Smooth moduli spaces of associative submanifolds

Damien Gayet

To cite this version:

Damien Gayet. Smooth moduli spaces of associative submanifolds. 2010. hal-00532891v1

HAL Id: hal-00532891
 https://hal.science/hal-00532891v1

Preprint submitted on 4 Nov 2010 (v1), last revised 13 Aug 2013 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Smooth moduli spaces of associative submanifolds

Damien Gayet

November 4, 2010

Abstract

Let M^{7} be a smooth manifold equipped with a G_{2}-structure ϕ, and Y^{3} be an closed compact ϕ-associative submanifold. In [16], R. McLean proved that the moduli space $\mathcal{M}_{Y, \phi}$ of the ϕ-associative deformations of Y has vanishing virtual dimension. In this paper, we perturb ϕ into a G_{2}-structure ψ in order to ensure the smoothness of $\mathcal{M}_{Y, \psi}$ near Y. If Y is allowed to have a boundary moving in a fixed coassociative submanifold X, it was proved in [6] that the moduli space $\mathcal{M}_{Y, X}$ of the associative deformations of Y with boundary in X has finite virtual dimension. We show here that a generic perturbation of the boundary condition X into X^{\prime} gives the smoothness of $\mathcal{M}_{Y, X^{\prime}}$. In another direction, we use the Bochner technique to prove a vanishing theorem that forces \mathcal{M}_{Y} or $\mathcal{M}_{Y, X}$ to be smooth near Y. For every case, some explicit families of examples will be given.

MSC 2000: 53C38 (35J55, 53C21, 58J32).
Keywords: G_{2} holonomy; calibrated submanifolds; elliptic boundary problems; Bochner technique

1 Introduction

In the Euclidian space $\left(\mathbb{R}^{7}, g_{0}\right)$ with its canonical coordinates $\left(x_{i}\right)_{i=1, \cdots, 7}$, consider the 3 -form

$$
\phi_{0}=d x_{123}+d x_{145}+d x_{167}+d x_{246}-d x_{257}-d x_{347}-d x_{356}
$$

and G_{2} the subgroup of $S O(7)$ defined by $G_{2}=\left\{g \in S O(7), g^{*} \phi_{0}=\phi_{0}\right\}$. If M is an oriented spin 7 -dimensional Riemannian manifold, its structural group can be reduced to $G_{2} \subset S O(7)$. Given a set of trivialization charts for $T M$ compatible with G_{2}, M inherits a nondegenerate 3 -form ϕ and a metric g, which are the pullbacks of ϕ_{0} and g_{0} by these charts. We call the pair (ϕ, g) a G_{2}-structure. Moreover, $T M$ inherits a vector product \times defined by

$$
\forall u, v, w \in T M,\langle u \times v, w\rangle=g(u \times v, w)=\phi(u, v, w) .
$$

Remark that in \mathbb{R}^{7}, the subspace $\mathbb{R}^{3} \times\{0\}$ is stable under this vector product, which induces the classical vector product on \mathbb{R}^{3}. When ϕ is closed and coclosed for g, the structure is said to be torsion-free. In this situation, the holonomy of g is a subgroup of G_{2}, see [12].

A 3-dimensional submanifold Y in (M, ϕ, g) is called ϕ-associative, or simply associative when there is no ambiguity, if its tangent bundle is stable under the vector product associated to ϕ. In other terms, ϕ restricted to Y is a volume form for Y. Likely, a 4-dimensional submanifold X is called coassociative if the fibers of its normal bundle are associative, or equivalently, $\phi_{\mid T X}$ vanishes.

1.1 Genericity

Closed associative submanifolds.

Definition 1.1 Consider a smooth spin 7-manifold M and Y a smooth compact closed 3-submanifold. For every G_{2}-structure ϕ, define $\mathcal{M}_{Y, \phi}$ the set of smooth ϕ-associative submanifolds isotopic to Y.

It is known from [16] that the problem of associative deformations of a compact closed associative submanifold Y is related to an elliptic partial diffential equation, namely a twisted Dirac operator, see Theorem 2.1. Hence for a fixed G_{2}-structure ϕ, the moduli space $\mathcal{M}_{Y, \phi}$ has finite and vanishing virtual dimension. In general, the situation is obstructed. For instance, consider the torus $\mathbb{T}^{3} \times\{t\}$ in the flat torus $\left(\mathbb{T}^{7}, \phi_{0}, g_{0}\right)=\mathbb{T}^{3} \times \mathbb{T}^{4}$. This is an associative submanifold, and its moduli space $\mathcal{M}_{\mathbb{T}^{3} \times\{t\}}$ of associative deformations contains at least the 4 -dimensional \mathbb{T}^{4}. See also Proposition 4.8 for a more general situation in a product of a Calabi-Yau manifold with S^{1}.

