,X is non-negative, then for any
sufficiently small generic smooth deformation X ′ of X, either MY,X′ is locally empty, that
means there is no associative manifold with boundary in X ′ close enough to Y , or there
exists a small associative deformation Y ′ of Y such that the moduli space MY ′,X′ is smooth
near Y ′ and of dimension equal to the index computed for the unperturbed situation.

1.2 Metric conditions

Concrete examples are often non generic, so we would like too to get a condition that is not
a perturbative one. For holomorphic curves in dimension 4, there are topological conditions
on the degree of the normal bundle which imply the smoothness of the moduli space of com-
plex deformations, see [11]. The main reason is that holomorphic curves intersect positively.
In our case, there is no such phenomenon.

In [17, page 30], R. McLean gives an example of an isolated associative submanifold. For
this, he recalls that R. Bryant and S. Salamon constructed in [4] a metric of holonomy G2

on the spin bundle S3 × R4 of the round 3-sphere. In this case, the base Y = S3 × {0} is
associative, the normal bundle of Y is the spin bundle of S3, and the operator related to
the associative deformations of Y is the Dirac operator on S3. By the famous theorem of
Lichnerowicz [16], there are no non trivial harmonic spinors on S3 for metric reasons (to be
precise, because the Riemannian scalar curvature is positive), so the sphere is isolated as an
associative submanifold.

Minimal submanifolds. Recall that in a manifold with a closed G2-structure, associative
submanifolds are minimal. In [18], J. Simons gives a metric condition for a minimal sub-
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manifold to be stable, i.e. isolated. For this, he introduces the following operator, a sort of
partial Ricci operator:

Definition 1.5 Let (M,g) be a Riemannian manifold and Y a p-dimensional submanifold
in M and ν be its normal bundle. Choose {e1, · · · ep} a local orthonormal frame field of TY ,
and define the 0-order operator R : Γ(Y, ν) → Γ(Y, ν) with Rs = πν

∑p
i=1R(ei, s)ei, where

R is the curvature tensor of g on M and πν the orthogonal projection to ν.

It turns out that the definition is independent of the chosen oriented orthonormal frame, and
that R is symmetric. Simons defines another operator A related to the second fondamental
form of Y :

Definition 1.6 Let SY be the bundle over Y whose fibre at a point y is the space of symmet-
ric endomorphisms of TyY , and A ∈ Hom(ν, SY ) the second fundamental form defined by
A(s)(u) = −∇⊤

u s, where u ∈ TY , s ∈ ν, and ∇⊤ is the projection to TY of the ambient Levi-
Civita connection ∇, with ∇ = ∇⊤+∇⊥. Denote by A the operator A : Γ(Y, ν) −→ Γ(Y, ν),
As = At ◦ A(s), where At is the transpose of A.

It is classical that A is a symmetric positive 0-th order operator. Moreover, it vanishes if Y
is totally geodesic. Using both operators and Bochner’s technique, Simons gives a sufficient
condition for a minimal submanifold to be stable:

Theorem 1.7 ([18]) Let Y be a minimal submanifold in M , and assume that R − A is
positive. Then Y cannot be deformed as a minimal submanifold.

In particular, if Y is a compact closed associative submanifold satisfying the conditions of
Theorem 1.7 in a manifold M with a closed G2-structure, then it cannot be perturbed as
an associative submanifold. Now, if Y is an associative submanifold with a boundary, we
introduce another operator:

Definition 1.8 In a manifold equipped with a G2-structure, let Y be a smooth compact as-
sociative submanifold with boundary and ν be its normal bundle. Let L be a two dimensional
real subbundle of ν|∂Y invariant under the action of n×, where n is the inward unit normal
vector field along ∂Y . Choose {v,w = n×v} a local orthonormal frame for T∂Y . We denote
by DL the operator DL : Γ(∂Y,L) → Γ(∂Y,L),

DLs = πL(v ×∇⊥
ws− w ×∇⊥

v s),

where πL : ν|∂Y → L is the orthogonal projection to L and ∇⊥ the normal connection on ν
induced by the Levi-Civita connection ∇ on M .

We will prove in Proposition 3.5 that DL is independent of the chosen oriented frame, is of
order 0 and is symmetric. Assume further that the boundary of Y lies in a coassociative
submanifold X. It turns out that Y intersects X orthogonally, see Theorem 3.1 below.
Denote by µX the 2-dimensional orthogonal complement of n in the normal bundle of X
over ∂Y , where n is the inward normal unit vector field in Y along ∂Y . Then we can state
the following vanishing

Theorem 1.9 Let M be a manifold equipped with a torsion-free G2-structure and Y be an
associative submanifold with boundary in a coassociative submanifold X. If DµX and R−A
are positive, the moduli space MY,X is smooth near Y and of dimension given by the index
in Theorem 3.1.
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Thanks to Theorem 1.9, we can find an explicit example, in the Bryant-Salamon manifold
with G2-holonomy, of a locally smooth one dimensional moduli space of associative defor-
mations with boundary in a coassociative submanifold, see Corollary 4.4. In Section 4, we
explain other explicit examples, in particular for an ambient manifold which is the product
of a Calabi-Yau manifold with S1 or R, see Theorem 4.12.

Acknowledgements. The author benefits the support of the French Agence nationale de la
recherche. Part of this work was done during a visit at the Poncelet Laboratory in Moscow.
I am grateful to this institution for its hospitality. I would like to thank Vincent Borrelli
(resp. Jean-Yves Welschinger) who convinced me that there is a life after curvature tensors
(resp. Sobolev spaces), Gilles Carron and Alexei Kovalev for their interest in this work and
Dominic Joyce for a stimulating discussion and the referee for his numerous and valuable
suggestions.

2 Closed associative submanifolds

2.1 The operator D and the deformation problem

We begin with the version of McLean’s theorem proposed by Akbulut and Salur, and a proof
of it.

Theorem 2.1 ([17],[2]) Let M be a manifold equipped with a G2-structure (φ, g), and Y
be a closed compact associative submanifold with normal bundle ν. Then the Zariski tangent
space at Y of MY can be identified with the kernel of the operator D : Γ(Y, ν) → Γ(Y, ν),
where

Ds =

3∑

i=1

ei ×∇⊥
ei
s+

4∑

k=1

(∇s∗φ)(ηk, ω)⊗ ηk. (1)

Here (ei)i=1,2,3 is any local orthonormal frame of the tangent space of Y with e3 = e1 × e2,
ω = e1 ∧ e2 ∧ e3, (ηk)k=1,2,3,4 is any local orthonormal frame of ν and ∇⊥ is the connection
on ν induced by the Levi-Civita connection ∇ of (M,g).

Note that second part is a 0-th order operator that vanishes for a torsion-free G2-structure,
as proved in [2].

Proof. Firstly, recall the existence on (M,φ, g) of an important object χ, the 3-form with
values in TM and defined, for u, v, w ∈ TM by χ(u, v, w) = −u×(v×w)−〈u, v〉w+〈v,w〉v.
It is easy to check [2] that χ(u, v, w) is orthogonal to the 3-plane u ∧ v ∧ w. Moreover we
will use the following useful formula [10]:

∀u, v, w, η ∈ TM, 〈χ(u, v, w), η〉 = ∗φ(u, v, w, η),

where ∗ is the Hodge star associated to the metric g. So

χ =
∑

k

ηky∗φ⊗ ηk, (2)

where (ηk)k=1,2,···7 is an local orthonormal frame of the tangent space of M . Further, if Y is
a 3-dimensional submanifold in (M,φ), then χ|TY = 0 if and only if Y is associative. As in
[17], we use this characterization to study the moduli space of associative deformations of an
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associative Y . Let Y be any smooth closed associative submanifold in M . We parametrize
its deformations by the sections of its normal bundle ν. Fix ω a non vanishing global section
of Λ3TY writing locally ω = e1 ∧ e2 ∧ e3, with (ei)i=1,2,3 a local orthonormal frame of TY
satisfying e3 = e1 × e2. For every smooth section σ ∈ Γ(Y, ν), define

F (σ) = exp∗σ χ(ω) ∈ Γ(Y, νσ), (3)

where νσ is the normal bundle of expσ(Y ). Then expσ(Y ) is associative if and only if F (σ)
vanishes. In order to compute the Zariski tangent space of MY at the vanishing section,
consider a path of normal sections (σt)t∈[0,1] ∈ Γ(Y, ν) and

s =
dσt
dt |t=0

∈ Γ(Y, ν).

To differentiate F at σ = 0 in the direction of s, we use the Levi-Civita connection of (M,g).
Note that since F (0) = 0, the result does not depend in fact on the chosen connection. We
have

∇ ∂
∂t
F (σt)|t=0 =

∑

k

Ls(ηky∗φ)(ω) ⊗ ηk + (ηky∗φ)(ω) ⊗∇sηk,

where Ls is the Lie derivative in the direction s. Since Y is associative, ωy∗φ = 0 and the
second term vanishes. Thanks to classical Riemannian formulas, we compute the summand
of the first term. For every k,

Ls(ηky∗φ)(ω) = (ηk ∧ ω)y Ls(∗φ) + ([ηk, s] ∧ ω)y∗φ = Ls(∗φ)(ηk, ω),

since ([ηk, s] ∧ ω)y∗φ = 〈χ(ω), [ηk, s]〉 = 0. This is equal to

∇s∗φ(ηk, ω) + ∗φ(∇ηks, ω) + ∗φ(ηk,∇e1s, e2, e3) + ∗φ(ηk, e1,∇e2s, e3) + ∗φ(ηk, e1, e2,∇e3s).

