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Damien Gayet
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Abstract
LetM7 be a smooth manifold equipped with a G2-structure φ, and Y

3 be an closed compact
φ-associative submanifold. In [16], R. McLean proved that the moduli space MY,φ of the
φ-associative deformations of Y has vanishing virtual dimension. In this paper, we perturb
φ into a G2-structure ψ in order to ensure the smoothness of MY,ψ near Y . If Y is allowed
to have a boundary moving in a fixed coassociative submanifold X, it was proved in [6] that
the moduli space MY,X of the associative deformations of Y with boundary in X has finite
virtual dimension. We show here that a generic perturbation of the boundary condition X
into X ′ gives the smoothness of MY,X′ . In another direction, we use the Bochner technique
to prove a vanishing theorem that forces MY or MY,X to be smooth near Y . For every
case, some explicit families of examples will be given.

MSC 2000: 53C38 (35J55, 53C21, 58J32).

Keywords: G2 holonomy; calibrated submanifolds; elliptic boundary problems; Bochner
technique

1 Introduction

In the Euclidian space (R7, g0) with its canonical coordinates (xi)i=1,··· ,7, consider the 3-form

φ0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356

and G2 the subgroup of SO(7) defined by G2 = {g ∈ SO(7), g∗φ0 = φ0}. If M is an
oriented spin 7-dimensional Riemannian manifold, its structural group can be reduced to
G2 ⊂ SO(7). Given a set of trivialization charts for TM compatible with G2, M inherits
a nondegenerate 3-form φ and a metric g, which are the pullbacks of φ0 and g0 by these
charts. We call the pair (φ, g) a G2-structure. Moreover, TM inherits a vector product ×
defined by

∀u, v, w ∈ TM, 〈u× v,w〉 = g(u× v,w) = φ(u, v, w).

Remark that in R7, the subspace R3×{0} is stable under this vector product, which induces
the classical vector product on R3. When φ is closed and coclosed for g, the structure is
said to be torsion-free. In this situation, the holonomy of g is a subgroup of G2, see [12].

A 3-dimensional submanifold Y in (M,φ, g) is called φ-associative, or simply associative
when there is no ambiguity, if its tangent bundle is stable under the vector product associ-
ated to φ. In other terms, φ restricted to Y is a volume form for Y . Likely, a 4-dimensional
submanifold X is called coassociative if the fibers of its normal bundle are associative, or
equivalently, φ|TX vanishes.
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1.1 Genericity

Closed associative submanifolds.

Definition 1.1 Consider a smooth spin 7-manifold M and Y a smooth compact closed
3-submanifold. For every G2-structure φ, define MY,φ the set of smooth φ-associative sub-
manifolds isotopic to Y .

It is known from [16] that the problem of associative deformations of a compact closed as-
sociative submanifold Y is related to an elliptic partial diffential equation, namely a twisted
Dirac operator, see Theorem 2.1. Hence for a fixed G2-structure φ, the moduli space MY,φ

has finite and vanishing virtual dimension. In general, the situation is obstructed. For
instance, consider the torus T3 × {t} in the flat torus (T7, φ0, g0) = T3 × T4. This is an
associative submanifold, and its moduli space MT3×{t} of associative deformations contains
at least the 4-dimensional T4. See also Proposition 4.8 for a more general situation in a
product of a Calabi-Yau manifold with S1.

A natural question is to find conditions which force the moduli space MY,φ to be smooth at
least near a φ-associative Y , or in other terms, which force the cokernel of the operator to
vanish. The first way to solve this is to perturb the G2-structure and get generic smoothness.
It turns out that we cannot do this in the realm of torsion-free structures, see Remark 2.4.
On the other hand, G2-structures with closed 3-form φ seem to be rich enough to handle
with, at least for the point of view of calibrated geometries, see [9]. Indeed, any G2-structure
φ defines a calibration, and when this form is closed, the calibrated submanifolds, here the
associative ones, do minimize the volume in their homology class. As suggested to the
author by D. Joyce, we will prove the following

Theorem 1.2 Let M be a manifold equipped with a closed G2-structure φ, and Y be
a smooth compact closed φ-associative submanifold. Then for every generic closed G2-
structure ψ close enough to φ, the moduli space MY,ψ contains a deformation Ỹ of Y and
is smooth near Ỹ . In particular, Ỹ is isolated among ψ-associative submanifolds isotopic
to Y .

Remark 1.3 A former result in this direction was proved by S. Abkulut and S. Salur [2],
where the authors allow a certain freedom for the definition of associativity.

Associative submanifolds with boundary. In [6], the authors showed that the prob-
lem of associative deformations of an associative submanifold Y with boundary in a fixed
coassociative submanifold X is an elliptic problem of finite index. Moreover, they proved
that this virtual dimension equals the index of a certain Cauchy-Riemann operator related
to the complex geometry of the boundary, see Theorem 3.1 below. As in the closed case,
the situation can be obstructed. For instance, consider in (T7, φ0, g0) the S1- family of
associative submanifolds

Yλ = {(x1, x2, x3, λ, 0, 0, 0), 0 ≤ x1 ≤ 1/2, x2, x3 ∈ S1}, λ ∈ S1 = [0, 1]/ ∼ .

The two components of the boundary of Yλ lie in the union X of the two coassociatives tori

Xi = {(i/2, x2, x3, x4, x5, 0, 0), x2, x3, x4, x5 ∈ S
1}, i = 0, 1.

However the index of this problem vanishes, see [6] or Theorem 3.1. For more general ob-
structed situations, see Theorem 4.10.
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As in the closed case, we can perturb the closed G2-structure φ of the manifold M into
ψ to ensure the smoothness of the moduli space. Remark that in this case, X has no
reason to remain coassociative for the new structure. But it remains ψ-free, i.e the tangent
space of X does not contain any ψ-associative 3-plane, see [10] or [6], Section 5. Indeed,
φ-coassociativity implies φ-freedom, and for a submanifold being φ-free is an open condition
in the variable φ. For any G2-structure φ, the problem of deformations of an associative
submanifold with boundary in a fixed φ-free submanifold is still elliptic [6] and, in our
present case, its index is the same as the index for the unperturbed situation.

Definition 1.4 Consider a manifold equipped with a G2-structure (φ, g) and Y a smooth
compact associative submanifold with boundary in a φ-free submanifold X. We denote by
MY,X the set of smooth associative submanifolds with boundary in X and isotopic to Y .

Instead of changing the G2-structure, we can move the boundary condition, namely X. Still,
if we impose to X to remain coassociative, in general we can not get smoothness. Indeed,
it is known [16] that the moduli space of coassociative perturbations of X is smooth and
has the dimension b+2 (X) of the space of harmonic self-dual 2-forms on X. In the former
example of the flat torus, every coassociative deformation of X is a translation of the initial
situation, hence the problem remains obstructed. Now, since any perturbation of a φ-free
submanifold remains φ-free, we can fix φ and perturb X.

Theorem 1.5 Let Y be a smooth associative submanifold with boundary in a smooth coas-
sociative submanifold X. If the virtual dimension of MY,X is non negative, then for any
sufficiently small generic smooth deformation of X into X ′, there exists a small associative
deformation Y ′ of Y such that the moduli space MY ′,X′ is smooth near Y ′ and of dimension
equal to the index computed for the unperturbed situation.

1.2 Metric conditions

Concrete examples are often non generic, so we would like too to get a condition that is
not a perturbative one. For holomorphic curves in dimension 4, there are topological condi-
tions on the degree of the normal bundle which imply the smoothness of the moduli space
of complex deformations, see [11]. The main reason is that holomorphic curves intersect
positively. In our case, there is no such phenomenon.

In [16], page 30, R. McLean gives an example of an isolated associative submanifold. For
this, he recalls that R. Bryant and S. Salamon constructed in [4] a metric of holonomy G2

on the spin bundle S3 × R4 of the round 3-sphere. In this case, the basis Y = S3 × {0}
is associative, the normal bundle of Y is the spin bundle of S3, and the operator related
to the associative deformations of Y is the Dirac operator on S3. By the famous theorem
of Lichnerowicz [15], there are no non trivial harmonic spinors on S3 for metric reasons
(precisely, the Riemannian scalar curvature is positive), so the sphere is isolated as an as-
sociative submanifold.