A natural question is to find conditions which force the moduli space $\mathcal{M}_{Y, \phi}$ to be smooth at least near a ϕ-associative Y, or in other terms, which force the cokernel of the operator to vanish. The first way to solve this is to perturb the G_{2}-structure and get generic smoothness. It turns out that we cannot do this in the realm of torsion-free structures, see Remark 2.4. On the other hand, G_{2}-structures with closed 3 -form ϕ seem to be rich enough to handle with, at least for the point of view of calibrated geometries, see [g]. Indeed, any G_{2}-structure ϕ defines a calibration, and when this form is closed, the calibrated submanifolds, here the associative ones, do minimize the volume in their homology class. As suggested to the author by D. Joyce, we will prove the following

Theorem 1.2 Let M be a manifold equipped with a closed G_{2}-structure ϕ, and Y be a smooth compact closed ϕ-associative submanifold. Then for every generic closed G_{2} structure ψ close enough to ϕ, the moduli space $\mathcal{M}_{Y, \psi}$ contains a deformation \tilde{Y} of Y and is smooth near \tilde{Y}. In particular, \tilde{Y} is isolated among ψ-associative submanifolds isotopic to Y.

Remark 1.3 A former result in this direction was proved by S. Abkulut and S. Salur [2], where the authors allow a certain freedom for the definition of associativity.

Associative submanifolds with boundary. In [6], the authors showed that the problem of associative deformations of an associative submanifold Y with boundary in a fixed coassociative submanifold X is an elliptic problem of finite index. Moreover, they proved that this virtual dimension equals the index of a certain Cauchy-Riemann operator related to the complex geometry of the boundary, see Theorem 3.1 below. As in the closed case, the situation can be obstructed. For instance, consider in ($\mathbb{T}^{7}, \phi_{0}, g_{0}$) the S^{1} - family of associative submanifolds

$$
Y_{\lambda}=\left\{\left(x_{1}, x_{2}, x_{3}, \lambda, 0,0,0\right), 0 \leq x_{1} \leq 1 / 2, x_{2}, x_{3} \in S^{1}\right\}, \lambda \in S^{1}=[0,1] / \sim .
$$

The two components of the boundary of Y_{λ} lie in the union X of the two coassociatives tori

$$
X_{i}=\left\{\left(i / 2, x_{2}, x_{3}, x_{4}, x_{5}, 0,0\right), x_{2}, x_{3}, x_{4}, x_{5} \in S^{1}\right\}, i=0,1 .
$$

However the index of this problem vanishes, see [6] or Theorem 3.1. For more general obstructed situations, see Theorem 4.10.

As in the closed case, we can perturb the closed G_{2}-structure ϕ of the manifold M into ψ to ensure the smoothness of the moduli space. Remark that in this case, X has no reason to remain coassociative for the new structure. But it remains ψ-free, i.e the tangent space of X does not contain any ψ-associative 3-plane, see [10] or [6], Section 5. Indeed, ϕ-coassociativity implies ϕ-freedom, and for a submanifold being ϕ-free is an open condition in the variable ϕ. For any G_{2}-structure ϕ, the problem of deformations of an associative submanifold with boundary in a fixed ϕ-free submanifold is still elliptic [6] and, in our present case, its index is the same as the index for the unperturbed situation.

Definition 1.4 Consider a manifold equipped with a G_{2}-structure (ϕ, g) and Y a smooth compact associative submanifold with boundary in a ϕ-free submanifold X. We denote by $\mathcal{M}_{Y, X}$ the set of smooth associative submanifolds with boundary in X and isotopic to Y.

Instead of changing the G_{2}-structure, we can move the boundary condition, namely X. Still, if we impose to X to remain coassociative, in general we can not get smoothness. Indeed, it is known [16] that the moduli space of coassociative perturbations of X is smooth and has the dimension $b_{2}^{+}(X)$ of the space of harmonic self-dual 2 -forms on X. In the former example of the flat torus, every coassociative deformation of X is a translation of the initial situation, hence the problem remains obstructed. Now, since any perturbation of a ϕ-free submanifold remains ϕ-free, we can fix ϕ and perturb X.

Theorem 1.5 Let Y be a smooth associative submanifold with boundary in a smooth coassociative submanifold X. If the virtual dimension of $\mathcal{M}_{Y, X}$ is non negative, then for any sufficiently small generic smooth deformation of X into X^{\prime}, there exists a small associative deformation Y^{\prime} of Y such that the moduli space $\mathcal{M}_{Y^{\prime}, X^{\prime}}$ is smooth near Y^{\prime} and of dimension equal to the index computed for the unperturbed situation.

1.2 Metric conditions

Concrete examples are often non generic, so we would like too to get a condition that is not a perturbative one. For holomorphic curves in dimension 4, there are topological conditions on the degree of the normal bundle which imply the smoothness of the moduli space of complex deformations, see [11]. The main reason is that holomorphic curves intersect positively. In our case, there is no such phenomenon.

In [16], page 30, R. McLean gives an example of an isolated associative submanifold. For this, he recalls that R. Bryant and S. Salamon constructed in (4) a metric of holonomy G_{2} on the spin bundle $S^{3} \times \mathbb{R}^{4}$ of the round 3 -sphere. In this case, the basis $Y=S^{3} \times\{0\}$ is associative, the normal bundle of Y is the spin bundle of S^{3}, and the operator related to the associative deformations of Y is the Dirac operator on S^{3}. By the famous theorem of Lichnerowicz [15], there are no non trivial harmonic spinors on S^{3} for metric reasons (precisely, the Riemannian scalar curvature is positive), so the sphere is isolated as an associative submanifold.