The second term vanishes because ωy∗φ = 0 and the third one equals ∗φ(ηk,∇
⊥
e1
s, e2, e3) =

−〈∇⊥
e1
s × (e2 × e3), ηk〉. Using the relation e2 × e3 = e1 and adding up the two last similar

terms, we obtain ∇sF =
∑

i ei ×∇⊥
i s+

∑
k(∇s∗φ)(ηk, ω)⊗ ηk. Since F (0) has values in ν,

in fact we can assume that the ηk’s form a local orthonormal frame of ν. �

Proposition 2.2 Let Y be a smooth closed associative submanifold in a manifold M equipped
with a G2-structure. If the (co)kernel of the operator D given by (1) vanishes, then MY is
smooth near Y and of vanishing dimension. In particular, Y is isolated among associative
submanifolds isotopic to Y .

Proof. Fix Y a smooth closed associative submanifold. For kp > 3, it makes sense to
consider the Banach space E = W k,p(Y, ν) of sections with weak derivatives in Lp, up
the k-th one. Moreover for (k − r)/3 > 1/p, the inclusion W k,p(Y, ν) ⊂ Cr(Y, ν) holds
and so σ ∈ E is C1 if k > 1 + 3/p. In particular, one can define νσ the normal bundle
to expσ(Y ), and F the Banach bundle over E with fiber Fσ = W k−1,p(Y, νσ). It is clear
that the operator F defined by (3) extends to a section Fk,p of F over E . The proof of
Theorem 2.1 shows that Fk,p is smooth and the derivative of F in the direction of a vector
field s ∈ T0E = W k,p(Y, ν) is computed by (1). Now, the operator D : Γ(Y, ν) → Γ(Y, ν)
has symbol σ(ξ) : s 7→

∑
i ξis × ei = s × ξ, which is always invertible on ν as long as

ξ ∈ TY \ {0}. This proves that D is elliptic. Note that σ(ξ)2s = −|ξ|2s, which is the
symbol of the Laplacian. Hence F is a Fredholm operator, and kerD as cokerD have finite
dimension. By the implicit function theorem for Banach bundles, if cokerD = {0}, then
F−1(0) is a smooth Banach submanifold of E near the null section and of finite dimension
equal to dimkerD = indexD, which vanishes since Y is odd-dimensional. Lastly, still
thanks to the ellipticity of D, all elements of MY are smooth. �
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2.2 Varying the G2-structure

Theorem 1.2 Let M be a manifold equipped with a closed G2-structure φ, and Y be a smooth
compact closed φ-associative submanifold. Then for every generic closed G2-structure ψ close
enough to φ, the moduli space MY,ψ contains a deformation Ỹ of Y and is smooth near Ỹ ,
or is locally empty, that means that there are no ψ-associative submanifold close enough to
Y . In the first case, Ỹ is isolated among ψ-associative submanifolds isotopic to Y .

Proof. Consider Y a smooth closed associative submanifold in a manifold M equipped with
a closed G2-structure (φ, g). We modify the former map F defined in (3) in the following
way. For every normal section σ ∈ Γ(Y, ν) and every G2-structure ψ, consider

F (σ, ψ) = exp∗σ χ(ω) ∈ Γ(Y, νσ). (4)

Here the exponential map corresponds to the fixed metric g, whereas νσ, the normal vector
bundle over expσ(Y ), depends now on the metric associated to ψ, as does χ. We will
differentiate F (0, .) in the direction of Z3(M), the subspace of smooth closed 3-forms on
M . Recall that the set of 3-forms defining a G2-structure is open in Ω3(M), hence for
every ψ ∈ Z3(M) with small enough norm, φ + ψ still defines a closed G2-structure. Let
(φt)t∈[0,1] be a smooth path of closed G2-structures, with φ0 = φ. In formula (2), the local
orthonormal trivializations ηk of the tangent bundle TM are orthonormal for the metric gt
associated to φt, consequently we have to choose them as functions of t. On the other hand,
we can keep ω constant. Hence F (0, φt) =

∑
k(ηk(t) ∧ ω)y∗tφt ⊗ ηk(t), where ∗t denotes

the Hodge star for gt. Since ωy∗φ = 0, at t = 0 the two terms in the derivative containing
∇ ∂

∂t
ηk vanish, and we have

∇ ∂
∂t
F (0, φt)|t=0 =

∑

k

(ηk ∧ ω)y
∂

∂t
Θ(φ(t))|t=0 ⊗ ηk.

The nonlinear function Θ is defined on the set of G2-structures and has values in Ω4(X),
with Θ(ψ) = ∗ψψ, where the Hodge star ∗ψ is computed for the metric associated to the
G2-structure ψ. Proposition 10.3.5 in [12] shows that if φ is a closed G2-structure, the
derivative of Θ at φ satisfies

∀ψ ∈ Z3(M), dφΘ(ψ) = ∗P(ψ), (5)

where the Hodge star corresponds to g and P = 4
3π1 + π7 − π27. Here π1, π7 and π27 are

the orthogonal projections corresponding to the decomposition Λ3T ∗M = Λ3
1 ⊕ Λ3

7 ⊕ Λ3
27

associated to the irreducible representations of G2, see Lemma 3.2 in [6] or Proposition
10.1.4 in [12]. Hence if ψ = ∂

∂t
φ(t)|t=0 ∈ Z3(M), we have

∇ψF =
∑

k

(ηk ∧ ω)y∗P(ψ) ⊗ ηk. (6)

Lemma 2.3 The operator ∇F : Z3(M) → Γ(Y, ν) defined by equation (6) is surjective.

Proof. Due to the properties of χ, in this formula we can restrict our ηk’s to a local
orthonormal frame of ν for the metric g. Now, recall [6] that Λ3

7 = {∗(φ∧ α), α ∈ Λ1T ∗M}.
Consider s ∈ Γ(Y, ν), and α the dual 1-form of s. More precisely, α ∈ Γ(Y, T ∗M) satisfies

∀y ∈ Y, ∀v ∈ TyM,αy(v) = 〈s(y), v〉. (7)
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We choose ω such that φ(ω) = 1, which is always possible since Y is associative. Since P
acts as the identity on Λ3

7 and ∗ is an involution, it is straightforward to see that

∑

l

(ηl ∧ ω)y∗P(∗(φ ∧ α)) ⊗ ηl = s. (8)

In order to prove the existence of ψ ∈ Z3(M) such that ∇ψF = s, we need to extend ∗(φ∧α)
outside Y as a closed form. For this, let p ∈ Y , U be an open set of M containing p and local
coordinates y1, y2, y3, x1, x2, x3, x4 on U , where the yi’s are coordinates on Y and the xi’s are
transverse coordinates. Because Y is associative, the 3-form ψ′ = ∗(φ ∧ α) ∈ Γ(Y,Λ3T ∗M)
is of the form

∑4
i=1 dxi∧βi over Y ∩U , where for all i, βi is a 2-form. We extend arbitrarily

the βi’s as smooth 2-forms on U . Assume first that s has compact support in U∩Y . Then so
do the αi’s on U∩Y . Define ψ′ = d(χU

∑
i xiβi), where χU is a cut-off function with support

in U and equal to 1 in the neighborhood of the support of s. Then ψ′ is a global closed
3-form with ψ′

|Y = ψ and hence satisfying ∇ψ′F = s. For a general section s ∈ Γ(Y, ν), a

partition of unity allows us to find ψ ∈ Z3(M) such that ∇ψF = s. We conclude that ∇F
is surjective in the direction of Z3(M). �

We can now finish the proof of Theorem 1.2. If ZD is the finite dimensional subspace of
Z3(M) generated by the former closed 3-forms ψ associated to every s ∈ cokerD given by
Lemma 2.3, by the inverse mapping theorem, the set

M = {(σ, ψ) ∈W k,p(Y, ν)×ZD(M), F (σ, ψ) = 0}

is a smooth manifold near (0, φ) if k > 1 + 3/p. By the Sard- Smale theorem applied to the
projection π : M → ZD, for every generic ψ ∈ ZD close enough to φ, the slice

π−1(ψ) = {σ ∈W k,p(Y, ν), expσ(Y ) is ψ-associative}

is a smooth manifold or an empty set. As usual, the sections in π−1(ψ) are in fact smooth,
hence the result. �

Remark 2.4 By Theorem 10.4.4 in [12], if φ is a torsion-free G2-structure, the tangent
space at φ of the set of torsion-free structures can be identified with L ⊕ H3(M,R), where
L is the subspace of the Lie derivatives of φ, i.e. L = {LXφ,X ∈ C0(M,TM)}, and
H3(M,R) is the space of the real harmonic 3-forms on M . If ψ ∈ L, the proof of Theorem
2.1 shows that the derivative of F along ψ equals Dψ. Hence, L is of no use for ∇F to
be surjective. But the dimension of cokerD is not in general less than b3(M), and even
when it is, H3(M) → cokerD might well be non injective (see the end of the subsection 4.4
for examples of every situation). This is the reason why we use the wider space of closed
G2-structures.