Minimal submanifolds. Recall that in a manifold with a closed G2-structure, associative
submanifolds are minimal. In [17], J. Simons gives a metric condition for a minimal sub-
manifold to be stable, i.e isolated. For this, he introduces the following operator, a sort of
partial Ricci operator:

Definition 1.6 Let (M,g) be a Riemannian manifold and Y a p-dimensional submanifold
in M and ν be its normal bundle. Choose {e1, · · · ep} a local orthonormal frame field of TY ,
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and define the 0-order operator R : Γ(Y, ν) → Γ(Y, ν) with Rs = πν
∑p

i=1R(ei, s)ei, where
R is the curvature tensor of g on M and πν the orthogonal projection to ν.

It turns out that the definition is independant of the chosen oriented orthonormal frame, and
that R is symmetric. Simons defines another operator A related to the second fondamental
form of Y :

Definition 1.7 Let SY be the bundle over Y whose fibre at a point y is the space of symmet-
ric endomorphisms of TyY , and A ∈ Hom(ν, SY ) the second fundamental form defined by
A(s)(u) = −∇⊤

u s, where u ∈ TY , s ∈ ν, and ∇⊤ is the projection to TY of the ambient Levi-
Civita connection ∇, with ∇ = ∇⊤+∇⊥. Denote by A the operator A : Γ(Y, ν) −→ Γ(Y, ν),
As = At ◦ A(s), where At is the transpose of A.

It is classical that A is a symmetric positive 0-th order operator. Moreover, it vanishes
if Y is totally geodesic. Using both operators and the Bochner technique, Simons gives a
sufficient condition for a minimal submanifold to be stable:

Theorem 1.8 ([17]) Let Y be a minimal submanifold in M , and suppose that R − A is
positive. Then Y cannot be deformed as a minimal submanifold.

In particular, if Y is a compact closed associative submanifold satisfying the conditions of
Theorem 1.8 in a manifold M with a closed G2-structure, then it cannot be perturbed as
an associative submanifold. Now, if Y is an associative submanifold with a boundary, we
introduce another operator:

Definition 1.9 In a manifold equipped with a G2-structure, let Y be a smooth compact
associative submanifold with boundary and ν be its normal bundle. Let L be a two dimen-
sional real subbundle of ν|∂Y invariant under the action of n×, where n is the inward unit
normal vector field along ∂Y . Choose {v,w = n × v} a local orthonormal frame for T∂Y .
We denote by DL the operator DL : Γ(∂Y,L) → Γ(∂Y,L),

DLs = πL(v ×∇⊥
ws− w ×∇⊥

v s),

where πL : ν|∂Y → L is the orthogonal projection to L and ∇⊥ the normal connection on ν
induced by the Levi-Civita connection ∇ on M .

We will prove in Proposition 3.6 that DL is independant of the chosen oriented frame, is of
order 0 and is symmetric. Suppose further that the boundary of Y lies in a coassociative
submanifold X. It turns out that Y intersects orthogonally X, see Theorem 3.1 below.
Denote by µX the 2-dimensional orthogonal complement of n in the normal bundle of X
over ∂Y , where n is the inward normal unit vector field in Y along ∂Y . Then we can state
the following vanishing

Theorem 1.10 Let M be a manifold equipped with a torsion-free G2-structure and Y be
an associative submanifold with boundary in a coassociative submanifold X. If DµX and
R − A are positive, the moduli space MY,X is smooth near Y and of dimension given by
the index in Theorem 3.1.

Thanks to Theorem 1.10, we can find an explicit example, in the Bryant-Salamon manifold
with G2-holonomy, of a locally smooth one dimensional moduli space of associative defor-
mations with boundary in a coassociative submanifold, see Corollary 4.5. In Section 4, we
explain other examples quite explicits, in particular for an ambient manifold which is the
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product of a Calabi-Yau manifold with S1 or R, see Theorem 4.10.
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2 Closed associative submanifolds

2.1 The operator D and the deformation problem

We begin with the version of McLean’s theorem proposed by Akbulut and Salur, and an
ecumenical proof of it.

Theorem 2.1 ([16],[1]) Let M be a manifold equipped with a G2-structure (φ, g), and Y
a closed compact associative submanifold with normal bundle ν. Then the Zariski tangent
space at Y of MY can be identified with the kernel of the operator D : Γ(Y, ν) → Γ(Y, ν),
where

Ds =

3∑

i=1

ei ×∇⊥
ei
s+

7∑

k=1

(∇s∗φ)(ηk, ω)⊗ ηk. (1)

Here (ei)i=1,2,3 is any local orthonormal frame of the tangent space of Y with e3 = e1 × e2,
(ηk)k=1,2,3,4 is any local orthonormal frame of ν and ∇⊥ is the connection on ν induced by
the Levi-Civita connection ∇ of (M,g).

Remark 2.2 Note that second part is a 0-th order operator that vanishes for a torsion-free
G2-structure, as proved in [1].

Proof. Firstly, recall the existence on (M,φ, g) of an important object χ, the 3-form with
values in TM and defined, for u, v, w ∈ TM by χ(u, v, w) = −u×(v×w)−〈u, v〉w+〈v,w〉v.
It is easy to check [1] that χ(u, v, w) is orthogonal to the 3-plane u ∧ v ∧ w. Moreover we
will use the following useful formula [9] :

∀u, v, w, η ∈ TM, 〈χ(u, v, w), η〉 = ∗φ(u, v, w, η),

where ∗ is the Hodge star associated to the metric g. So

χ =
∑

k

ηky∗φ⊗ ηk, (2)

where (ηk)k=1,2,···7 is an local orthonormal frame of the tangent space of M . Further, if Y is
a 3-dimensional submanifold in (M,φ), then χ|TY = 0 if and only if Y is associative. As in
[16], we use this characterization to study the moduli space of associative deformations of an
associative Y . Let Y be any smooth closed associative submanifold in M . We parametrize
its deformations by the sections of its normal bundle ν. Fix ω a non vanishing global section
of Λ3TY writing locally ω = e1 ∧ e2 ∧ e3, with (ei)i=1,2,3 a local orthonormal frame of TY
satisfying e3 = e1 × e2. For every smooth section σ ∈ Γ(Y, ν), define

F (σ) = exp∗σ χ(ω) ∈ Γ(Y, νσ), (3)
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where νσ is the normal bundle of expσ(Y ). Then expσ(Y ) is associative if and only if F (σ)
vanishes. In order to compute the Zariski tangent space of MY at the vanishing section,
consider a path of normal sections (σt)t∈[0,1] ∈ Γ(Y, ν) and

s =
dσt
dt |t=0

∈ Γ(Y, ν).

To differentiate F at σ = 0 in the direction of s, we use the Levi-Civita connection of (M,g).
Remark that since F (0) = 0, the result does not depend in fact on the chosen connection.
We have

∇ ∂
∂t
F (σt)|t=0 =

∑

k

Ls(ηky∗φ)(ω) ⊗ ηk + (ηky∗φ)(ω) ⊗∇sηk,

where Ls is the Lie derivative in the direction s. Since Y is associative, ωy∗φ = 0 and the
second term vanishes. Thanks to classical Riemannian formulas, we compute the summand
of the first term. For every k,

Ls(ηky∗φ)(ω) = (ηk ∧ ω)y Ls(∗φ) + ([ηk, s] ∧ ω)y∗φ = Ls(∗φ)(ηk, ω),

since ([ηk, s] ∧ ω)y∗φ = 〈χ(ω), [ηk, s]〉 = 0. This is equal to

∇s∗φ(ηk, ω) + ∗φ(∇ηks, ω) + ∗φ(ηk,∇e1s, e2, e3) + ∗φ(ηk, e1,∇e2s, e3) + ∗φ(ηk, e1, e2,∇e3s).

The second term vanishes because ωy∗φ = 0 and the third one equals ∗φ(ηk,∇
⊥
e1
s, e2, e3) =

−〈∇⊥
e1
s× (e2×e3), ηk〉. Using the relation e2×e3 = e1 and summing up the two last similar

terms, we obtain ∇sF =
∑

i ei ×∇⊥
i s+

∑
k(∇s∗φ)(ηk, ω)⊗ ηk. Since F (0) has values in ν,

in fact we can suppose that the ηk’s form a local orthonormal frame of ν. �

Proposition 2.3 Let Y be a smooth closed associative submanifold in a manifoldM equipped
with a G2-structure. If the (co)kernel of the operator D given by (1) vanishes, then MY is
smooth near Y and of vanishing dimension. In particular, Y is isolated among associative
submanifolds isotopic to Y .