Minimal submanifolds. Recall that in a manifold with a closed G_{2}-structure, associative submanifolds are minimal. In 17], J. Simons gives a metric condition for a minimal submanifold to be stable, i.e isolated. For this, he introduces the following operator, a sort of partial Ricci operator:

Definition 1.6 Let (M, g) be a Riemannian manifold and Y a p-dimensional submanifold in M and ν be its normal bundle. Choose $\left\{e_{1}, \cdots e_{p}\right\}$ a local orthonormal frame field of $T Y$,
and define the 0 -order operator $\mathcal{R}: \Gamma(Y, \nu) \rightarrow \Gamma(Y, \nu)$ with $\mathcal{R} s=\pi_{\nu} \sum_{i=1}^{p} R\left(e_{i}, s\right) e_{i}$, where R is the curvature tensor of g on M and π_{ν} the orthogonal projection to ν.

It turns out that the definition is independant of the chosen oriented orthonormal frame, and that \mathcal{R} is symmetric. Simons defines another operator \mathcal{A} related to the second fondamental form of Y :

Definition 1.7 Let $S Y$ be the bundle over Y whose fibre at a point y is the space of symmetric endomorphisms of $T_{y} Y$, and $A \in \operatorname{Hom}(\nu, S Y)$ the second fundamental form defined by $A(s)(u)=-\nabla_{u}^{\top} s$, where $u \in T Y, s \in \nu$, and ∇^{\top} is the projection to $T Y$ of the ambient LeviCivita connection ∇, with $\nabla=\nabla^{\top}+\nabla^{\perp}$. Denote by \mathcal{A} the operator $\mathcal{A}: \Gamma(Y, \nu) \longrightarrow \Gamma(Y, \nu)$, $\mathcal{A} s=A^{t} \circ A(s)$, where A^{t} is the transpose of A.

It is classical that \mathcal{A} is a symmetric positive 0 -th order operator. Moreover, it vanishes if Y is totally geodesic. Using both operators and the Bochner technique, Simons gives a sufficient condition for a minimal submanifold to be stable:

Theorem 1.8 (17$]$) Let Y be a minimal submanifold in M, and suppose that $\mathcal{R}-\mathcal{A}$ is positive. Then Y cannot be deformed as a minimal submanifold.

In particular, if Y is a compact closed associative submanifold satisfying the conditions of Theorem 1.8 in a manifold M with a closed G_{2}-structure, then it cannot be perturbed as an associative submanifold. Now, if Y is an associative submanifold with a boundary, we introduce another operator:

Definition 1.9 In a manifold equipped with a G_{2}-structure, let Y be a smooth compact associative submanifold with boundary and ν be its normal bundle. Let L be a two dimensional real subbundle of $\nu_{\mid \partial Y}$ invariant under the action of $n \times$, where n is the inward unit normal vector field along ∂Y. Choose $\{v, w=n \times v\}$ a local orthonormal frame for $T \partial Y$. We denote by \mathcal{D}_{L} the operator $\mathcal{D}_{L}: \Gamma(\partial Y, L) \rightarrow \Gamma(\partial Y, L)$,

$$
\mathcal{D}_{L} s=\pi_{L}\left(v \times \nabla_{w}^{\perp} s-w \times \nabla_{v}^{\perp} s\right),
$$

where $\pi_{L}: \nu_{\mid \partial Y} \rightarrow L$ is the orthogonal projection to L and ∇^{\perp} the normal connection on ν induced by the Levi-Civita connection ∇ on M.

We will prove in Proposition 3.6 that \mathcal{D}_{L} is independant of the chosen oriented frame, is of order 0 and is symmetric. Suppose further that the boundary of Y lies in a coassociative submanifold X. It turns out that Y intersects orthogonally X, see Theorem 3.1 below. Denote by μ_{X} the 2-dimensional orthogonal complement of n in the normal bundle of X over ∂Y, where n is the inward normal unit vector field in Y along ∂Y. Then we can state the following vanishing

Theorem 1.10 Let M be a manifold equipped with a torsion-free G_{2}-structure and Y be an associative submanifold with boundary in a coassociative submanifold X. If $\mathcal{D}_{\mu_{X}}$ and $\mathcal{R}-\mathcal{A}$ are positive, the moduli space $\mathcal{M}_{Y, X}$ is smooth near Y and of dimension given by the index in Theorem 3.1.

Thanks to Theorem 1.10, we can find an explicit example, in the Bryant-Salamon manifold with G_{2}-holonomy, of a locally smooth one dimensional moduli space of associative deformations with boundary in a coassociative submanifold, see Corollary 4.5. In Section \#, we explain other examples quite explicits, in particular for an ambient manifold which is the
product of a Calabi-Yau manifold with S^{1} or \mathbb{R}, see Theorem 4.10.
Acknowledgements. The author benefits the support of the french Agence nationale de la recherche. Part of this work was done during a visit at the Poncelet Laboratory in Moscow. I am grateful to this institution for its hospitality. I would like to thank Vincent Borrelli (resp. Jean-Yves Welschinger) who convainced me that there is a life after curvature tensors (resp. Sobolev spaces), Gilles Carron and Alexei Kovalev for their interest in this work and Dominic Joyce for a stimulating discussion.