2.3 A vanishing theorem

We turn now to the second way of getting the smoothness of the moduli space, namely
Bochner’s technique and Simon’s theorem. We formulate the following theorem which can
be deduced from Theorem 1.7, since any associative submanifold is minimal.

Theorem 2.5 Let Y be a smooth closed compact associative submanifold of a manifold M
with a closed G2-structure. If the spectrum of Rν = R−A is positive, then Y is isolated as
an associative submanifold.
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For the reader’s convenience, we give below a proof of this result in the case where the
G2-structure is torsion-free. We will compute D2 to use Bochner’s technique. For this,
we introduce the normal equivalent of the invariant second derivative. More precisely, for
any local vector fields v and w in Γ(Y, TY ), let ∇⊥2

v,w be the operator defined by ∇⊥2
v,w =

∇⊥
v ∇

⊥
w − ∇⊥

∇⊤
v w

acting on Γ(Y, ν). It is straightforward to see that it is tensorial in v and

w. Moreover, define the equivalent of the connection Laplacian:

∇⊥∗∇⊥ = −trace (∇⊥2) = −
∑

i

∇⊥2
ei,ei

,

where the ei’s define a local orthonormal frame of TY .

Theorem 2.6 For Y an associative submanifold in a manifold with a torsion-free G2-
structure, D2 = ∇⊥∗∇⊥ +Rν .

We refer to the appendix for the proof of this theorem.

Proof of Theorem 2.5. Let assume that we are given a fixed closed associative subman-
ifold Y . Consider a section s ∈ Γ(Y, ν). By classical computations using normal coordinates
and thanks to Theorem 2.6, we have

−
1

2
∆|s|2 =

∑

i

〈∇⊥
i s,∇

⊥
i s〉+ 〈s,∇⊥

i ∇
⊥
i s〉 = |∇⊥s|2 − 〈D2s, s〉+ 〈Rνs, s〉.

Since the Laplacian equals −div(~∇), its integral over the closed Y vanishes. We get:

0 =

∫

Y

|∇⊥s|2 − 〈D2s, s〉+ 〈Rνs, s〉dy. (9)

Assume that s belongs to kerD. Under the hypothesis that Rν is positive, the last equation
implies s = 0. Hence dimcokerD = dimkerD = 0, and by Proposition 2.2, MY is a smooth
manifold near Y with vanishing dimension. In particular, Y is isolated. �

3 Associative submanifolds with boundary

In this section we explain our results in the case of an associative submanifold with boundary
in a coassociative submanifold. We first give below the principal results of [7]. For this, recall
that in a manifold with a G2-structure and an associated vector product ×, given x ∈ M
and n an unit vector in TxM , the application

n× : TxM → TxM,v 7→ n× v

defines a complex structure on n⊥, the orthogonal complement of n. A 2-plane L ⊂ n⊥

invariant under n× will be called a n×-complex line.

Theorem 3.1 ([7]) Let M be a manifold equipped with a G2-structure (φ, g) and Y a
smooth compact associative submanifold with boundary in a coassociative submanifold X.
Let νX be the normal complement of T∂Y in TX|∂Y , and n the inward unit normal vector
to ∂Y in Y . Then

1. the bundle νX is a subbundle of ν|∂Y and is a n×-complex line, as is the orthogonal
complement µX of νX in ν|∂Y .

9



2. Viewing T∂Y , νX and µX as n×–complex line bundles, we have µ∗X
∼= νX ⊗C T∂Y .

3. Further, the problem of the associative deformations of Y with boundary in X is elliptic
and of index index (Y,X) = index∂νX = c1(νX) + 1− g, where g is the genus of ∂Y .

Proposition 3.2 Let M be a smooth manifold equipped with a G2-structure (φ, g) and let Y
be a smooth compact associative submanifold with boundary in a coassociative submanifold
X. Consider the adapted version of the linearization of (1) for our boundary problem:

D : EX = {s ∈ Γ(Y, ν), s|∂Y ∈ νX} → Γ(Y, ν).

If the cokernel of D : EX → Γ(Y, ν) vanishes, then MY,X is smooth near Y and of dimension
equal to index (Y,X).

Proof. For 2k > 3 and (k − r)/3 > 1/2, define the adapted Banach space EX by

EX = {σ ∈W k,2(Y, ν),∀y ∈ ∂Y, σ(y) ∈ νX,y}

and F the bundle over EX , where the fibre Fσ denotes W k−1,2(Y, νσ). As before νσ is the
normal bundle to expσ(Y ). Le assume first that X is totally geodesic for the metric g. Then
EX parametrizes the submanifolds with boundary in X and close enough to Y . Define the
analogous of the map (3) in the proof of Theorem 2.1 by F : EX → F , F (σ) = exp∗σ χ.
By the proof of Theorem 2.1, F is smooth and its derivative at the vanishing section is
D : EX → Γ(Y, ν). Further, by Theorem 20.8 of [3], the operator D : EX → Γ(Y, ν) is
Fredholm and Theorem 3.1 gives its index. Now, if the cokernel of D vanishes, then the
inverse mapping theorem shows that MY,X is smooth near Y and of the expected dimension
equal to index (Y,X). Lastly, Theorem 19.1 in [3] shows that in fact, the sections belonging
to MY,X are smooth and so are the associated deformations of Y . In general, X is not
totally geodesic and as explained in [5] and [13], expσ(∂Y ) has no reason to lie in X. For
this, we change the metric near X, as in the mentioned works.

Lemma 3.3 There exists a tubular neighborhood U of X and a metric ĝ such that ĝ(x) =
g(x) for every x ∈ X, ĝ equals g outside U , and X is totally geodesic for ĝ.

Proof. The exponential gives a diffeomorphism Φ between a tubular neighborhood U of X
in M and a neighborhood V of the vanishing section in the normal vector bundle NX of X.
Moreover, it sends X to the vanishing section. Consider on V the metric h = π∗g|TX ⊕ gN ,
where gN is the natural flat metric on the fibers induced by the metric g, g|TX is the induced
metric on X and π : NX → X denotes the natural projection. Now H = Φ∗h is a metric
on U , for which X is clearly totally geodesic. Take χ a cut-off function with support in U ,
equal to 1 in a neighborhood of X. Then ĝ = χH + (1 − χ)g satisfies all the conditions of
the lemma. �

Consider ν̂ the normal bundle over Y for the new metric ĝ. For every section σ ∈ Γ(Y, ν̂)
we use the adapted function F̂ (σ) = êxpσ

∗
χ(ω), where ω can be chosen as before and χ is

the form associated to φ, but êxp is the exponential map for the new metric ĝ. The proof
of Theorem 2.1 shows that differentiating F̂ in the direction of s ∈ Γ(Y, ν̂) gives the same
result ∇sF̂ = Ds ∈ Γ(Y, ν), even if s does not belong to Γ(Y, ν). Now, given a bundle
isomorphism between ν̂ and ν, it is straightforward to see that the kernel and the cokernel
of ∇̂F are isomorphic to the ones of D. The former conclusion in the totally geodesic case
still holds. �
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3.1 Varying the coassociative submanifold

In subsection 2.2, we perturbed the G2-structure in order for the moduli space MY to be-
come smooth. When the associative submanifold has a boundary, we can repeat the same
arguments. We can also move the boundary condition. As explained in the introduction, we
will perturb generically X as a smooth φ-free submanifold, and no longer as a coassociative
one.

Theorem 1.4 Let Y be a smooth associative submanifold with boundary in a smooth coas-
sociative submanifold X. If the virtual dimension of MY,X is non-negative, then for any
sufficiently small generic smooth deformation X ′ of X, there exists a small associative de-
formation Y ′ of Y such that MY ′,X′ is smooth near Y ′ and of dimension equal to the index
computed for the unperturbed situation.

Proof. Recall [17] that if X is a coassociative submanifold, then its normal bundle NX

can be identified with the space of its self-dual two-forms Ω2
+(X). For α ∈ Ω2

+(X), define
σα ∈ Γ(∂Y,NX ) the restriction to ∂Y of the associated normal vector field along X. By
Theorem 3.1, NX|∂Y = nR ⊕ µX , with n the inward unit normal vector to T∂Y in TY .
Consider the subspace

C = {α ∈ Ω2
+(X), σα ∈ Γ(∂Y, µX)}.

Note that infinitesimal deformations of X in these directions are normal to Y . This will be
considered as the parameter space. For every α ∈ C, extend σα to Γ(Y, ν) in the following
way. The associative Y is diffeomorphic to Yǫ = ∂Y × [0, ǫ] near ∂Y , where ∂Y holds for
∂Y × {0}. This allows us to identify ν|Yǫ with ν|∂Y × [0, ǫ] and so this gives an extension of
σα on Yǫ. Take ρ a cut-off function satisfying ρ = 1 in the neighborhood of ∂Y and with
support in Yǫ. Then σ̂α = ρσα ∈ Γ(Y, ν) is a smooth normal vector field along Y such that
σ̂α = σα near ∂Y . Now, let E∂ be the set

E∂ = {(α, s) ∈ C × Γ(Y, ν),∀y ∈ ∂Y, s(y) ∈ TyX}.