Proof. Fix Y a smooth closed associative submanifold. For kp > 3, it makes sense to
consider the Banach space E = W k,p(Y, ν) of sections with weak derivatives in Lp, up the
k-th one. Moreover for (k − r)/3 > 1/p, the inclusion W k,p(Y, ν) ⊂ Cr(Y, ν) holds and
so σ ∈ E is C1 if k > 1 + 3/p. In particular, one can define νσ the normal bundle to
expσ(Y ), and F the Banach bundle over E with fiber Fσ = W k−1,p(Y, νσ). It is clear that
the operator F defined by (3) extends to a section Fk,p of F over E . The proof of Theorem
2.1 shows that Fk,p is smooth and the derivative of F in the direction of a vector field
s ∈ T0E = W k,p(Y, ν) is computed by (1). Now, the operator D : Γ(Y, ν) → Γ(Y, ν) has
symbol σ(ξ) : s 7→

∑
i ξis×ei = s×ξ, which is always invertible on ν as long as ξ ∈ TY \{0}.

This proves that D is elliptic. Remark that σ(ξ)2s = −|ξ|2s, which is the symbol of the
Laplacian. Hence F is a Fredholm operator, and kerD as cokerD have finite dimension.
By the implicit function theorem for Banach bundles, if cokerD = {0}, then F−1(0) is a
smooth Banach submanifold of E near the null section and of finite dimension equal to
dimkerD = indexD, which vanishes since Y is odd-dimensional. Lastly, still thanks to the
ellipticity of D, all elements of MY are smooth. �
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2.2 Varying the G2-structure

Theorem 1.2 Let M be a manifold equipped with a closed G2-structure φ, and Y be
a smooth compact closed φ-associative submanifold. Then for every generic closed G2-
structure ψ close enough to φ, the moduli space MY,ψ contains a deformation Ỹ of Y and
is smooth near Ỹ . In particular, Ỹ is isolated among ψ-associative submanifolds isotopic
to Y .

Proof. Consider Y a smooth closed associative submanifold in a manifoldM equipped with
a closed G2-structure (φ, g). We modify the former map F defined in (3) in the following
way. For every normal section σ ∈ Γ(Y, ν) and every G2-structure ψ, consider

F (σ, ψ) = exp∗σ χ(ω) ∈ Γ(Y, νσ).

Here the exponential map holds for the fixed metric g, whereas νσ, the normal vector bundle
over expσ(Y ), depends now on the metric associated to ψ, as does χ. We will differentiate
F (0, .) in the direction of Z3(M), the subspace of smooth closed 3-forms on M . Recall that
the set of 3-forms defining a G2-structure is open in Ω3(M), hence for every ψ ∈ Z3(M)
with small enough norm, φ + ψ still defines a closed G2-structure. Let (φt)t∈[0,1] be a
smooth path of closed G2-structures, with φ0 = φ. In formula (2), the local orthonormal
trivializations ηk of the tangent bundle TM are orthonormal for the metric gt associated to
φt, consequently we have to choose them as functions of t. On the contrary, we can keep
ω constant. Hence F (0, φt) =

∑
k(ηk(t) ∧ ω)y∗tφt ⊗ ηk(t), where ∗t denotes the Hodge star

for gt. Since ωy∗φ = 0, at t = 0 the two terms in the derivative containing ∇ ∂
∂t
ηk vanish,

and we have

∇ ∂
∂t
F (0, φt)|t=0 =

∑

k

(ηk ∧ ω)y
∂

∂t
Θ(φ(t))|t=0 ⊗ ηk.

The nonlinear function Θ is defined on the set of G2-structures and has values in Ω4(X),
with Θ(ψ) = ∗ψψ, where the Hodge star ∗ψ is computed for the metric associated to the
G2-structure ψ. Proposition 10.3.5 in [12] shows that if φ is a closed G2-structure, the
derivative of Θ at φ satisfies

∀ψ ∈ Z3(M), dφΘ(ψ) = ∗P(ψ),

where the Hodge star holds for g and P = 4
3π1 + π7 − π27. Here π1, π7 and π27 are

the orthogonal projections corresponding to the decomposition Λ3T ∗M = Λ3
1 ⊕ Λ3

7 ⊕ Λ3
27

associated to the irreductible representations of G2, see Lemma 3.2 in [7] or Proposition
10.1.4 in [12]. Hence if ψ = ∂

∂t
φ(t)|t=0 ∈ Z3(M), we have

∇ψF =
∑

k

(ηk ∧ ω)y∗P(ψ) ⊗ ηk. (4)

Due to the properties of χ, in this formula we can restrict our ηk’s to a local orthonormal
frame of ν for the metric g. Now, recall [7] that Λ3

7 = {∗(φ ∧ α), α ∈ Λ1T ∗M}. Consider
s ∈ Γ(Y, ν), and α the dual 1-form of s. More precisely, α ∈ Γ(Y, T ∗M) satisfies

∀y ∈ Y, ∀v ∈ TyM,αy(v) = 〈s(y), v〉.

We choose ω such that φ(ω) = 1, which is always possible since Y is associative. Since P
acts as the identity on Λ3

7 and ∗ is an involution, it is straightforward to see that

∑

l

(ηl ∧ ω)y∗P(∗(φ ∧ α))⊗ ηl = s. (5)
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In order to prove the existence of ψ ∈ Z3(M) such that ∇ψF = s, we need to extend ∗(φ∧α)
outside Y as a closed form. For this, let p ∈ Y , U be an open set of M containing p and
local coordinates y1, y2, y3, x1, x2, x3, x4 on U , where the yi’s are coordinates on Y and the
xi’s are transverse coordinates. Since ψ = ∗(φ ∧ α) = sy∗φ by a simple computation, the
restriction to TY of this 3-form vanishes, hence ψ writes

∑
i dxi∧αi over Y ∩U , where for all

i, αi is a 3-form. We extend arbitrarily the αi’s as smooth 3-forms on U . Suppose first that
s has compact support in U ∩Y . Then so do the αi’s on U ∩Y . Define ψ′ = d(χU

∑
i xiαi),

where χU is a cut-off function with support in U and equal to 1 in the neighborhood of the
support of s. Then ψ′ is a global closed 3-form with ψ′

|Y = ψ and hence satisfying ∇ψ′F = s.

For a general section s ∈ Γ(Y, ν), a partition of unity allows us to find ψ ∈ Z3(M) such that
∇ψF = s. We conclude that ∇F is surjective in the direction of Z3(M). Now, if ZD is the
finite dimensional subspace of Z3(M) generated by the former closed 3-forms ψ associated
to every s ∈ cokerD, by the inverse mapping theorem, the set

M = {(σ, ψ) ∈W k,p(Y, ν)×ZD(M), F (σ, ψ) = 0}

is a smooth manifold near (0, φ) if k > 1 + 3/p. By the Sard- Smale’s theorem applied to
the projection π : M → ZD, for every generic ψ ∈ ZD close enough to φ, the slice

π−1(ψ) = {σ ∈W k,p(Y, ν), expσ(Y ) is ψ-associative}

is a smooth manifold. As usual, the sections in π−1(ψ) are in fact smooth, hence the result.
�

Remark 2.4 By Theorem 10.4.4 in [12], if φ is a torsion-free G2-structure, the tangent
space at φ of the set of torsion-free structures can be identified with L ⊕H3(M,R), where
L is the subspace of the Lie derivatives of φ, i.e L = {LXφ,X ∈ C0(M,TM)}. If ψ ∈ L,
the proof of Theorem 2.1 shows that the derivative of F along ψ equals Dψ. Hence, L is
of no use for ∇F to be surjective. On the other side, there is no hope that in general the
dimension of cokerD would be less than b3(M). This is the reason why we use the wider
space of closed G2-structures.

2.3 A vanishing theorem

We turn now to the second way of getting the smoothness of the moduli space, namely the
Bochner technique and Simon’s theorem. We formulate the following theorem which can
be deduced from Theorem 1.8, since any associative submanifold is minimal.

Theorem 2.5 Let Y be a smooth closed compact associative submanifold of a manifold M
with a closed G2-structure. If the spectrum of Rν = R− A is positive, then Y is isolated
as an associative submanifold.

For the reader’s convenience, we give below a proof of this result in the case where the
G2-structure is torsion-free. We will compute D2 to use the Bochner technique. For this,
we introduce the normal equivalent of the invariant second derivative. More precisely,
for every local vector fields v and w in Γ(Y, TY ), let ∇⊥2

v,w be the operator defined by

∇⊥2
v,w = ∇⊥

v ∇
⊥
w −∇⊥

∇⊤
v w

acting on Γ(Y, ν). It is straightforward to see that it is tensorial in

v and w. Moreover, define the equivalent of the connection Laplacian:

∇⊥∗∇⊥ = −trace (∇⊥2) = −
∑

i

∇⊥2
ei,ei

,

where the ei’s define a local orthonormal frame of TY .
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Theorem 2.6 For Y an associative submanifold in a manifold with a torsion-free G2-
structure, D2 = ∇⊥∗∇⊥ +Rν .