2 Closed associative submanifolds

2.1 The operator D and the deformation problem

We begin with the version of McLean's theorem proposed by Akbulut and Salur, and an ecumenical proof of it.

Theorem 2.1 (16], 1]) Let M be a manifold equipped with a G_{2}-structure (ϕ, g), and Y a closed compact associative submanifold with normal bundle ν. Then the Zariski tangent space at Y of \mathcal{M}_{Y} can be identified with the kernel of the operator $D: \Gamma(Y, \nu) \rightarrow \Gamma(Y, \nu)$, where

$$
\begin{equation*}
D s=\sum_{i=1}^{3} e_{i} \times \nabla_{e_{i}}^{\perp} s+\sum_{k=1}^{7}\left(\nabla_{s} * \phi\right)\left(\eta_{k}, \omega\right) \otimes \eta_{k} . \tag{1}
\end{equation*}
$$

Here $\left(e_{i}\right)_{i=1,2,3}$ is any local orthonormal frame of the tangent space of Y with $e_{3}=e_{1} \times e_{2}$, $\left(\eta_{k}\right)_{k=1,2,3,4}$ is any local orthonormal frame of ν and ∇^{\perp} is the connection on ν induced by the Levi-Civita connection ∇ of (M, g).

Remark 2.2 Note that second part is a 0 -th order operator that vanishes for a torsion-free G_{2}-structure, as proved in [1]].

Proof. Firstly, recall the existence on (M, ϕ, g) of an important object χ, the 3 -form with values in $T M$ and defined, for $u, v, w \in T M$ by $\chi(u, v, w)=-u \times(v \times w)-\langle u, v\rangle w+\langle v, w\rangle v$. It is easy to check [1] that $\chi(u, v, w)$ is orthogonal to the 3-plane $u \wedge v \wedge w$. Moreover we will use the following useful formula [9]:

$$
\forall u, v, w, \eta \in T M,\langle\chi(u, v, w), \eta\rangle=* \phi(u, v, w, \eta),
$$

where $*$ is the Hodge star associated to the metric g. So

$$
\begin{equation*}
\left.\chi=\sum_{k} \eta_{k}\right\lrcorner * \phi \otimes \eta_{k}, \tag{2}
\end{equation*}
$$

where $\left(\eta_{k}\right)_{k=1,2, \ldots 7}$ is an local orthonormal frame of the tangent space of M. Further, if Y is a 3-dimensional submanifold in (M, ϕ), then $\chi_{\mid T Y}=0$ if and only if Y is associative. As in [16], we use this characterization to study the moduli space of associative deformations of an associative Y. Let Y be any smooth closed associative submanifold in M. We parametrize its deformations by the sections of its normal bundle ν. Fix ω a non vanishing global section of $\Lambda^{3} T Y$ writing locally $\omega=e_{1} \wedge e_{2} \wedge e_{3}$, with $\left(e_{i}\right)_{i=1,2,3}$ a local orthonormal frame of $T Y$ satisfying $e_{3}=e_{1} \times e_{2}$. For every smooth section $\sigma \in \Gamma(Y, \nu)$, define

$$
\begin{equation*}
F(\sigma)=\exp _{\sigma}^{*} \chi(\omega) \in \Gamma\left(Y, \nu_{\sigma}\right), \tag{3}
\end{equation*}
$$

where ν_{σ} is the normal bundle of $\exp _{\sigma}(Y)$. Then $\exp _{\sigma}(Y)$ is associative if and only if $F(\sigma)$ vanishes. In order to compute the Zariski tangent space of \mathcal{M}_{Y} at the vanishing section, consider a path of normal sections $\left(\sigma_{t}\right)_{t \in[0,1]} \in \Gamma(Y, \nu)$ and

$$
s={\frac{d \sigma_{t}}{d t}}_{\mid t=0} \in \Gamma(Y, \nu)
$$

To differentiate F at $\sigma=0$ in the direction of s, we use the Levi-Civita connection of (M, g). Remark that since $F(0)=0$, the result does not depend in fact on the chosen connection. We have

$$
\left.\left.\nabla_{\frac{\partial}{\partial t}} F\left(\sigma_{t}\right)_{\mid t=0}=\sum_{k} \mathcal{L}_{s}\left(\eta_{k}\right\lrcorner * \phi\right)(\omega) \otimes \eta_{k}+\left(\eta_{k}\right\lrcorner * \phi\right)(\omega) \otimes \nabla_{s} \eta_{k}
$$

where \mathcal{L}_{s} is the Lie derivative in the direction s. Since Y is associative, $\left.\omega\right\lrcorner * \phi=0$ and the second term vanishes. Thanks to classical Riemannian formulas, we compute the summand of the first term. For every k,