Here we will assume that X is totally geodesic as in the first part of the proof of Proposition
3.2. If not, we change the metric by Lemma 3.3. Hence if (α, s) ∈ E∂ and if we define
φα,s = expσ̂α ◦ exps, then Yα,s = φα,s(Y ) is a smooth submanifold with boundary in Xα =
expσα(X). Let F be the bundle over E∂ , where the fiber Fα,s equals Γ(Y, να,s) and να,s
denotes the normal bundle of Yα,s. Define the section F : E∂ → F by F (α, s) = φ∗α,sχ(ω).
Then Yα,s is an associative submanifold if and only if F (α, s) = 0. Now for every fixed
α ∈ C, consider the restriction map

Fα : {s ∈ Γ(Y, ν), s|∂Y ∈ TX} → Γ(Y, να,s)

s 7→ F (α, s)

Two tedious computations analogous to the proof of Theorem 2.1 and the proof of Theorem
3.1 in Section 4 of [7] show that for every α ∈ C, the derivative of Fα is elliptic in the sense
of Definition 18.1 of [3]. Further, Fα is clearly a deformation of F0, hence Fα is a Fredholm
map of index computed in Theorem 3.1. For a genericity result, we need the classical

Theorem 3.4 Let C, E and F be Banach spaces, F : C × E → F a smooth map, such that
for every α ∈ C, Fα = F (α, .) is a Fredholm map between E and F . If dF : C × E → F
is surjective at (α0, x0), then F−1(y0) is locally a smooth manifold, where y0 = F (α0, x0).
Further, for every generic α ∈ C close enough to α0, the fiber F−1

α (y0) is a smooth manifold
of finite dimension equal to the index of Fα.
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We compute the derivative of F at (0, 0) ∈ E∂ . One can easily check using the proof of
Theorem 2.1 that this is equal to

∇(0,0)F : E∂ → Γ(Y, ν)

(α, s) 7→ D(s+ σ̂α).

This derivative is surjective. Indeed, let s′ be a section in Γ(Y, ν). Since Y has a boundary,
our Dirac-like operator D is surjective by Theorem 9.1 of the book [3], so there is a section
s ∈ Γ(Y, ν) such that Ds = s′. Now decompose s|∂Y as sν + sµ with sν ∈ Γ(∂Y, νX) and
sµ ∈ Γ(∂Y, µX). Choosing the 2-form α ∈ C such that sµ = σα, we have D((s−σ̂α)+σ̂α) = s′

with (α, s − σ̂α) ∈ E∂ , hence the result. �

As in Theorem 1.2, we can restrict our smoothing deformations to a finite dimensional space
of dimension equal to dim cokerD.

3.2 A vanishing theorem

Given Y an associative submanifold with boundary in a coassociative submanifold X, we
turn now to metric conditions on Y that insure local smoothness of the moduli space MY,X .
Let ν be the normal bundle of Y and n is the inward normal vector to ∂Y in Y . Recall that
if L ⊂ ν is a n×-complex line bundle over ∂Y , the operator DL : Γ(∂Y,L) → Γ(∂Y,L) was
defined in the introduction by DLs = πL(v × ∇⊥

ws − w × ∇⊥
v s), where πL : ν → L is the

orthogonal projection to L and {v,w = n× v} a local orthonormal frame for T∂Y . We refer
to the appendix for the proof of the following proposition.

Proposition 3.5 The operator DL is of order 0, symmetric, and its trace is 2H, where H
is the mean curvature of ∂Y in Y with respect to −n.

Moreover, consider the operator (D,L) defined by D : {s ∈ Γ(Y, ν), s|∂Y ∈ L} → Γ(Y, ν).
We will use the following lemma, whose proof can be found in the appendix.

Lemma 3.6 We have coker(D,L) = ker(D,L⊥), where L⊥ is the orthogonal complement
of L in ν|∂Y .

We now prove the vanishing theorem stated previously:
Theorem 1.9 Let M be a manifold equipped with a torsion-free G2-structure and Y be an
associative submanifold with boundary in a coassociative submanifold X. If DµX and R−A
are positive, the moduli space MY,X is smooth near Y and of dimension given by the virtual
one.

Proof. To prove Theorem 1.9, it is enough by Proposition 3.2 to show that coker(D, νX),
which equals ker(D,µX) by Lemma 3.6, is trivial. So let s ∈ ker(D,µX). Since Y has a
boundary, we need to change the integration (9), because the divergence has to be considered:

∫

Y

|∇⊥s|2 + 〈Rνs, s〉dy =
1

2

∫

Y

div ~∇|s|2dy. (10)

By Stokes, the last is equal to

−
1

2

∫

∂Y

d|s|2(n)dσ = −

∫

∂Y

〈∇⊥
n s, s〉dσ,
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where n is the inward unit normal vector of ∂Y . Choosing a local orthonormal frame
{v,w = n× v} of T∂Y , and using the fact that Ds = 0, this is equal to

∫

∂Y

〈w ×∇⊥
v s− v ×∇⊥

ws, s〉dσ = −

∫

∂Y

〈DµX s, s〉dσ.

Summing up, we get the equation
∫

Y

|∇⊥s|2dy +

∫

Y

〈Rνs, s〉dy +

∫

∂Y

〈DµXs, s〉dσ = 0. (11)

If DµX and Rν are positive, s vanishes, hence the result. �

4 Examples

4.1 Flatland

In flat spaces, the curvature tensor R vanishes, and so Rν = −A ≤ 0. Consequently, a priori
Theorem 1.9 does not apply. Nevertheless, we have the

Corollary 4.1 Let M be a manifold equipped with a torsion-free G2-structure whose metric
is flat, and Y be a totally geodesic associative submanifold with boundary in a coassociative
X. If DµX is positive, then MY,X is smooth near Y and of the expected dimension.

Proof. The hypotheses on M and Y imply that Rν = 0. Consider s ∈ coker(D, νX) =
ker(D,µX). Formula (11) shows that ∇⊥s = 0 and s|∂Y = 0. Using d|s|2 = 2〈∇⊥s, s〉 = 0.
This implies s = 0 and the result. �

When M = R7 with its canonical flat metric, we get the following very explicit example
considered in [7]. Take a ball Y in R3×{0} ⊂ R7 with real analytic boundary, and choose any
normal real analytic vector field e ∈ Γ(∂Y, ν). By [10], there is a unique local coassociative
Xe containing ∂Y such that its tangent bundle TyXe contains e(y) at every boundary point
y.

Corollary 4.2 Let assume that Y is a strictly convex ball in R3. Then there exists a positive
constant ǫ, such that for every normal vector field e ∈ Γ(∂Y, ν) satisfying ||de||L∞ ≤ ǫ, the
moduli space MY,Xe is smooth near Y and one dimensional.

Proof. Since the fibre bundle νXe is trivial and the genus of ∂Y is zero, the index equals
here c1(νX) + 1 − g = 1. We want to show that DµX is positive. To see that, we choose
local orthogonal characteristic directions v and w = n × v in T∂Y . From Theorem 3.1, we
know that v × e is a non vanishing section of µX . Let assume first that e is constant. We
compute

DµX (v × e) = v × (∇⊥∂
w v × e)− w × (∇⊥∂

v v × e)

= −kvw × (n× e) = kvv × e,

where kv is the principal curvature in the direction of v. This shows that kv is an eigenvalue
of DµX , and since we know that its trace is 2H by Proposition 3.5, we get that the other
eigenvalue is kw, the other principal curvature of ∂Y . These eigenvalues are positive if the
boundary of Y is strictly convex and Corollary 4.1 gives the result. It is clear that the
eigenvalues of the operator DµX vary continuously with µX , that is with e. Consequently,
for e close enough to be a constant vector field, these eigenvalues are still positive, hence
the general result. �
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In fact, in the case where e is constant, we can give a better statement. Indeed, let s ∈
ker(D, νX), and decompose s|∂Y as s = s1e+ s2n× e. Of course, e is in the kernel of DνX ,
and hence by Proposition 3.5, the second term is an eigenvector of DνX for the eigenvalue
2H. So formula (11) applied to s gives

∫
Y
|∇⊥s|2 +

∫
∂Y

2H|s2|
2 = 0. If H > 0, this implies

immediatly that s2 = 0 and s1 is constant, so s is proportional to e. This proves that
dimker(D, νX) = 1 under the weaker condition that H > 0. Lastly, in fact we can even
show that MY,Xe = R.

4.2 The Bryant Salamon construction

The spin bundle and its metric. As recalled briefly in the introduction, Bryant and
Salamon [4] found on the total spin bundle S ≃ S3 ×R4 of the round sphere S3 a complete
metric with holonomy precisely equal to G2. This metric is of the form

g = α(r)π∗gS + β(r)gv ,

where gv is the flat metric on the fiber Sx ≃ R4 induced by gS , r is its associated norm,
gS the round metric on S3 and π : S → S3 the natural projection. For some particular
smooth functions α and β, the authors proved that the holonomy of the metric is G2. In
this situation, the base S3 is associative and the Dirac operator D is the classical one for
the spin bundle S.

Corollary 4.3 ([17]) The associative S3 is isolated as an associative submanifold.