We refer to the appendix for the proof of this theorem.

Proof of Theorem 2.5. Suppose that we are given a fixed closed associative submanifold
Y . Consider a section s ∈ Γ(Y, ν). By classical computations using normal coordinates and
thanks to Theorem 2.6, we have

−
1

2
∆|s|2 =

∑

i

〈∇⊥
i s,∇

⊥
i s〉+ 〈s,∇⊥

i ∇
⊥
i s〉 = |∇⊥s|2 − 〈D2s, s〉+ 〈Rνs, s〉.

Since the Laplacian equals −div(~∇), its integral over the closed Y vanishes. We get:

0 =

∫

Y

|∇⊥s|2 − 〈D2s, s〉+ 〈Rνs, s〉dy. (6)

Suppose that s belongs to kerD. Under the hypothesis that Rν is positive, the last equation
implies s = 0. Hence dim cokerD = dimkerD = 0, and by Proposition 2.3, MY is a smooth
manifold near Y with vanishing dimension. In particular, Y is isolated. �

3 Associative submanifolds with boundary

In this section we explain our results in the case of an associative submanifold with boundary
in a coassociative submanifold. We first give below the principal results of [6]. For this,
recall that in a manifold with a G2-structure and an associated vector product ×, given
x ∈M and n an unit vector in TxM , the application

n× : TxM → TxM,v 7→ n× v

defines a complex structure on n⊥ the orthogonal complement of n. A 2-plane L ⊂ n⊥

invariant under n× will be called a n×-complex line.

Theorem 3.1 ([6]) Let M be a manifold equipped with a G2-structure (φ, g) and Y a
smooth compact associative submanifold with boundary in a coassociative submanifold X.
Let νX be the normal complement of T∂Y in TX|∂Y , and n the inward unit normal vector
to ∂Y in Y . Then

1. the bundle νX is a subbundle of ν|∂Y and is a n×-complex line, as is the orthogonal
complement µX of νX in ν|∂Y .

2. Viewing T∂Y , νX and µX as n×–complex line bundles, we have µ∗X
∼= νX ⊗C T∂Y .

3. Further, the problem of the associative deformations of Y with boundary in X is
elliptic and of index index (Y,X) = index ∂νX = c1(νX) + 1− g, where g is the genus
of ∂Y .

Proposition 3.2 LetM be a smooth manifold equipped with a G2-structure (φ, g) and let Y
be a smooth compact associative submanifold with boundary in a coassociative submanifold
X. Consider the adapted version of the linearization of (1) for our boundary problem :

D : EX = {s ∈ Γ(Y, ν), s|∂Y ∈ νX} → Γ(Y, ν).

If the cokernel of D : EX → E vanishes, then MY,X is smooth near Y and of dimension
equal to index (Y,X).

9



Proof. For 2k > 3 and (k − r)/3 > 1/2, define the adapted Banach space EX by

EX = {σ ∈W k,2(Y, ν),∀y ∈ ∂Y, σ(y) ∈ νX,y}

and F the bundle over EX , where the fibre Fσ denotes W k−1,2(Y, νσ). As before νσ is the
normal bundle to expσ(Y ). Suppose first that X is totally geodesic for the metric g. Then
EX parametrizes the submanifolds with boundary in X and close enough to Y . Define the
analogous of the map (3) in the proof of Theorem 2.1 by F : EX → F , F (σ) = exp∗σ χ.
By the proof of Theorem 2.1, F is smooth and its derivative at the vanishing section is
D : EX → Γ(Y, ν). Further, by Theorem 20.8 of [3], the operator D : EX → Γ(Y, ν) is
Fredholm and Theorem 3.1 gives its index. Now, if the cokernel of D vanishes, then the
inverse mapping theorem shows that MY,X is smooth near Y and of the expected dimension
equal to index (Y,X). Lastly, Theorem 19.1 in [3] shows that in fact, the sections belonging
to MY,X are smooth and so are the associated deformations of Y . In general, X is not
totally geodesic and as faced in [5] and [8], expσ(∂Y ) has no reason to lie in X. For this,
we change the metric near X, as in the mentionned works.

Lemma 3.3 There exists a tubular neighborhood U of X and a metric ĝ such that ĝ(x) =
g(x) for every x ∈ X, ĝ equals g outside U , and X is totally geodesic for ĝ.

Proof. The exponential gives a diffeomorphism Φ between a tubular neighborhood U of X
in M and a neighborhood V of the vanishing section in the normal vector bundle NX of X.
Moreover, it sends X to the vanishing section. Consider on V the metric h = π∗g|TX ⊕ gN ,
where gN is the natural flat metric on the fibers induced by the metric g, g|TX is the induced
metric on X and π : NX → X denotes the natural projection. Now H = Φ∗h is a metric
on U , for which X is clearly totally geodesic. Take χ a cut-off function with support in U ,
equal to 1 in a neighborhood of X. Then ĝ = χH + (1 − χ)g satisfies all the conditions of
the lemma. �

Consider ν̂ the normal bundle over Y for the new metric ĝ. For every section σ ∈ Γ(Y, ν̂)
we use the adapted function F̂ (σ) = êxpσ

∗
χ(ω), where ω can be chosen as before and χ is

the form associated to φ, but êxp is the exponential map for the new metric ĝ. The proof
of Theorem 2.1 shows that differentiating F̂ in the direction of s ∈ Γ(Y, ν̂) gives the same
result ∇sF̂ = Ds ∈ Γ(Y, ν), even if s does not belong to Γ(Y, ν). Now, given a bundle
isomorphism between ν̂ and ν, it is straightforward to see that the kernel as the cokernel
of ∇̂F are isomorphic to the ones of D. The former conclusion in the totally geodesic case
still holds. �

3.1 Varying the coassociative submanifold

In paragraph 2.2, we perturbed the G2-structure in order for the moduli space MY to be-
come smooth. When the associative submanifold has a boundary, we can repeat the same
arguments. We can also move the boundary condition. As explained in the introduction, we
will perturb generically X as a smooth φ-free submanifold, and no longer as a coassociative
one.

Theorem 1.5 Let Y be a smooth associative submanifold with boundary in a smooth
coassociative submanifold X. If the virtual dimension of MY,X is non negative, then for any
sufficiently small generic smooth deformation of X into X ′, there exists a small associative
deformation Y ′ of Y such that MY ′,X′ is smooth near Y ′ and of dimension equal to the
index computed for the unperturbed situation.
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Proof. Recall [16] that if X is a coassociative submanifold, its normal bundle NX can
be identified with the space of its self-dual two-forms Ω2

+(X). For α ∈ Ω2
+(X), define

σα ∈ Γ(∂Y,NX ) the restriction to ∂Y of the associated normal vector field along X. By
Theorem 3.1, NX|∂Y = nR ⊕ µX , whith n the inward unit normal vector to T∂Y in TY .
Consider the subspace

C = {α ∈ Ω2
+(X), σα ∈ Γ(∂Y, µX)}.

Note that infinitesimal deformations of X in these directions are normal to Y . This will be
considered as the parameter space. For every α ∈ C, extend σα to Γ(Y, ν) in the following
way. The associative Y is diffeomorphic to Yǫ = ∂Y × [0, ǫ] near ∂Y , where ∂Y holds for
∂Y × {0}. This allows us to identify ν|Yǫ with ν|∂Y × [0, ǫ] and so this gives an extension
of σα on Yǫ. Take χ a cut-off function satisfying χ = 1 in the neighborhood of ∂Y and
with support in Yǫ. Then σ̂α = χσα is a smooth normal vector bundle along Y such that
σ̂α = σα near ∂Y . Now, let E∂ be the set

E∂ = {(α, s) ∈ C × Γ(Y, ν),∀y ∈ ∂Y, s(y) ∈ TyX}.