$$
\left.\left.\left.\mathcal{L}_{s}\left(\eta_{k}\right\lrcorner * \phi\right)(\omega)=\left(\eta_{k} \wedge \omega\right)\right\lrcorner \mathcal{L}_{s}(* \phi)+\left(\left[\eta_{k}, s\right] \wedge \omega\right)\right\lrcorner * \phi=\mathcal{L}_{s}(* \phi)\left(\eta_{k}, \omega\right)
$$

since $\left.\left(\left[\eta_{k}, s\right] \wedge \omega\right)\right\lrcorner * \phi=\left\langle\chi(\omega),\left[\eta_{k}, s\right]\right\rangle=0$. This is equal to
$\nabla_{s} * \phi\left(\eta_{k}, \omega\right)+* \phi\left(\nabla_{\eta_{k}} s, \omega\right)+* \phi\left(\eta_{k}, \nabla_{e_{1}} s, e_{2}, e_{3}\right)+* \phi\left(\eta_{k}, e_{1}, \nabla_{e_{2}} s, e_{3}\right)+* \phi\left(\eta_{k}, e_{1}, e_{2}, \nabla_{e_{3}} s\right)$.
The second term vanishes because $\omega\lrcorner * \phi=0$ and the third one equals $* \phi\left(\eta_{k}, \nabla{ }_{e_{1}}^{\perp} s, e_{2}, e_{3}\right)=$ $-\left\langle\nabla_{e_{1}}^{\perp} s \times\left(e_{2} \times e_{3}\right), \eta_{k}\right\rangle$. Using the relation $e_{2} \times e_{3}=e_{1}$ and summing up the two last similar terms, we obtain $\nabla_{s} F=\sum_{i} e_{i} \times \nabla_{i}^{\perp} s+\sum_{k}\left(\nabla_{s} * \phi\right)\left(\eta_{k}, \omega\right) \otimes \eta_{k}$. Since $F(0)$ has values in ν, in fact we can suppose that the η_{k} 's form a local orthonormal frame of ν.

Proposition 2.3 Let Y be a smooth closed associative submanifold in a manifold M equipped with a G_{2}-structure. If the (co)kernel of the operator D given by (⿴囗) vanishes, then \mathcal{M}_{Y} is smooth near Y and of vanishing dimension. In particular, Y is isolated among associative submanifolds isotopic to Y.

Proof. Fix Y a smooth closed associative submanifold. For $k p>3$, it makes sense to consider the Banach space $\mathcal{E}=W^{k, p}(Y, \nu)$ of sections with weak derivatives in L^{p}, up the k-th one. Moreover for $(k-r) / 3>1 / p$, the inclusion $W^{k, p}(Y, \nu) \subset C^{r}(Y, \nu)$ holds and so $\sigma \in \mathcal{E}$ is C^{1} if $k>1+3 / p$. In particular, one can define ν_{σ} the normal bundle to $\exp _{\sigma}(Y)$, and \mathcal{F} the Banach bundle over \mathcal{E} with fiber $\mathcal{F}_{\sigma}=W^{k-1, p}\left(Y, \nu_{\sigma}\right)$. It is clear that the operator F defined by (3) extends to a section $F_{k, p}$ of \mathcal{F} over \mathcal{E}. The proof of Theorem 2.1 shows that $F_{k, p}$ is smooth and the derivative of F in the direction of a vector field $s \in T_{0} \mathcal{E}=W^{k, p}(Y, \nu)$ is computed by (1]). Now, the operator $D: \Gamma(Y, \nu) \rightarrow \Gamma(Y, \nu)$ has symbol $\sigma(\xi): s \mapsto \sum_{i} \xi_{i} s \times e_{i}=s \times \xi$, which is always invertible on ν as long as $\xi \in T Y \backslash\{0\}$. This proves that D is elliptic. Remark that $\sigma(\xi)^{2} s=-|\xi|^{2} s$, which is the symbol of the Laplacian. Hence F is a Fredholm operator, and $\operatorname{ker} D$ as $\operatorname{coker} D$ have finite dimension. By the implicit function theorem for Banach bundles, if coker $D=\{0\}$, then $F^{-1}(0)$ is a smooth Banach submanifold of \mathcal{E} near the null section and of finite dimension equal to $\operatorname{dim} \operatorname{ker} D=\operatorname{index} D$, which vanishes since Y is odd-dimensional. Lastly, still thanks to the ellipticity of D, all elements of \mathcal{M}_{Y} are smooth.

2.2 Varying the G_{2}-structure

Theorem 1.2 Let M be a manifold equipped with a closed G_{2}-structure ϕ, and Y be a smooth compact closed ϕ-associative submanifold. Then for every generic closed $G_{2^{-}}$ structure ψ close enough to ϕ, the moduli space $\mathcal{M}_{Y, \psi}$ contains a deformation \tilde{Y} of Y and is smooth near \tilde{Y}. In particular, \tilde{Y} is isolated among ψ-associative submanifolds isotopic to Y.