Proof. By the famous computation of Lichnerowicz [16], D2 = ∇∗∇ + s/4, where s is the
scalar curvature of (S3, gS) and ∇ is the induced connection on the spin bundle, which is
in our case the connection ∇⊥. Identifying with the equation in Theorem 2.6, we get that
Rν = s/4. Since S is positive, so is Rν , and Theorem 1.7 then implies the result. �

Example with boundary. Choose a point p on the base S3, a ball Bρ ⊂ S of radius ρ
around p and define Yρ = Bρ∩S

3. Take a normal vector field e ∈ Γ(∂Yρ, ν) at the boundary
of the associative Yρ. Here νy = Sy for y ∈ ∂Yρ. The round sphere is real algebraic as is
its metric gS , hence we can find for ρ small enough a local chart Φ : Bρ → R7 such that
Φ(Yρ) ⊂ R3 × {0}, and Φ∗g is a real analytic metric. Further we choose Bρ and e in such
a way that Φ(∂Yρ) and Φ∗e are real analytic. Now, a straightforward generalization of the
arguments in [10] based on the Cartan-Kähler theory proves that e and ∂Yρ generate a semi
local coassociative submanifold Xe containing ∂Yρ.

Corollary 4.4 For ρ small enough, MYρ,Xe is smooth near Yρ and one dimensional.

Proof. The genus of ∂Yρ vanishes and the subbundle νXe is trivial, hence the index of the
associative deformations problem equals one. We can assume that Φ∗g(0) is the standard
metric of R7, hence dpΦ(Sp) = 0 ⊕ R4. Moreover we choose Φ such that the Levi-Civita
connection of Φ∗g vanishes at 0. When ρ tends to zero, Φ(∂Yρ) is asympototically close to
be the round ball ρB3 ⊂ R3 for the metric g0. Then we know from the proof of Corollary
4.2 that the eigenvalues of the operator DµXe

computed in the model situation (i.e. with
the flat metric and connection) equal the principal curvatures, here the inverse of ρ. Hence
for ρ small enough, DµXe

and Rν = s/4 are both positive. Theorem 1.9 then implies the
result. �
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4.3 The Joyce construction

Recall briefly the construction of the compact smooth manifold with holonomy G2 con-
structed by Joyce in section 12.2 of [12] and used in [7] for an example of an associa-
tive with boundary. On the flat torus (T 7, g0) equipped with the G2 structure φ0 =
dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356, let

α : (x1, · · · , x7) 7→ (x1, x2, x3,−x4,−x5,−x6,−x7),

β : (x1, · · · , x7) 7→ (x1,−x2,−x3, x4, x5,
1

2
− x6,−x7),

γ : (x1, · · · , x7) 7→ (−x1, x2,−x3, x4,
1

2
− x5, x6,

1

2
− x7),

σ0 : (x1, · · · , x7) 7→ (x1,
1

2
− x2,

1

2
− x3, x4, x5,−x6,

1

2
− x7),

τ0 : (x1, · · · , x7) 7→ (x1, x2,
1

2
− x3,

1

2
− x4, x5, x6,

1

2
− x7)

be isometric involutions, where σ∗0φ0 = φ0 and τ∗0φ0 = −φ0. If π : T 7 → T 7/Γ is the quotient
of T 7 by Γ the group generated by α, β and γ, one can check that the image Y by π of
{(x1,

1
4 ,

1
4 , x4, x5, 0,

1
4), x1,4,5 ∈ T 3} in T 7/Γ is a smooth closed associative submanifold Y

belonging to the fixed point set of the well defined involution σ = π∗σ0. Likewise, the image
Y∂ by π of {(x1,

1
4 ,

1
4 , x4, x5, 0,

1
4), x1,5 ∈ T 2, 14 ≤ x4 ≤

3
4} is a smooth associative submanifold

with boundary. This boundary is the union of two 2-tori imbedded in the two disjoint smooth
coassociatives X1 and X2, where Xi is the image by π of {(x1, x2,

1
4 , ai, x5, x6,

1
4), x1,2,5,6 ∈

T 4} with a1 = 1
4 and a2 = 3

4 . The latter submanifolds are components of the fixed point
set of τ = π∗τ0. Joyce’s method to construct a metric with holonomy precisely equal to
G2 on a resolution M of the singularities of T 7/Γ can be made σ- and τ -equivariantly, so
that after the process Y , Y∂ , X1 and X2 remain associative and coassociative. Now, the
bundles νXi

, i = 1, 2, are clearly trivial over the two components of ∂Y∂ , so that the index
of the deformation problem vanishes. From Theorem 1.2 and Theorem 1.4 we get that for
every generic closed perturbation ψ of the G2-structure, Y disappears or is perturbed into
an isolated closed ψ-associative torus. Likewise, for every generic small φ-free deformation
X̃i of Xi there is a perturbation Ỹ∂ of Y∂ such that MỸ∂ ,X̃

is a singleton near Ỹ or is empty.

Remark 4.5 We would like to know which possibility of the alternative holds. Unfortu-
nately, even if we are far from the singularities of T 7/Γ, the perturbation of the metric has
effects on the whole M , and can be big in C2 norm. A priori, our methods do not allow to
understand the effects of the perturbation on the associative submanifolds.

4.4 Extensions from the Calabi-Yau world

The closed case. Let (N,J,Ω, ω) be a Calabi-Yau 6-dimensional manifold, where J is an
integrable complex stucture, Ω a non vanishing holomorphic 3-form and ω a Kähler form.
Then M = N × S1 is a manifold with holonomy in SU(3) ⊂ G2. An associated torsion-free
G2-structure on M is given by φ = ω ∧ dt+ ℜΩ. Recall that a closed special Lagrangian L
in N is a 3-dimensional submanifold satisfying both conditions ω|TL = 0 and ℑΩ|TL = 0.
We know from [17] that ML the moduli space of special Lagrangian deformations of L is
smooth and of dimension b1(L). Now for every t ∈ S1, the product Y = L×{t} of a special
Lagrangian and a point is a φ-associative submanifold of M . The following is inspired by a
analogous result on coassociative submanifolds of Leung ([15], Proposition 5):
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Proposition 4.6 Let t ∈ S1. The moduli space ML×{t} of associative deformations of
L×{t} is always smooth, and can be identified with the product ML×S

1, hence of dimension
b1(L) + 1.

Proof. Consider a closed associative submanifold Y in the same homology class as L×{t}.
On the one hand, Y has a bigger volume than its projection π(Y ) to N × {t} and equality
holds only if Y lies in N × {t′} for a constant t′. On the other hand, π(Y ) is in the same
homology class as L, hence has volume larger than that of L, since special Lagrangians
minimize the volume in their homology class. But Y is associative, hence has the same
volume as L. Consequently all these volumes equal, and Y is of the form L′ × {t′}. It is
now immediate that φ-associativity of Y implies special Lagrangianity of L′. �

For the sequel, we will need another

Proof of Proposition 4.6. Recall that since L is Lagrangian, its normal bundle NL is
simply JTL, and the normal bundle ν of Y = L × {t} is isomorphic to JTL× R∂t, where
∂t is the dual vector field of dt. In this situation, we don’t use the expression for D2 given
in Theorem 2.6. Instead, we give another formula for it. If s = Jσ ⊕ τ∂t is a section of
ν, with σ ∈ Γ(L, TL) and τ ∈ Γ(L,R) = Ω0(L), we call σ∨ ∈ Ω1(L,R) the 1-form dual
to σ, and we use the same symbol for its inverse. Moreover, we use the classical notation
∗ : Ωk(L) → Ω3−k(L) for the Hodge star. Lastly, we define:

D∨ : Ω1(L)× Ω0(L) −→ Ω1(L)× Ω0(L)

(α, τ) 7→ ((−JπLD(Jα∨, τ))∨, πtD(Jα∨, τ)),

where πL (resp. πt) is the orthogonal projection ν = NL⊕R to the first (resp. the second)
component. This is just a way to use forms on L instead of normal ambient vector fields.

Proposition 4.7 For every (α, τ) ∈ Ω1(L)× Ω0(L),

D∨(α, τ) = (−∗dα− dτ, ∗d∗α)

D∨2(α, τ) = −∆(α, τ),

where ∆ = d∗d+ dd∗ (note that it is d∗d on τ).

We refer to the appendix for the proof of this Proposition. We see that for an infinitesimal
associative deformation of L × {t}, then α and τ are harmonic over the compact L. In
particular, τ is constant and α describes an infinitesimal special Lagrangian deformation of
L (see [17]). In other words, the only way to displace Y is to perturb L as special Lagrangian
in N or translate it along the S1-direction. Lastly, dimcokerD = dimkerD = b1(L)+1 and
by an immediate refinement of Proposition 2.2 for cokernels with constant dimension, MY

is smooth and of dimension b1(L) + 1. �

Symmetry breaking. Although the moduli space is smooth, the deformation problem
for L × {.} is always obstructed. Theorem 1.2 proves that any closed generic perturbation
of the G2-structure φ will make the S1-symmetry disappear as well as the ML-family of
associative submanifolds. We give here a family of examples of this phenomenon:

Proposition 4.8 Let L be a smooth closed special Lagrangian sphere in N , t0 ∈ S1 and
Y = L × {t0} in N × S1 equipped with the G2-form φ = ℜΩ + ω ∧ dt and f : S1 → R a
smooth function vanishing transversally at a finite number of points in S1. Then, there is a
closed perturbation ψ of φ such that the connected components of L× f−1(0) are associative
with respect to ψ, and are the only ψ-associatives near {L× t : t ∈ S1}.
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Proof. Define ψ̃ = −f(t)∗(φ∧dt) = −f(t) ∂
∂t
y∗φ = f(t)ℑΩ on L×S1 since ∗φ = ℑΩ∧dt+ω2

2 .