Here we will suppose that X is totally geodesic as in the first part of the proof of Proposition
3.2. If not, we change the metric by Lemma 3.3. Hence if (α, s) ∈ E∂ and if we define
φα,s = expσα ◦ exps, then Yα,s = φα,s(Y ) is a smooth submanifold with boundary in Xα =
expσα(X). Let F be the bundle over E∂ , where the fiber Fα,s equals Γ(Y, να,s) and να,s
denotes the normal bundle of Yα,s. Define the section F : E∂ → F by F (α, s) = φ∗α,sχ(ω).
Then Yα,s is an associative submanifold if and only if F (α, s) = 0. Now for every fixed
α ∈ C, consider the restriction map

Fα : {s ∈ Γ(Y, ν), s|∂Y ∈ TX} → Γ(Y, να,s)

s 7→ F (α, s)

Two tedious computations analogous to the proof of Theorem 2.1 and the proof of Theorem
3.1 in Section 4 of [6] show that for every α ∈ C, the derivative of Fα is elliptic in the sense
of Definition 18.1 of [3]. Further, Fα is clearly a deformation of F0, hence Fα is a Fredholm
map of index computed in Theorem 3.1. For a genericity result, we need the classical

Theorem 3.4 Let C, E and F be Banach spaces, F : C × E → F a smooth map, such that
for every α ∈ C, Fα = F (α, .) is a Fredholm map between E and F . If dF : C × E → F
is surjective at (α0, x0), then F−1(y0) is locally a smooth manifold, where y0 = F (α0, x0).
Further, for every generic α ∈ C close to α0 enough, the fiber F−1

α (y0) is a smooth manifold
of finite dimension equal to the index of Fα.

We compute the derivative of F at (0, 0) ∈ E∂ . One can easily check using the proof of
Theorem 2.1 that this is equal to

∇(0,0)F : E∂ → Γ(Y, ν)

(α, s) 7→ D(s+ σα).

This derivative is surjective. Indeed, let s′ be a section in Γ(Y, ν). Since Y has a boundary,
our Dirac-like operator D is surjective by Theorem 9.1 of the book [3], so there is a section
s ∈ Γ(Y, ν) such that Ds = s′. Now decompose s|∂Y as sν + sµ with sν ∈ Γ(∂Y, νX) and
sµ ∈ Γ(∂Y, µX). As in the beginning of the proof, we extend sµ to an element of Γ(Y, ν).
On Y we can now write globally s = sµ + (s − sµ), where the first term has values in µX
on ∂Y , and the second term has values in νX on ∂Y . Choosing the 2-form α ∈ C such that
sµ = σα, we have D((s− sµ) + σα) = s′ with (α, s − sµ) ∈ E∂ , hence the result. �
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Remark 3.5 As in Theorem 1.2, we can restrict our smoothing deformations to a finite
dimensional space of dimension equal to dim cokerD.

3.2 A vanishing theorem

Given Y an associative submanifold with boundary in a coassociative submanifold X, we
turn now to metric conditions on Y that insure local smoothness of the moduli space MY,X .
Let ν be the normal bundle of Y and n is the inward normal vector to ∂Y in Y . Recall
that if L ⊂ ν is a n×-complex line bundle over ∂Y , the operator DL : Γ(∂Y,L) → Γ(∂Y,L)
was defined in the introduction by DLs = πL(v × ∇⊥

ws − w × ∇⊥
v s), where πL : ν → L is

the orthogonal projection to L and {v,w = n× v} a local orthonormal frame for T∂Y . We
refer to the appendix for the proof of the following proposition.

Proposition 3.6 The operator DL is of order 0, symmetric, and its trace is 2H, where H
is the mean curvature of ∂Y in Y with respect to −n.

Moreover, consider the operator (D,L) defined by D : {s ∈ Γ(Y, ν), s|∂Y ∈ L} → Γ(Y, ν).
We will use the following lemma, whom proof can be found in the appendix.

Lemma 3.7 We have coker(D,L) = ker(D,L⊥), where L⊥ is the orthogonal complement
of L in ν|∂Y .

We can now prove the vanishing

Theorem 1.10 Let M be a manifold equipped with a torsion-free G2-structure and Y be
an associative submanifold with boundary in a coassociative submanifold X. If DµX and
R − A are positive, the moduli space MY,X is smooth near Y and of dimension given by
the virtual one.

Proof. To prove Theorem 1.10, it is enough by Proposition 3.2 to show that coker(D, νX),
which equals ker(D,µX) by Lemma 3.7, is trivial. So let s ∈ ker(D,µX). Since Y has a
boundary, we need to change the integration (6), because the divergence has to be consid-
ered:

∫

Y

|∇⊥s|2 + 〈Rνs, s〉dy =
1

2

∫

Y

div ~∇|s|2dy. (7)

By Stokes, the last is equal to

−
1

2

∫

∂Y

d|s|2(n)dσ = −

∫

∂Y

〈∇⊥
n s, s〉dσ,

where n is the inward unit normal vector of ∂Y . Choosing a local orthonormal frame
{v,w = n× v} of T∂Y , and using the fact that Ds = 0, this is equal to

∫

∂Y

〈w ×∇⊥
v s− v ×∇⊥

ws, s〉dσ = −

∫

∂Y

〈DµX s, s〉dσ.

Summing up, we get the equation

∫

Y

|∇⊥s|2dy +

∫

Y

〈Rνs, s〉dy +

∫

∂Y

〈DµX s, s〉dσ = 0. (8)

If DµX and Rν are positive, s vanishes, hence the result. �
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4 Examples

4.1 Flatland

In flat spaces, the curvature tensor R vanishes, and so Rν = −A ≤ 0. Consequently, a
priori Theorem 1.10 does not apply. Nevertheless, we have the

Corollary 4.1 Let M be a manifold equipped with a torsion-free G2-structure whom metric
is flat, and Y be a totally geodesic associative submanifold with boundary in a coassociative
X. If DµX is positive, then MY,X is smooth near Y and of the expected dimension.

Proof. The hypotheses on M and Y imply that Rν = 0. Consider s ∈ coker(D, νX) =
ker(D,µX). Formula (8) shows that ∇⊥s = 0 and s|∂Y = 0. Using d|s|2 = 2〈∇⊥s, s〉 = 0.
This implies s = 0 and the result. �

When M = R7 with its canonical flat metric, we get the following very explicit example
considered in [6]. Take a ball Y in R3×{0} ⊂ R7 with real analytic boundary, and choose any
normal real analytic vector field e ∈ Γ(∂Y, ν). By [9], there is a unique local coassociative
Xe containing ∂Y such that its tangent bundle TyXe contains e(y) at every boundary point
y.

Corollary 4.2 Suppose that Y is a strictly convex ball in R3. Then there exists a positive
constant ǫ, such that for every normal vector field e satisfying ||de||L∞ ≤ ǫ, the moduli space
MY,Xe is smooth near Y and one dimensional.

Proof. Since the fibre bundle νXe is trivial and the genus of ∂Y is zero, the index equals
here c1(νX)+1−g = 1. We want to show that DµX is positive. To see that, we choose local
orthogonal characteristic directions v and w = n× v in T∂Y . From Theorem 3.1, we know
that v × e is a non vanishing section of µX . Suppose first that e is constant. We compute

DµX (v × e) = v × (∇⊥∂
w v × e)− w × (∇⊥∂

v v × e)

= −kvw × (n× e) = kvv × e,

where kv is the principal curvature in the direction of v. This shows that kv is an eigenvalue
of DµX , and since we know that its trace is 2H by Proposition 3.6, we get that the other
eigenvalue is kw, the other principal curvature of ∂Y . These eigenvalues are positive if the
boundary of Y is strictly convex and Corollary 4.1 gives the result. It is clear that the
eigenvalues of the operator DµX vary continuously with µX , that is with e. Consequently,
for e close enough to be a constant vector field, these eigenvalues are still positive, hence
the general result. �

Remark 4.3 In fact, in the case where e is constant, we can give a better statement.
Indeed, let s ∈ ker(D, νX), and decompose s|∂Y as s = s1e + s2n × e. Of course, e is in
the kernel of DνX , and hence by Proposition 3.6, the second term is an eigenvector of DνX

for the eigenvalue 2H. So formula (8) applied to s gives
∫
Y
|∇⊥s|2 +

∫
∂Y

2H|s2|
2 = 0. If

H > 0, this implies immediatly that s2 = 0 and s1 is constant, so s is proportional to e.
This proves that dimker(D, νX) = 1 under the weaker condition that H > 0. Lastly, in fact
we can even show that MY,Xe = R.
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4.2 The Bryant Salamon construction

The spin bundle and its metric. As quickly recalled in the introduction, Bryant and
Salamon [4] found on the total spin bundle S ≃ S3 ×R4 of the round sphere S3 a complete
metric with holonomy precisely equal to G2. This metric is of the form

g = α(r)π∗gS + β(r)gv ,

where gv is the flat metric on the fiber Sx ≃ R4 induced by gS , r is its associated norm,
gS the round metric on S3 and π : S → S3 the natural projection. For some particular
smooth functions α and β, the authors proved that the holonomy of the metric is G2. In
this situation, the base S3 is associative and the Dirac operator D is the classical one for
the spin bundle S.

Corollary 4.4 ([16]) The associative S3 is isolated as an associative submanifold.