Proof. Consider Y a smooth closed associative submanifold in a manifold M equipped with a closed G_{2}-structure (ϕ, g). We modify the former map F defined in (3) in the following way. For every normal section $\sigma \in \Gamma(Y, \nu)$ and every G_{2}-structure ψ, consider

$$
F(\sigma, \psi)=\exp _{\sigma}^{*} \chi(\omega) \in \Gamma\left(Y, \nu_{\sigma}\right)
$$

Here the exponential map holds for the fixed metric g, whereas ν_{σ}, the normal vector bundle over $\exp _{\sigma}(Y)$, depends now on the metric associated to ψ, as does χ. We will differentiate $F(0,$.$) in the direction of \mathcal{Z}^{3}(M)$, the subspace of smooth closed 3 -forms on M. Recall that the set of 3 -forms defining a G_{2}-structure is open in $\Omega^{3}(M)$, hence for every $\psi \in \mathcal{Z}^{3}(M)$ with small enough norm, $\phi+\psi$ still defines a closed G_{2}-structure. Let $\left(\phi_{t}\right)_{t \in[0,1]}$ be a smooth path of closed G_{2}-structures, with $\phi_{0}=\phi$. In formula (2), the local orthonormal trivializations η_{k} of the tangent bundle $T M$ are orthonormal for the metric g_{t} associated to ϕ_{t}, consequently we have to choose them as functions of t. On the contrary, we can keep ω constant. Hence $\left.F\left(0, \phi_{t}\right)=\sum_{k}\left(\eta_{k}(t) \wedge \omega\right)\right\lrcorner *_{t} \phi_{t} \otimes \eta_{k}(t)$, where $*_{t}$ denotes the Hodge star for g_{t}. Since $\left.\omega\right\lrcorner * \phi=0$, at $t=0$ the two terms in the derivative containing $\nabla_{\frac{\partial}{\partial t}} \eta_{k}$ vanish, and we have

$$
\left.\nabla_{\frac{\partial}{\partial t}} F\left(0, \phi_{t}\right)_{\mid t=0}=\sum_{k}\left(\eta_{k} \wedge \omega\right)\right\lrcorner \frac{\partial}{\partial t} \Theta(\phi(t))_{\mid t=0} \otimes \eta_{k} .
$$

The nonlinear function Θ is defined on the set of G_{2}-structures and has values in $\Omega^{4}(X)$, with $\Theta(\psi)=*_{\psi} \psi$, where the Hodge star $*_{\psi}$ is computed for the metric associated to the G_{2}-structure ψ. Proposition 10.3.5 in [12] shows that if ϕ is a closed G_{2}-structure, the derivative of Θ at ϕ satisfies

$$
\forall \psi \in \mathcal{Z}^{3}(M), d_{\phi} \Theta(\psi)=* \mathcal{P}(\psi),
$$

where the Hodge star holds for g and $\mathcal{P}=\frac{4}{3} \pi_{1}+\pi_{7}-\pi_{27}$. Here π_{1}, π_{7} and π_{27} are the orthogonal projections corresponding to the decomposition $\Lambda^{3} T^{*} M=\Lambda_{1}^{3} \oplus \Lambda_{7}^{3} \oplus \Lambda_{27}^{3}$ associated to the irreductible representations of G_{2}, see Lemma 3.2 in [7] or Proposition 10.1.4 in [12]. Hence if $\psi=\frac{\partial}{\partial t} \phi(t)_{\mid t=0} \in \mathcal{Z}^{3}(M)$, we have

$$
\begin{equation*}
\left.\nabla_{\psi} F=\sum_{k}\left(\eta_{k} \wedge \omega\right)\right\lrcorner * \mathcal{P}(\psi) \otimes \eta_{k} . \tag{4}
\end{equation*}
$$

Due to the properties of χ, in this formula we can restrict our η_{k} 's to a local orthonormal frame of ν for the metric g. Now, recall (7] that $\Lambda_{7}^{3}=\left\{*(\phi \wedge \alpha), \alpha \in \Lambda^{1} T^{*} M\right\}$. Consider $s \in \Gamma(Y, \nu)$, and α the dual 1-form of s. More precisely, $\alpha \in \Gamma\left(Y, T^{*} M\right)$ satisfies

$$
\forall y \in Y, \forall v \in T_{y} M, \alpha_{y}(v)=\langle s(y), v\rangle .
$$

We choose ω such that $\phi(\omega)=1$, which is always possible since Y is associative. Since \mathcal{P} acts as the identity on Λ_{7}^{3} and $*$ is an involution, it is straightforward to see that

$$
\begin{equation*}
\left.\sum_{l}\left(\eta_{l} \wedge \omega\right)\right\lrcorner * \mathcal{P}(*(\phi \wedge \alpha)) \otimes \eta_{l}=s \tag{5}
\end{equation*}
$$