We extend ψ̃ as a closed 3-form ψ following the proof of Lemma 2.3: since L is special
Lagrangian, ℑΩ|L ∈ Γ(L,Λ3T ∗N) locally writes

∑3
i=1 dxi ∧ βi, where (xi)i=1,2,3 are local

normal coordinates in N over L. If (χU )U is a finite set of cut-off functions in a neighborhood
of L, then the closed 3-form ψ = d(f(t)

∑
U,i χUxiβi) is well defined on N ×S1 and satisfies

ψ = f(t)ℑΩ+O(dist(., L×S1)). We choose as a closed pertubation the 3-form φλ = φ+λψ.
Now take t0 ∈ S1, such that f(t0) = 0. If we choose coordinates on S1 such that t0 = 0, then
there exists a 6= 0 with f(t) = at+O(t2). Using the derivative (5), for every (x, t) ∈ N ×S1

we get that

∗λφλ(x, t) = ∗φ+ λ
(
(at+O(t2))dt ∧ ℜΩ+O(x)

)
+O(λ2||(x, t)||).

In order to write a Taylor expansion of our operator F given by formula (4), we change a
bit its definition:

F̃ (s, ψ) = exp∗s ((exp
∗
s χ)(ω)) ∈ Γ(Y, TM|Y )).

Recall that ω ∈ Γ(Y,Λ3TY ) satisfies ℜΩ(ω) = φ(ω) = 1, exps uses the fixed metric asso-
ciated to φ and χ is computed relatively to ψ. Since (exps∗ ω)yℜΩ = 1 + O(x(exps)), we
find

F̃ (s, φλ) = Ds+O(||s||2) + λ

(
(at+O(t2))

∂

∂t
+O(x(exps))

)
+O(λ2||s||),

where ||s|| is the C2-norm. As in the second proof of Proposition 4.6, we decompose the
normal vector field s as s = (σ, τ) ∈ Γ(L,NL)⊕ Γ(L,R ∂

∂t
), where NL is the normal bundle

of L in N , and define σ∨ ∈ Ω1(L,R) the dual form of σ. Note that x(exps) = O(||σ||). By
Proposition 4.7, we get

F̃ (σ, τ, φλ) = (−∗dσ∨ − dτ, ∗d∗σ∨ + aλτ) +O(||s||2 + λ||σ||+ λ2||s||). (12)

We want to prove that for λ and ||s|| small enough, the only solutions to the equation
F̃ (σ, τ, λ) = 0 are λ = 0 with σ = 0 and τ is a constant function, or λ 6= 0 and s = 0. The
square of F̃ equals

F̃ 2(σ, τ, φλ) = (−∆σ∨ − aλdτ,∆τ) +O(r),

with r(σ, τ) = ||s||2 + λ(||σ|| + ||dτ ||) + λ2||s||. Note the crucial presence of ||dτ || instead
of ||τ ||. We use now the Hodge theory on L, see Corollary 5.7 in [14] for instance. Firstly,
the only harmonic functions on L are the constants, so that from ∆τ = O(r) we deduce
that there is t0 ∈ R with τ − t0 = O(r), hence dτ = O(||s||2 + λ||σ|| + λ2||s||)) for λ small
enough (independently of s). Moreover since b1(L,R) = 0, ∆σ∨ = aλdτ + O(r) and the
estimate for dτ imply σ∨ = O(||s||2 + λ||σ|| + λ2||s||)), so that σ = O(||τ ||2 + λ2||τ ||) for σ
and λ small enough. The same estimate holds for the first and second derivatives of σ or
∗σ. Coming back to τ , the latter estimation and equation (12) give aλτ = O(||τ ||2) for λ
small enough (independently of s). When λ 6= 0, this is a contradiction if τ is small enough
and not identically vanishing. Now take t0 such that f(t0) 6= 0. The following lemma holds
in a general situation:

Lemma 4.9 Let Y be a compact smooth associative submanifold of M equipped with a
closed G2-structure φ, such that near Y , MY,φ is one-dimensional. Let ξ ∈ Γ(Y,NY ) be a
non trivial normal vector field in kerD and ψ̃ be the 3-form ξy∗φ ∈ Γ(Y,Λ3T ∗M). If ψ is
any closed extension of ψ in a neighborhood of Y and φλ = φ + λψ, then for λ 6= 0 small
enough the moduli space MY,φλ near Y is empty.

17



Proof. By definition of φλ and Lemma 2.3, the derivative of F (λ, s) = exp∗s χφλ(ω) is of
index 1 and surjective at (λ = 0, s = 0), so that the vanishing locus of F is locally smooth,
of dimension 1 and contains MY,φ. These sets must be locally equal, hence the result. �

We come back to the situation described in Proposition 4.8 . If t is such that f(t) 6= 0,
Lemma 4.9 shows that ML×{t0},φλ is empty for λ small enough. �

Coclosed deformations. If we prefer coclosed deformations of the G2-structure we get a
more precise statement and a very short proof:

Proposition 4.10 Let L be a smooth closed special Lagrangian sphere in N , Y = L×{1} ⊂
N ×S1 and f : S1 → R a smooth function vanishing at a finite number of points in S1. For
every λ ∈ R, define φλ = ℜ(eiλf(t)Ω) + ω ∧ dt a family of coclosed G2−structures. Then, if
λ 6= 0, MY,φλ = f−1(0) near L× S1.

Note that in particular, the transversality condition for f is no more needed.

Proof. The proof is almost the same as the proof of Proposition 4.6. Take Y a φλ-
associative submanifold of N × S1 in the same class of homology than L × {1}. Since the
metric associated to φλ is independent of λ, the arguments of Proposition 4.6 still hold, and
Y writes L′×{t′} for some submanifold L′ ∈ N and t ∈ S1. The latter L′ must be a special
Lagrangian for eiλf(t)Ω since Y is φλ-associative. Hence, ℑ(eiλf(t)Ω) vanishes on TL′. But
L′ lies in the same class of homology than L, so

∫
L
ℑ(eiλf(t)Ω) should vanish because Ω is

closed. Now, this is in fact
∫
L
sin(λf(t))ℜΩ = sin(λf(t))V ol(L) which is non zero if λ 6= 0

is small enough (independently of t) and f(t) 6= 0. If f(t) = 0 and L′ is close enough to L,
then L′ = L since a special Lagrangian sphere is isolated. Note that φλ is coclosed because
∗φλ = ℑ(eiλf(t)Ω) ∧ dt+ 1

2ω
2. �

Remark 4.11 If L is not a sphere, then the same proof shows that MY,φλ = ML× f−1(0)
for λ 6= 0 small enough. This remains an obstructed situation, in the G2 point of view.

With boundary. Recall that if Σ is a complex surface of N and t ∈ S1, then X = Σ×{t}
is a coassociative submanifold of M . Consider the problem of associative deformations of
Y = L× {t} with boundary in X:

Theorem 4.12 Let t ∈ S1 and L be a special Lagrangian submanifold in a 6-dimensional
Calabi-Yau N , such that L has boundary in a complex surface Σ. Let Y = L×{t} in N×S1

and X = Σ× {t}.

1. The moduli space MY,X of associative deformations of L × {t} with boundary in the
coassociative Σ × {t} can be identified with the moduli space of special Lagrangian
deformations of L with boundary in the fixed Σ.

2. If the Ricci curvature of L is positive and if the boundary of L has positive mean
curvature in L, then MY,X is locally smooth and has dimension g, where g is the
genus of ∂L.

Although the moduli space is smooth, its dimension exceeds by one the index of the defor-
mation problem, see the beginning of the proof of the second assertion. As a consequence,
Theorem 1.4 shows that generic perturbations of the boundary condition will decrement by
one the dimension of the initial moduli space.