Proof. By the famous computation of Lichnerowicz [15], D2 = ∇∗∇+S/4, where S is the
scalar curvature of (S3, gS) and ∇ is the induced connection on the spin bundle, which is
in our case the connection ∇⊥. Identifying with the equation in Theorem 2.6, we get that
Rν = S/4. Since S is positive, so is Rν , and Theorem 1.8 concludes. �

Example with boundary. Choose a point p on the base S3, a ball Bρ ⊂ S of radius ρ
around p and define Yρ = Bρ∩S

3. Take a normal vector field e ∈ Γ(∂Yρ, ν) at the boundary
of the associative Yρ. Here νy = Sy for y ∈ ∂Yρ. The round sphere is real algebraic as its
metric gS , hence we can find for ρ small enough a local chart Φ : Bρ → R7 sending Yρ to
R3 × {0}, and such that Φ∗g is a real analytic metric. Further we choose Bρ and e in such
a way that Φ(∂Yρ) and Φ∗e are real analytic. Now, a straightforward generalization of the
arguments in [9] based on the Cartan-Kähler theory proves that e and ∂Yρ generate a semi
local coassociative submanifold Xe containing ∂Yρ.

Corollary 4.5 For ρ small enough, MYρ,Xe is smooth near Yρ and one dimensional.

Proof. The genus of ∂Yρ vanishes and the subbundle νXe is trivial, hence the index of the
associative deformations problem equals one. We can suppose that Φ∗g(0) is the standard
metric of R7, hence dpΦ(Sp) = 0 ⊕ R4. Moreover we choose Φ such that the Levi-Civita
connection of Φ∗g vanishes at 0. When ρ tends to zero, Φ(∂Yρ) is asympototically close to
be the round ball ρB3 ⊂ R3 for the metric g0. Then we know from the proof of Corollary
4.2 that the eigenvalues of the operator DµXe

computed in the model situation (i.e with
the flat metric and connection) equal the principal curvatures, here the inverse of ρ. Hence
for ρ small enough, DµXe

and Rν = S/4 are both positive. Theorem 1.10 then implies the
result. �

4.3 The Joyce construction

Consider one compact smooth manifold with holonomy G2 constructed by Joyce in para-
graph 12.2 of [12], and Y1 one component not reduced to a point of the fixed point set of
an involution preserving the G2-structure. Then Y1 is an associative torus. For an example
with boundary, take the first example of Section 5 in [6]. This is an associative submanifold
Y2 diffeomorphic to [0, 1] × T 2 with boundary in two coassociative tori X1 and X2, with
trivial bundle νX . Namely, Y2 is one component of the fixed point set of an involution pre-
serving the strucure whereas the Xi’s are components of the fixed point set of an involution
inversing the structure. Since the genus of X1 and X2 vanishes, so does the index of the
deformation problem. Now, Theorem 1.2 and Theorem 1.5 imply the following

14



Corollary 4.6 For every generic closed perturbation ψ of the G2-structure, Y1 can be per-
turbed into an isolated ψ-associative torus. For every generic small φ-free deformation X̃
of X there is a perturbation Ỹ of Y2 such that MỸ ,X̃is a singleton near Ỹ .

Remark 4.7 It is possible that Y1 or Y2 are in fact already isolated, even if we don’t change
the G2-structure or the boundary condition. But the metric near our submanifolds is built
as a global pertubation of a flat metric with flat boundary conditions. Consequently, it seems
out of reach to prove the positivity of our operators Rν and DµX .

4.4 Extensions from the Calabi-Yau world

The closed case. Let (N,J,Ω, ω) be a Calabi-Yau 6-dimensional manifold, where J is an
integrable complex stucture, Ω a non vanishing holomorphic 3-form and ω a Kähler form.
ThenM = N×S1 is a manifold with holonomy in SU(3) ⊂ G2. One associated torsion-free
G2-structure on M is given by φ = ω ∧ dt+ ℜΩ. Recall that a closed special Lagrangian L
in N is a 3-dimensional submanifold satisfying both conditions ω|TL = 0 and ℑΩ|TL = 0.
We know from [16] that ML the moduli space of special Lagrangian deformations of L is
smooth and of dimension b1(L). Now for every t ∈ S1, the product Y = L×{t} of a special
Lagrangian and a point is a φ-associative submanifold of M . The following is inspired by a
analogous result on coassociative submanifolds of Leung ([14], Proposition 5):

Proposition 4.8 Let t ∈ S1. The moduli space ML×{t} of associative deformations of
L×{t} is always smooth, and can be identified with the product ML×S

1, hence of dimension
b1(L) + 1.

Remark 4.9 Although the moduli space is smooth, we see that the deformation problem
is always obstructed. Theorem 1.2 proves that any closed generic perturbation of the G2-
structure φ will make disappear the S1-symmetry as the ML-family of associative subman-
ifolds, and just keep locally one representative.

Proof. Consider a closed associative submanifold Y in the same homology class as L×{t}.
On the one hand, Y has a bigger volume than its projection π(Y ) to N × {t} and equality
holds only if Y lies in N × {t′} for a constant t′. On the other hand, π(Y ) is in the same
homology class as L, hence has volume larger than the one of L, since special Lagrangians
minimize the volume in their homology class. But Y is associative, hence has the same
volume than L. Consequently all these volumes equal, and Y writes L′ × {t′}. It is now
immediate to see that φ-associativity of Y implies special Lagrangianity of L′. �

With boundary. Recall that if Σ is a complex surface of N and t ∈ S1, then X = Σ×{t}
is a coassociative submanifold of M . Consider the problem of associative deformations of
Y = L× {t} with boundary in X:

Theorem 4.10 Let t ∈ S1 and L be a special Lagrangian submanifold in a 6-dimensional
Calabi-Yau N , such that L has boundary in a complex surface Σ. Let Y = L×{t} in N×S1

and X = Σ× {t}.

1. The moduli space MY,X of associative deformations of L× {t} with boundary in the
coassociative Σ × {t} can be identified with the moduli space of special Lagrangian
deformations of L with boundary in the fixed Σ.

2. If the Ricci curvature of L is positive and if the boundary of L has positive mean
curvature in L, then MY,X is locally smooth and has dimension g, where g is the
genus of ∂L.
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Remark 4.11 Although the moduli space is smooth, its dimension exceeds one the index
of the deformation problem, see the begining of the proof of the second assertion. As a
consequence, Theorem 1.5 shows that generic perturbations of the boundary condition will
decrement by one the dimension of the initial moduli space.

Remark 4.12 The deformation theory in [5] concerns minimal Lagrangian submanifolds
with boundary in Σ, a wider class than the one of special Lagrangian submanifolds.

Proof of Theorem 4.10 (1). Firstly, if M is equipped with a closed G2-structure φ,
remark that an associative submanifold Y with boundary in a coassociative X minimize
the volume in the relative homology class [Y ] ∈ H3(M,X,Z). Indeed, let Z be any 3-cycle
with boundary in X, such that [Z] = [Y ]. There is a 4-chain S with boundary in X and T
a 3-chain in X, such that Z − Y = ∂S + T . Since φ is a calibration,

V olume(Z) ≥

∫

Z

φ =

∫

Y

φ+

∫

∂S

φ+

∫

T

φ =

∫

Y

φ = V olume(Y )

by Stokes and the fact that φ vanishes on any coassociative submanifold. By the same
arguments as in the closed case, this proves the identity of both mentionned moduli spaces.
�

For the second assertion, we begin by another

Proof of Proposition 4.8. Recall that since L is Lagrangian, its normal bundle is simply
JTL, and the normal bundle ν of Y = L × {t} is isomorphic to JTL × R∂t, where ∂t is
the dual vector field of dt. In this situation, we don’t use the expression of of D2 given
in Theorem 2.6. Instead, we give another formula for it. If s = Jσ ⊕ τ∂t is a section of
ν, with σ ∈ Γ(L, TL) and τ ∈ Γ(L,R) = Ω0(L), we call σ∨ ∈ Ω1(L,R) the 1-form dual
to σ, and we use the same symbol for its inverse. Moreover, we use the classical notation
∗ : Ωk(L) → Ω3−k(L) for the Hodge star. Lastly, we define:

D∨ : Ω1(L)× Ω0(L) −→ Ω1(L)× Ω0(L)

(α, τ) 7→ ((−JπLD(Jα∨, τ))∨, πtD(Jα∨, τ)),

where πL (resp. πt) is the orthogonal projection ν = NL⊕R to the first (resp. the second)
component. This is just a way to use forms on L instead of normal ambient vector fields.