In order to prove the existence of $\psi \in \mathcal{Z}^{3}(M)$ such that $\nabla_{\psi} F=s$, we need to extend $*(\phi \wedge \alpha)$ outside Y as a closed form. For this, let $p \in Y, U$ be an open set of M containing p and local coordinates $y_{1}, y_{2}, y_{3}, x_{1}, x_{2}, x_{3}, x_{4}$ on U, where the y_{i} 's are coordinates on Y and the x_{i} 's are transverse coordinates. Since $\left.\psi=*(\phi \wedge \alpha)=s\right\lrcorner * \phi$ by a simple computation, the restriction to $T Y$ of this 3 -form vanishes, hence ψ writes $\sum_{i} d x_{i} \wedge \alpha_{i}$ over $Y \cap U$, where for all i, α_{i} is a 3-form. We extend arbitrarily the α_{i} 's as smooth 3-forms on U. Suppose first that s has compact support in $U \cap Y$. Then so do the α_{i} 's on $U \cap Y$. Define $\psi^{\prime}=d\left(\chi_{U} \sum_{i} x_{i} \alpha_{i}\right)$, where χ_{U} is a cut-off function with support in U and equal to 1 in the neighborhood of the support of s. Then ψ^{\prime} is a global closed 3-form with $\psi_{\mid Y}^{\prime}=\psi$ and hence satisfying $\nabla_{\psi^{\prime}} F=s$. For a general section $s \in \Gamma(Y, \nu)$, a partition of unity allows us to find $\psi \in \mathcal{Z}^{3}(M)$ such that $\nabla_{\psi} F=s$. We conclude that ∇F is surjective in the direction of $\mathcal{Z}^{3}(M)$. Now, if \mathcal{Z}_{D} is the finite dimensional subspace of $\mathcal{Z}^{3}(M)$ generated by the former closed 3-forms ψ associated to every $s \in \operatorname{coker} D$, by the inverse mapping theorem, the set

$$
\mathcal{M}=\left\{(\sigma, \psi) \in W^{k, p}(Y, \nu) \times \mathcal{Z}_{D}(M), F(\sigma, \psi)=0\right\}
$$

is a smooth manifold near $(0, \phi)$ if $k>1+3 / p$. By the Sard- Smale's theorem applied to the projection $\pi: \mathcal{M} \rightarrow \mathcal{Z}_{D}$, for every generic $\psi \in \mathcal{Z}_{D}$ close enough to ϕ, the slice

$$
\pi^{-1}(\psi)=\left\{\sigma \in W^{k, p}(Y, \nu), \exp _{\sigma}(Y) \text { is } \psi \text {-associative }\right\}
$$

is a smooth manifold. As usual, the sections in $\pi^{-1}(\psi)$ are in fact smooth, hence the result.

Remark 2.4 By Theorem 10.4.4 in 1 g$]$, if ϕ is a torsion-free G_{2}-structure, the tangent space at ϕ of the set of torsion-free structures can be identified with $\mathcal{L} \oplus H^{3}(M, \mathbb{R})$, where \mathcal{L} is the subspace of the Lie derivatives of ϕ, i.e $\mathcal{L}=\left\{\mathcal{L}_{X} \phi, X \in C^{0}(M, T M)\right\}$. If $\psi \in \mathcal{L}$, the proof of Theorem 2.1 shows that the derivative of F along ψ equals $D \psi$. Hence, \mathcal{L} is of no use for ∇F to be surjective. On the other side, there is no hope that in general the dimension of coker D would be less than $b^{3}(M)$. This is the reason why we use the wider space of closed G_{2}-structures.

2.3 A vanishing theorem

We turn now to the second way of getting the smoothness of the moduli space, namely the Bochner technique and Simon's theorem. We formulate the following theorem which can be deduced from Theorem 1.8, since any associative submanifold is minimal.

Theorem 2.5 Let Y be a smooth closed compact associative submanifold of a manifold M with a closed G_{2}-structure. If the spectrum of $\mathcal{R}_{\nu}=\mathcal{R}-\mathcal{A}$ is positive, then Y is isolated as an associative submanifold.
For the reader's convenience, we give below a proof of this result in the case where the G_{2}-structure is torsion-free. We will compute D^{2} to use the Bochner technique. For this, we introduce the normal equivalent of the invariant second derivative. More precisely, for every local vector fields v and w in $\Gamma(Y, T Y)$, let $\nabla{ }_{v, w}^{\perp 2}$ be the operator defined by $\nabla_{v, w}^{\perp 2}=\nabla_{v}^{\perp} \nabla_{w}^{\perp}-\nabla_{\nabla_{v}^{\top} w}^{\perp}$ acting on $\Gamma(Y, \nu)$. It is straightforward to see that it is tensorial in v and w. Moreover, define the equivalent of the connection Laplacian:

$$
\nabla^{\perp *} \nabla^{\perp}=-\operatorname{trace}\left(\nabla^{\perp 2}\right)=-\sum_{i} \nabla_{e_{i}, e_{i}}^{\perp 2}
$$

where the e_{i} 's define a local orthonormal frame of $T Y$.