Note moreover that the deformation theory in [5] concerns minimal Lagrangian submanifolds
with boundary in Σ, a wider class than that of special Lagrangian submanifolds.
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Proof of Theorem 4.12 (1). Firstly, if M is equipped with a closed G2-structure φ,
note that an associative submanifold Y with boundary in a coassociative X minimize the
volume in the relative homology class [Y ] ∈ H3(M,X,Z). Indeed, let Z be any 3-cycle with
boundary in X, such that [Z] = [Y ]. There is a 4-chain S with boundary in X and T a
3-chain in X, such that Z − Y = ∂S + T . Since φ is a calibration,

V olume(Z) ≥

∫

Z

φ =

∫

Y

φ+

∫

∂S

φ+

∫

T

φ =

∫

Y

φ = V olume(Y )

by Stokes and the fact that φ vanishes on any coassociative submanifold. By the same
arguments as in the closed case, this proves the identity of the two moduli spaces. �

Proof of Theorem 4.12 (2). Consider a special Lagrangian L with boundary ∂L in
a complex surface Σ. If Y = L × {t} and X = Σ × {t}, it is clear that the orthogonal
complement νX of T∂Y in TX is equal as a real bundle to JT∂L ⊕ {0}, and µX is the
trivial n×-complex line bundle generated by ∂t, where n is the inward unit normal vector
field of ∂Y in Y . We begin by computing the index of the boundary problem. This is very
easy, since µX is trivial, and by Theorem 3.1, we have νX ∼= T∂L∗ as n×-bundles. Hence
the index equals −c1(T∂L)+ 1− g = −(2− 2g) + 1− g = g− 1, where g is the genus of ∂L.
Now let ψ = s+ τ ∂

∂t
belonging to coker(D, νX) = ker(D,µX), where s a section of NL and

τ ∈ Γ(L,R). Let α = −Js∨. By Proposition 4.7, α is a harmonic 1-form, and τ is harmonic
(note that Y is not closed, so τ may be not constant). By classical results for harmonic
1-forms, we have:

1

2
∆|ψ|2 =

1

2
∆(|α|2 + |τ |2) = |∇Lα|

2 + |dτ |2 +
1

2
Ric (α,α).

Integrating on L× {t}, we obtain the equivalence of formula (11):

−

∫

∂Y

〈DµXψ,ψ〉dσ =

∫

Y

|∇Lα|
2 + |dτ |2 +

1

2
Ric (α,α)dy.

Lastly, let us compute the eigenvalues of DµX . The constant vector ∂
∂t

over ∂Y lies clearly in
the kernel of DµX . By Proposition 3.5, the other eigenvalue of DµX is 2H, with eigenspace
generated by n × ∂

∂t
. Over ∂Y , s lies in JTL ∩ µX , hence is proportional to n × ∂

∂t
.

Consequently, DµXψ = 2Hs and

−

∫

∂Y

2H|s|2dσ =

∫

Y

|∇Lα|
2 + |dτ |2 +

1

2
Ric (α,α)dy.

This equation, the positivity of the Ricci curvature and the positivity of H show that α
vanishes and τ is constant. So we see that dimcoker(D, νX) = 1, and by the constant rank
theorem, MY,X is locally smooth and of dimension dimker(D, νX) = g. �

Theorem 4.12 shows an equivalent result for deformations of special Lagrangian submani-
fold with metric conditions and boundary in a complex surface. Certainly, a direct proof
would be shorter. But it seems to us that our proof has didactic virtues in our context of
associative deformations.

An example where b3(M) → cokerD is not injective.

Lemma 4.13 Let (N,Ω, ω) be a compact smooth Calabi-Yau manifold and C ⊂ N be a
smooth complex curve, so that Y = C × S1 is an associative submanifold of N × S1. Then,
the rank of the map ∇F : H3(N ×S1,R) → cokerDY given by Lemma 2.3 is not bigger than
2 dimH2,1(N) ≤ b3(N × S1)− 3.
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Proof. The space of harmonic 3-forms on N × S1 is H3(N,R) ⊕ H2(N,R) ∧ dt. If ψ ∈
H2(N,R) ∧ dt, then ∗ψ belongs to Ω4(N), so that ∇ψF = 0. If ψ ∈ H3,0(N) ⊕ H0,3(N),
then ∗ψ ∈ (Ω3,0(N) ⊕ Ω0,3(N)) ∧ dt, so that ∇ψF = 0 because the tangent space of C is a
complex line. Since dimH2(N,R) ≥ dim(Rω) = 1 and dimH3,0(N) ⊕H0,3(N) = 2, we get
the result. �

An non trivial example where b3(M) → cokerD is onto. Consider N = C3/Z6 the
standard complex torus of dimension 3, and C = (C × {(0, 0)})/Z2 an elliptic curve in N .
Since any associative deformation of Y = C × S1 inside N × S1 comes from a complex
deformation of C in N , the kernel of DY can be identified with the kernel of the normal
d-bar on C. The latter has complex dimension 2 and is generated by the constant sections
∂
∂z2

and ∂
∂z3

, where z2 and z3 are the standard coordinates on {0} × C2. Moreover one can

check that the real parts of these sections are in the image of H2,1(N) ⊕H1,2(N) by ∇F .
In fact, the family of tori is killed by such a perturbation. Note that H2,1(N) parametrizes
the infinitesimal changes of complex structures, see [8] for instance. For a generic change of
complex structure, the complex tori disappear.

A family of examples where b3(M) < dim cokerD. Let N be a projective Calabi-Yau
threefold equipped by an ample holomorphic line bundle L, and Nd be the dimension of
PH0(N,Ld). Take d big enough, so that Nd(Nd − 1)/2 > b3(N × S1) and choose C a
generic complex curve defined by the intersection of the vanishing locus of two sections of
Ld. Then, its moduli space of complex deformations is of dimension Nd(Nd − 1)/2, so that
the dimension of the kernel of the Dirac operator associated to the associative C × S1 is
bigger than b3(N × S1).

5 Appendix

5.1 Proof of Lemma 3.6

In this paragraph, we will assume that the ambient manifold M has a torsion-free G2-
structure (φ, g). Consider Y an associative submanifold and ν its normal bundle in (M,g).
We begin by the classical lemma

Lemma 5.1 For a torsion-free structure, the operator D defined in 1 is formally self-adjoint,
i.e for s and s′ ∈ Γ(Y, ν),

∫

Y

〈Ds, s′〉 − 〈s,Ds′〉dy = −

∫

∂Y

〈n× s, s′〉dσ, (13)

where dσ is the volume induced by the restriction of g on the boundary, and n is the inward
unit normal vector of ∂Y .

Proof. The proof of this lemma is mutatis mutandis the one for the classical Dirac operator,
see Proposition 3.4 in [3] for example. For the reader’s convenience we give a proof of this.

〈Ds, s′〉 = 〈
∑

i

ei ×∇⊥
i s, s

′〉 = −
∑

i

〈∇⊥
i s, ei × s′〉

= −
∑

i

dei〈s, ei × s′〉+ 〈s,∇⊥
i (ei × s′)〉

= −
∑

i

dei〈s, ei × s′〉+ 〈s,∇⊤
i ei × s′ + ei ×∇⊥

i s
′〉.
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By a classical trick, define the vector field X ∈ Γ(Y, TY ) by 〈X,w〉 = −〈s,w× s′〉 ∀w ∈ TY.
Note that the product on the LHS is on TY , and the one on the RHS is on ν. Now

−
∑

i

dei〈s, ei×s
′〉 =

∑

i

dei〈X, ei〉 =
∑

i

〈∇⊤
i X, ei〉+〈X,∇⊤

i ei〉 =
∑

i

div X−〈s,∇⊤
i ei×s

′〉.

By Stokes we get
∫

Y

〈Ds, s′〉dy =

∫

∂Y

〈X,−n〉dσ +

∫

Y

〈s,Ds′〉dy =

∫

∂Y

〈s, n× s′〉dσ +

∫

Y

〈s,Ds′〉dy,

which is what we wanted. �

Now, consider L a subbundle of ν|∂Y of real rank equal to two and invariant under the action
of n×. Let s′ ∈ Γ(Y, ν) lying in coker(D,L). This means that for every s ∈ Γ(Y, ν) with

s|∂Y ∈ L, we have

∫

Y

〈Ds, s′〉dy = 0. By the former result, we see that this equivalent to

∫

Y

〈s,Ds′〉+

∫

∂Y

〈n × s, s′〉 = 0.

This clearly implies that Ds′ = 0, and s′|∂Y ⊥ L, because L is invariant under the action of

n×. So s′ ∈ ker(D,L⊥). The reverse inclusion holds too by similar reasons.

5.2 Proof of Proposition 3.5

Proof. Let Y be an smooth compact associative with boundary, and L be a subbundle
of ν|∂Y invariant under the action of n×. It is straightforward to check that DL defined in
Definition 1.8 does not depend on the chosen orthonormal frame {v,w = n× v}. For every
ψ ∈ Γ(∂Y,L) and f a function,

DL(fψ) = πL(v ×∇w(fψ)−w ×∇v(fψ))

= fDLψ + (dwf)πL(v × ψ)− (dvf)πL(w × ψ) = fDLψ

because w × L and v × L are orthogonal to L. Now, decompose the connexion ∇⊤ on TY
as ∇⊤ = ∇⊤∂ +∇⊥∂ into its two projections along T∂Y and along the normal (in TY ) n-
direction. For the computations, choose v and w = n× v the two orthogonal characteristic
directions on T∂Y , i.e ∇⊤∂

v n = −kvv and ∇⊤∂
w n = −kww, where kv and kw are the two

principal curvatures. We have ∇⊥∂
v v = kvn and 〈∇⊥∂

w v, n〉 = 0, and the same, mutatis
mutandis, for w. Then, for ψ and φ ∈ Γ(∂Y,L), using the fact that T∂Y × L is orthogonal
to L,

〈DLψ, φ〉 = 〈∇⊥
w(v × ψ)− (∇⊥∂

w v)× ψ −∇⊥
v (w × ψ) + (∇⊥∂

v w)× ψ, φ〉

= 〈∇⊥
w(v × ψ)−∇⊥

v (w × ψ), φ〉 = −〈v × ψ,∇⊥
wφ〉+ 〈w × ψ,∇⊥

v φ〉

= 〈ψ, v ×∇⊥
wφ− w ×∇⊥

v φ〉 = 〈ψ,DLφ〉.