Lemma 4.13 For every (α, τ) ∈ Ω1(L)× Ω0(L),

D∨(α, τ) = (−∗dα− dτ, ∗d∗α)

D∨2(α, τ) = −∆(α, τ),

where ∆ = d∗d+ dd∗ (note that it is d∗d on τ).

We refer to the appendix for the proof of this lemma. We see that for an infinitesimal
associative deformation of L × {t}, then α and τ are harmonic over the compact L. In
particular, τ is constant and α describes an infinitesimal special Lagrangian deformation of
L (see [16]). In other words, the only way to displace Y is to perturb L as special Lagrangian
in N or translate it along the S1-direction. Lastly, dim cokerD = dimkerD = b1(L) + 1
and by an immediate refinement of Proposition 2.3 for cokernels with constant dimension,
MY is smooth and of dimension b1(L) + 1. �
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Proof of Theorem 4.10 (2). Consider a special Lagrangian L with boundary ∂L in
a complex surface Σ. If Y = L × {t} and X = Σ × {t}, it is clear that the orthogonal
complement νX of T∂Y in TX is equal as a real bundle to JT∂L ⊕ {0}, and µX is the
trivial n×-complex line bundle generated by ∂t, where n is the inward unit normal vector
field of ∂Y in Y . We begin by computing the index of the boundary problem. This is very
easy, since µX is trivial, and by Theorem 3.1, we have νX ∼= T∂L∗ as n×-bundles. Hence
the index equals −c1(T∂L) + 1− g = −(2− g) + 1− g = g − 1, where g is the genus of ∂L.
Now let ψ = s+ τ ∂

∂t
belonging to coker(D, νX) = ker(D,µX), where s a section of NL and

τ ∈ Γ(L,R). Let α = −Js∨. By Lemma 4.13, α is a harmonic 1-form, and τ is harmonic
(note that Y is not closed, so τ may be not constant). By classical results for harmonic
1-forms, we have:

1

2
∆|ψ|2 =

1

2
∆(|α|2 + |τ |2) = |∇Lα|

2 + |dτ |2 +
1

2
Ric (α,α).

Integrating on L× {t}, we obtain the equivalence of formula (8):

−

∫

∂Y

〈DµXψ,ψ〉dσ =

∫

Y

|∇Lα|
2 + |dτ |2 +

1

2
Ric (α,α)dy.

Lastly, let us compute the eigenvalues of DµX . The constant vector
∂
∂t

over ∂Y lies clearly in
the kernel of DµX . By Proposition 3.6, the other eigenvalue of DµX is 2H, with eigenspace
generated by n × ∂

∂t
. Over ∂Y , s lies in JTL ∩ µX , hence is proportional to n × ∂

∂t
.

Consequently, DµXψ = 2Hs and

−

∫

∂Y

2H|s|2dσ =

∫

Y

|∇Lα|
2 + |dτ |2 +

1

2
Ric (α,α)dy.

This equation, the positivity of the Ricci curvature and the positivity of H show that α
vanishes and τ is constant. So we see that dim coker(D, νX) = 1, and by the constant rank
theorem, MY,X is locally smooth and of dimension dimker(D, νX) = g. �

Remark 4.14 Theorem 4.10 shows an equivalent result for deformations of special La-
grangian submanifold with metric conditions and boundary in a complex surface. Certainly,
a direct proof would be shorter. But it seems to us that our proof has didactic virtues in our
context of associative deformations.

5 Appendix

5.1 Proof of Lemma 3.7

In this paragraph, we suppose that the ambient manifold M has a torsion-free G2-structure
(φ, g). Consider Y an associative submanifold and ν its normal bundle in (M,g). We begin
by the classical lemma

Lemma 5.1 For a torsion-free structure, the operator D defined in 1 is formally self-
adjoint, i.e for s and s′ ∈ Γ(Y, ν),

∫

Y

〈Ds, s′〉 − 〈s,Ds′〉dy = −

∫

∂Y

〈n × s, s′〉dσ, (9)

where dσ is the volume induced by the restriction of g on the boundary, and n is the inward
unit normal vector of ∂Y .

17



Proof. The proof of this lemma ismutatis mutandis the one for the classical Dirac operator,
see Proposition 3.4 in [3] for example. For the reader’s convenience we give a proof of this.

〈Ds, s′〉 = 〈
∑

i

ei ×∇⊥
i s, s

′〉 = −
∑

i

〈∇⊥
i s, ei × s′〉

= −
∑

i

dei〈s, ei × s′〉+ 〈s,∇⊥
i (ei × s′)〉

= −
∑

i

dei〈s, ei × s′〉+ 〈s,∇⊤
i ei × s′ + ei ×∇⊥

i s
′〉.

By a classical trick, define the vector field X ∈ Γ(Y, TY ) by 〈X,w〉 = −〈s,w×s′〉 ∀w ∈ TY.
Note that the product on the LHS is on TY , and the one on the RHS is on ν. Now

−
∑

i

dei〈s, ei×s
′〉 =

∑

i

dei〈X, ei〉 =
∑

i

〈∇⊤
i X, ei〉+〈X,∇⊤

i ei〉 =
∑

i

div X−〈s,∇⊤
i ei×s

′〉.

By Stokes we get
∫

Y

〈Ds, s′〉dy =

∫

∂Y

〈X,−n〉dσ +

∫

Y

〈s,Ds′〉dy =

∫

∂Y

〈s, n× s′〉dσ +

∫

Y

〈s,Ds′〉dy,

which is what we wanted. �

Now, consider L a subbundle of ν|∂Y of real rank equal to two and invariant under the
action of n×. Let s′ ∈ Γ(Y, ν) lying in coker(D,L). This means that for every s ∈ Γ(Y, ν)

with s|∂Y ∈ L, we have

∫

Y

〈Ds, s′〉dy = 0. By the former result, we see that this equivalent

to ∫

Y

〈s,Ds′〉+

∫

∂Y

〈n × s, s′〉 = 0.

This clearly implies that Ds′ = 0, and s′|∂Y ⊥ L, because L is invariant under the action of

n×. So s′ ∈ ker(D,L⊥). The reverse inclusion holds too by similar reasons.

5.2 Proof of Proposition 3.6

Proof. Let Y be an smooth compact associative with boundary, and L be a subbundle
of ν|∂Y invariant under the action of n×. It is straighforward to check that DL defined in
Definition 1.9 does not depend on the chosen orthonormal frame {v,w = n× v}. For every
ψ ∈ Γ(∂Y,L) and f a function,

DL(fψ) = πL(v ×∇w(fψ)−w ×∇v(fψ))

= fDLψ + (dwf)πL(v × ψ)− (dvf)πL(w × ψ) = fDLψ

because w × L and v × L are orthogonal to L. Now, decompose the connexion ∇⊤ on TY
as ∇⊤ = ∇⊤∂ + ∇⊥∂ into its two projections along T∂Y and along the normal (in TY )
n-direction. For the computations, choose v and w = n×v the two orthogonal characteristic
directions on T∂Y , i.e ∇⊤∂

v n = −kvv and ∇⊤∂
w n = −kww, where kv and kw are the two

principal curvatures. We have ∇⊥∂
v v = kvn and 〈∇⊥∂

w v, n〉 = 0, and the same, mutatis
mutandis, for w. Then, for ψ and φ ∈ Γ(∂Y,L), using the fact that T∂Y × L is orthogonal
to L,

〈DLψ, φ〉 = 〈∇⊥
w(v × ψ)− (∇⊥∂

w v)× ψ −∇⊥
v (w × ψ) + (∇⊥∂

v w)× ψ, φ〉

= 〈∇⊥
w(v × ψ)−∇⊥

v (w × ψ), φ〉 = −〈v × ψ,∇⊥
wφ〉+ 〈w × ψ,∇⊥

v φ〉

= 〈ψ, v ×∇⊥
wφ− w ×∇⊥

v φ〉 = 〈ψ,DLφ〉.
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To prove that the trace of DL is 2H, let e ∈ L be a local unit section of L. We have n×e ∈ L
too, and

〈DL(n× e), n× e〉 = 〈v × ((∇⊤∂
w n)× e) + v × (n ×∇⊥

we), n × e〉

−〈w × (∇⊤∂
v n)× e− w × (n×∇⊥

v e), n× e〉

= 〈v × (−kww × e)− w × (−kvv × e), n × e〉

+〈v × (n×∇⊥
we)− w × (n ×∇⊥

v e), n × e〉

= kw + kv − 〈n× (w × (n×∇⊥
v e)− v × (n×∇⊥

we)), e〉

= 2H − 〈DLe, e〉.

This shows that trace DL = 2H. �

5.3 Computation of D2

Proof of Theorem 2.6. Before diving into the calculi, we need the following trivial
lemma:

Lemma 5.2 Let ∇ be the Levi-Civita connection on M and R its curvature tensor. For
any vector fields w, z, u and v on M , we have

∇(u× v) = ∇u× v + u×∇v

R(w, z)(u × v) = R(w, z)u × v + u×R(w, z)v.

If Y is an associative submanifold of M with normal bundle ν, u ∈ Γ(Y, TY ), v ∈ Γ(Y, TY )
and η ∈ Γ(Y, ν), then

∇⊤(u× v) = ∇⊤u× v + u×∇⊤v

∇⊥(u× η) = ∇⊤u× v + u×∇⊥v,

where ∇⊤ = ∇−∇⊥ is the orthogonal projection of ∇ to TY .

Proof. Let x1, · · · , x7 be normal coordinates on M near x, and ei =
∂
∂xi

their derivatives,
orthonormal at x. We have

u× v =
∑

i

〈u× v, ei〉ei =
∑

i

φ(u, v, ei)ei,

so that at x, where ∇ejei = 0,

∇(u× v) =
∑

i

(∇φ(u, v, ei) + φ(∇u, v, ei) + φ(u,∇v, ei) + φ(∇u, v,∇ei))ei

=
∑

i

(φ(∇u, v, ei) + φ(u,∇v, ei))ei = ∇u× v + u×∇v,

because ∇φ = 0. Now if u and v are in TY , then we get the result after remarking that
(∇u × v)⊤ = ∇⊤u × v, because TY is invariant under ×. The last relation is implied by
TY × ν ⊂ ν and ν × ν ⊂ TY . The curvature relation is easily derived from the definition
R(w, z) = ∇w∇z −∇z∇w −∇[w,z] and the differentiation of the vector product. �
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We compute D2 at a point x ∈ Y . For this, we choose normal coordinates on Y and
ei ∈ Γ(Y, TY ) their associated derivatives, orthonormal at x. To be explicit, ∇⊤ei = 0 at
x. Let ψ ∈ Γ(Y, ν).

D2ψ =
∑

i,j

ei ×∇⊥
i (ej ×∇⊥

j ψ)

=
∑

i,j

ei × (ej ×∇⊥
i ∇

⊥
j ψ) +

∑

i,j

ei × (∇⊤
i ej ×∇⊥

j ψ)

= −
∑

i

∇⊥
i ∇

⊥
i ψ −

∑

i 6=j

(ei × ej)×∇⊥
i ∇

⊥
j ψ

= ∇⊥∗∇⊥ψ −
∑

i〈j

(ei × ej)× (∇⊥
i ∇

⊥
j −∇⊥

j ∇
⊥
i )ψ

= ∇⊥∗∇⊥ψ −
∑

i〈j

(ei × ej)×R⊥(ei, ej)ψ.

Since (ei × ej)×R⊥(ei, ej) is symmetric in i, j, this is equal to

∇⊥∗∇⊥ψ −
1

2

∑

i,j

(ei × ej)×R⊥(ei, ej)ψ.

The main tool for what follows is the Ricci equation. Let u, v be sections of Γ(Y, TY ) and
φ, ψ be elements of Γ(Y, ν).

〈R⊥(u, v)ψ, φ〉 = 〈R(u, v)ψ, φ〉 + 〈(AψAφ −AφAψ)u, v〉,

where Aφ(u) = A(φ)(u) = −∇⊤
u φ. Choosing η1, · · · , η4 an orthonormal basis of ν at the

point x, we get

−
1

2

∑

i,j

(ei × ej)×R⊥(ei, ej)ψ = −
1

2

∑

i,j,k

〈(ei × ej)×R⊥(ei, ej)ψ, ηk〉ηk

=
1

2

∑

i,j,k

〈R⊥(ei, ej)ψ, (ei × ej)× ηk〉ηk

= −
1

2
πν

∑

i,j

(ei × ej)×R(ei, ej)ψ

+
1

2

∑

i,j,k

〈(AψA(ei×ej)×ηk −A(ei×ej)×ηkAψ)ei, ej〉ηk.

Using the classical Bianchi relation R(ei, ej)ψ = −R(ψ, ei)ej − R(ej , ψ)ei, the first part of
the sum −1

2πν
∑

i,j(ei × ej)×R(ei, ej)ψ is equal to

I = −2πν(e1 ×R(e2, ψ)e3 + e2 ×R(e3, ψ)e1 + e3 ×R(e1, ψ)e2) =

−2πν(e1 ×R(e2, ψ)(e1 × e2) + e2 ×R(e3, ψ)(e2 × e3) + e3 ×R(e1, ψ)(e3 × e1)) =

−2πν(e1 × (R(e2, ψ)e1 × e2 + e1 ×R(e2, ψ)e2) + e2 × (R(e3, ψ)e2 × e3 + e2 ×R(e3, ψ)e1) +

e3 × (R(e1, ψ)e3 × e1 + e3 ×R(e1, ψ)e2)) =

−I + 2πν
∑

i

R(ei, ψ)ei,
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which gives I = πν
∑

iR(ei, ψ)ei. The Weingarten endomorphisms are symmetric, so that
the second part of the sum is

1

2

∑

i,j,k

〈A(ei×ej)×ηkei, Aψej〉ηk −
1

2

∑

i,j,k

〈Aψei, A(ei×ej)×ηkej〉ηk.

It is easy to see that the second sum is the opposite of the first one. We compute

A(ei×ej)×ηkei = −(∇⊥
i ei × ej)× ηk − (ei ×∇⊥

i ej)× ηk + (ei × ej)×Aηkei.

But we know that an associative submanifold is minimal, so that
∑

i∇
⊥
i ei = 0. Moreover,

differentiating the relation e3 = ±e1×e2, one easily checks that
∑

i ei×∇⊥
j ei = 0. Summing,

the only resting term is ∑

i,j,k

〈(ei × ej)×Aηkei, Aψej〉ηk.

We now use the classical formula for vectors u, v and w in TY :

(v × w)× u = 〈u, v〉w − 〈u,w〉v,

hence
(ei × ej)×Aηkei = 〈Aηkei, ei〉ej − 〈Aηkei, ej〉ei.

One more simplification comes from
∑

i〈Aηkei, ei〉 = 0 for all k because Y is minimal, so
our sum is now equal to

−
∑

i,j,k

〈Aηkei, ej〉〈ei, Aψej〉ηk = −Aψ.

�

5.4 Computation of D2 in the Calabi-Yau extension

Proof of Lemma 4.13. We will use the simple formula ∇⊥Js = J∇⊤s for all sections
s ∈ Γ(L,NL). For (s, τ) ∈ Γ(L,NL)× R, and ei local orthonormal frame on L,

D(s, τ) =
∑

i,j

〈ei ×∇⊥
i s, Jej〉Jej +

∑

i

〈ei ×∇⊥
i s, ∂t〉∂t +

∑

i

∂iτ ei × ∂t

= J
∑

i,j

φ(ei,∇
⊥
i s, Jej)ej +

∑

i

φ(ei,∇
⊥
i s, ∂t)∂t + J

∑

i,j

∂iτ 〈ei × ∂t, Jej〉ej ,

where we used that ei × ∂t ⊥ ∂t.

= J
∑

i,j

ℜΩ(ei,∇
⊥
i s, Jej)ej +

∑

i

ω(ei,∇
⊥
i s)∂t + J

∑

i,j

∂iτ φ(ei, ∂t, Jej)ej

= J
∑

i,j

ℜΩ(ei, J∇
⊤
i σ, Jej)ej +

∑

i

ω(ei, J∇
⊤
i σ)∂t + J

∑

i,j

∂iτ ω(Jej , ei)ej ,

where σ = −Js ∈ Γ(L, TL).

= −J
∑

i,j

ℜΩ(ei,∇
⊤
i σ, ej)ej +

∑

i

〈ei,∇
⊤
i σ〉∂t − J

∑

i,j

∂iτ〈ej , ei〉ej

= −J
∑

i,j

V ol(ei,∇
⊤
i σ, ej)ej +

∑

i

〈ei,∇
⊤
i σ〉∂t − J

∑

i

∂iτei,
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since ℜΩ is the volume form on TL. It is easy to find that this is equivalent to

D(s, τ) = −J(∗dσ∨)∨ + (∗d ∗ σ∨)∂t − J(dτ)∨,

and so D∨(σ∨, τ) = (−∗dσ∨ − dτ, ∗d ∗ σ∨). Now, since d∗ = (−1)3p+1∗d∗ on the p-forms,
one easily checks the formula for D2. �
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