To prove that the trace of DL is 2H, let e ∈ L be a local unit section of L. We have n×e ∈ L
too, and

〈DL(n× e), n× e〉 = 〈v × ((∇⊤∂
w n)× e) + v × (n ×∇⊥

we), n × e〉

−〈w × (∇⊤∂
v n)× e− w × (n×∇⊥

v e), n× e〉

= 〈v × (−kww × e)− w × (−kvv × e), n × e〉

+〈v × (n×∇⊥
we)− w × (n ×∇⊥

v e), n × e〉

= kw + kv − 〈n× (w × (n×∇⊥
v e)− v × (n×∇⊥

we)), e〉

= 2H − 〈DLe, e〉.
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This shows that trace DL = 2H. �

5.3 Computation of D
2

Proof of Theorem 2.6. Before diving into the calculi, we need the following trivial
lemma:

Lemma 5.2 Let ∇ be the Levi-Civita connection on M and R its curvature tensor. For
any vector fields w, z, u and v on M , we have

∇(u× v) = ∇u× v + u×∇v

R(w, z)(u × v) = R(w, z)u × v + u×R(w, z)v.

If Y is an associative submanifold of M with normal bundle ν, u ∈ Γ(Y, TY ), v ∈ Γ(Y, TY )
and η ∈ Γ(Y, ν), then

∇⊤(u× v) = ∇⊤u× v + u×∇⊤v

∇⊥(u× η) = ∇⊤u× v + u×∇⊥v,

where ∇⊤ = ∇−∇⊥ is the orthogonal projection of ∇ to TY .

Proof. Let x1, · · · , x7 be normal coordinates on M near x, and ei =
∂
∂xi

their derivatives,
orthonormal at x. We have

u× v =
∑

i

〈u× v, ei〉ei =
∑

i

φ(u, v, ei)ei,

so that at x, where ∇ejei = 0,

∇(u× v) =
∑

i

(∇φ(u, v, ei) + φ(∇u, v, ei) + φ(u,∇v, ei) + φ(∇u, v,∇ei))ei

=
∑

i

(φ(∇u, v, ei) + φ(u,∇v, ei))ei = ∇u× v + u×∇v,

because ∇φ = 0. Now if u and v are in TY , then we get the result after noting that
(∇u × v)⊤ = ∇⊤u × v, because TY is invariant under ×. The last relation is implied by
TY × ν ⊂ ν and ν × ν ⊂ TY . The curvature relation is easily derived from the definition
R(w, z) = ∇w∇z −∇z∇w −∇[w,z] and the differentiation of the vector product. �

We compute D2 at a point x ∈ Y . For this, we choose normal coordinates on Y and
ei ∈ Γ(Y, TY ) their associated derivatives, orthonormal at x. To be explicit, ∇⊤ei = 0 at
x. Let ψ ∈ Γ(Y, ν).

D2ψ =
∑

i,j

ei ×∇⊥
i (ej ×∇⊥

j ψ)

=
∑

i,j

ei × (ej ×∇⊥
i ∇

⊥
j ψ) +

∑

i,j

ei × (∇⊤
i ej ×∇⊥

j ψ)

= −
∑

i

∇⊥
i ∇

⊥
i ψ −

∑

i 6=j

(ei × ej)×∇⊥
i ∇

⊥
j ψ

= ∇⊥∗∇⊥ψ −
∑

i〈j

(ei × ej)× (∇⊥
i ∇

⊥
j −∇⊥

j ∇
⊥
i )ψ

= ∇⊥∗∇⊥ψ −
∑

i〈j

(ei × ej)×R⊥(ei, ej)ψ.
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Since (ei × ej)×R⊥(ei, ej) is symmetric in i, j, this is equal to

∇⊥∗∇⊥ψ −
1

2

∑

i,j

(ei × ej)×R⊥(ei, ej)ψ.

The main tool for what follows is the Ricci equation. Let u, v be sections of Γ(Y, TY ) and
φ, ψ be elements of Γ(Y, ν).

〈R⊥(u, v)ψ, φ〉 = 〈R(u, v)ψ, φ〉 + 〈(AψAφ −AφAψ)u, v〉,

where Aφ(u) = A(φ)(u) = −∇⊤
u φ. Choosing η1, · · · , η4 an orthonormal basis of ν at the

point x, we get

−
1

2

∑

i,j

(ei × ej)×R⊥(ei, ej)ψ = −
1

2

∑

i,j,k

〈(ei × ej)×R⊥(ei, ej)ψ, ηk〉ηk

=
1

2

∑

i,j,k

〈R⊥(ei, ej)ψ, (ei × ej)× ηk〉ηk

= −
1

2
πν

∑

i,j

(ei × ej)×R(ei, ej)ψ

+
1

2

∑

i,j,k

〈(AψA(ei×ej)×ηk −A(ei×ej)×ηkAψ)ei, ej〉ηk.

Using the classical Bianchi relation R(ei, ej)ψ = −R(ψ, ei)ej − R(ej , ψ)ei, the first part of
the sum −1

2πν
∑

i,j(ei × ej)×R(ei, ej)ψ is equal to

I = −2πν(e1 ×R(e2, ψ)e3 + e2 ×R(e3, ψ)e1 + e3 ×R(e1, ψ)e2) =

−2πν(e1 ×R(e2, ψ)(e1 × e2) + e2 ×R(e3, ψ)(e2 × e3) + e3 ×R(e1, ψ)(e3 × e1)) =

−2πν(e1 × (R(e2, ψ)e1 × e2 + e1 ×R(e2, ψ)e2) + e2 × (R(e3, ψ)e2 × e3 + e2 ×R(e3, ψ)e1) +

e3 × (R(e1, ψ)e3 × e1 + e3 ×R(e1, ψ)e2)) =

−I + 2πν
∑

i

R(ei, ψ)ei,

which gives I = πν
∑

iR(ei, ψ)ei. The Weingarten endomorphisms are symmetric, so that
the second part of the sum is

1

2

∑

i,j,k

〈A(ei×ej)×ηkei, Aψej〉ηk −
1

2

∑

i,j,k

〈Aψei, A(ei×ej)×ηkej〉ηk.

It is easy to see that the second sum is the opposite of the first one. We compute

A(ei×ej)×ηkei = −(∇⊥
i ei × ej)× ηk − (ei ×∇⊥

i ej)× ηk + (ei × ej)×Aηkei.

But we know that an associative submanifold is minimal, so that
∑

i∇
⊥
i ei = 0. Moreover,

differentiating the relation e3 = ±e1×e2, one easily checks that
∑

i ei×∇⊥
j ei = 0. Summing,

the only resting term is ∑

i,j,k

〈(ei × ej)×Aηkei, Aψej〉ηk.

We now use the classical formula for vectors u, v and w in TY :

(v × w)× u = 〈u, v〉w − 〈u,w〉v,
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hence
(ei × ej)×Aηkei = 〈Aηkei, ei〉ej − 〈Aηkei, ej〉ei.

One more simplification comes from
∑

i〈Aηkei, ei〉 = 0 for all k because Y is minimal, so
our sum is now equal to

−
∑

i,j,k

〈Aηkei, ej〉〈ei, Aψej〉ηk = −Aψ.

�

5.4 Computation of D in the Calabi-Yau extension

Proof of Proposition 4.7. We will use the simple formula ∇⊥Js = J∇⊤s for all sections
s ∈ Γ(L,NL). For (s, τ) ∈ Γ(L,NL)× Γ(L,R), and ei local orthonormal frame on L,

D(s, τ) =
∑

i,j

〈ei ×∇⊥
i s, Jej〉Jej +

∑

i

〈ei ×∇⊥
i s, ∂t〉∂t +

∑

i

∂iτ ei × ∂t

= J
∑

i,j

φ(ei,∇
⊥
i s, Jej)ej +

∑

i

φ(ei,∇
⊥
i s, ∂t)∂t + J

∑

i,j

∂iτ 〈ei × ∂t, Jej〉ej ,

where we used that ei × ∂t ⊥ ∂t.

= J
∑

i,j

ℜΩ(ei,∇
⊥
i s, Jej)ej +

∑

i

ω(ei,∇
⊥
i s)∂t + J

∑

i,j

∂iτ φ(ei, ∂t, Jej)ej

= J
∑

i,j

ℜΩ(ei, J∇
⊤
i σ, Jej)ej +

∑

i

ω(ei, J∇
⊤
i σ)∂t + J

∑

i,j

∂iτ ω(Jej , ei)ej ,

where σ = −Js ∈ Γ(L, TL).

= −J
∑

i,j

ℜΩ(ei,∇
⊤
i σ, ej)ej +

∑

i

〈ei,∇
⊤
i σ〉∂t − J

∑

i,j

∂iτ〈ej , ei〉ej

= −J
∑

i,j

V ol(ei,∇
⊤
i σ, ej)ej +

∑

i

〈ei,∇
⊤
i σ〉∂t − J

∑

i

∂iτei,

since ℜΩ is the volume form on TL. It is easy to find that this is equivalent to

D(s, τ) = −J(∗dσ∨)∨ + (∗d ∗ σ∨)∂t − J(dτ)∨,

and so D∨(σ∨, τ) = (−∗dσ∨ − dτ, ∗d ∗ σ∨). Now, since d∗ = (−1)3p+1∗d∗ on the p-forms,
one easily checks the formula for D2. �
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