Theorem 2.6 For Y an associative submanifold in a manifold with a torsion-free G_{2} structure, $D^{2}=\nabla^{\perp *} \nabla^{\perp}+\mathcal{R}_{\nu}$.
We refer to the appendix for the proof of this theorem.
Proof of Theorem 2.5. Suppose that we are given a fixed closed associative submanifold Y. Consider a section $s \in \Gamma(Y, \nu)$. By classical computations using normal coordinates and thanks to Theorem 2.6, we have

$$
-\frac{1}{2} \Delta|s|^{2}=\sum_{i}\left\langle\nabla_{i}^{\perp} s, \nabla_{i}^{\perp} s\right\rangle+\left\langle s, \nabla_{i}^{\perp} \nabla_{i}^{\perp} s\right\rangle=\left|\nabla^{\perp} s\right|^{2}-\left\langle D^{2} s, s\right\rangle+\left\langle\mathcal{R}_{\nu} s, s\right\rangle
$$

Since the Laplacian equals $-\operatorname{div}(\vec{\nabla})$, its integral over the closed Y vanishes. We get:

$$
\begin{equation*}
0=\int_{Y}\left|\nabla^{\perp} s\right|^{2}-\left\langle D^{2} s, s\right\rangle+\left\langle\mathcal{R}_{\nu} s, s\right\rangle d y \tag{6}
\end{equation*}
$$

Suppose that s belongs to ker D. Under the hypothesis that \mathcal{R}_{ν} is positive, the last equation $\operatorname{implies} s=0$. Hence $\operatorname{dim} \operatorname{coker} D=\operatorname{dim}$ ker $D=0$, and by Proposition 2.3, \mathcal{M}_{Y} is a smooth manifold near Y with vanishing dimension. In particular, Y is isolated.

3 Associative submanifolds with boundary

In this section we explain our results in the case of an associative submanifold with boundary in a coassociative submanifold. We first give below the principal results of [6]. For this, recall that in a manifold with a G_{2}-structure and an associated vector product \times, given $x \in M$ and n an unit vector in $T_{x} M$, the application

$$
n \times: T_{x} M \rightarrow T_{x} M, v \mapsto n \times v
$$

defines a complex structure on n^{\perp} the orthogonal complement of n. A 2-plane $L \subset n^{\perp}$ invariant under $n \times$ will be called a $n \times$-complex line.

Theorem 3.1 ([6]) Let M be a manifold equipped with a G_{2}-structure (ϕ, g) and Y a smooth compact associative submanifold with boundary in a coassociative submanifold X. Let ν_{X} be the normal complement of $T \partial Y$ in $T X_{\mid \partial Y}$, and n the inward unit normal vector to ∂Y in Y. Then

1. the bundle ν_{X} is a subbundle of $\nu_{\mid \partial Y}$ and is a $n \times$-complex line, as is the orthogonal complement μ_{X} of ν_{X} in $\nu_{\mid \partial Y}$.
2. Viewing $T \partial Y, \nu_{X}$ and μ_{X} as $n \times$-complex line bundles, we have $\mu_{X}^{*} \cong \nu_{X} \otimes_{\mathbb{C}} T \partial Y$.
3. Further, the problem of the associative deformations of Y with boundary in X is elliptic and of index index $(Y, X)=\operatorname{index} \bar{\partial}_{\nu_{X}}=c_{1}\left(\nu_{X}\right)+1-g$, where g is the genus of ∂Y.

Proposition 3.2 Let M be a smooth manifold equipped with a G_{2}-structure (ϕ, g) and let Y be a smooth compact associative submanifold with boundary in a coassociative submanifold X. Consider the adapted version of the linearization of (1) for our boundary problem :

$$
D: \mathcal{E}_{X}=\left\{s \in \Gamma(Y, \nu), s_{\mid \partial Y} \in \nu_{X}\right\} \rightarrow \Gamma(Y, \nu)
$$

If the cokernel of $D: \mathcal{E}_{X} \rightarrow \mathcal{E}$ vanishes, then $\mathcal{M}_{Y, X}$ is smooth near Y and of dimension equal to index (Y, X).

Proof. For $2 k>3$ and $(k-r) / 3>1 / 2$, define the adapted Banach space \mathcal{E}_{X} by

$$
\mathcal{E}_{X}=\left\{\sigma \in W^{k, 2}(Y, \nu), \forall y \in \partial Y, \sigma(y) \in \nu_{X, y}\right\}
$$

and \mathcal{F} the bundle over \mathcal{E}_{X}, where the fibre \mathcal{F}_{σ} denotes $W^{k-1,2}\left(Y, \nu_{\sigma}\right)$. As before ν_{σ} is the normal bundle to $\exp _{\sigma}(Y)$. Suppose first that X is totally geodesic for the metric g. Then \mathcal{E}_{X} parametrizes the submanifolds with boundary in X and close enough to Y. Define the analogous of the map (3) in the proof of Theorem 2.1 by $F: \mathcal{E}_{X} \rightarrow \mathcal{F}, F(\sigma)=\exp _{\sigma}^{*} \chi$. By the proof of Theorem 2.1, F is smooth and its derivative at the vanishing section is $D: \mathcal{E}_{X} \rightarrow \Gamma(Y, \nu)$. Further, by Theorem 20.8 of [3] , the operator $D: \mathcal{E}_{X} \rightarrow \Gamma(Y, \nu)$ is Fredholm and Theorem 3.1 gives its index. Now, if the cokernel of D vanishes, then the inverse mapping theorem shows that $\mathcal{M}_{Y, X}$ is smooth near Y and of the expected dimension equal to index (Y, X). Lastly, Theorem 19.1 in [3] shows that in fact, the sections belonging to $\mathcal{M}_{Y, X}$ are smooth and so are the associated deformations of Y. In general, X is not totally geodesic and as faced in [5] and [8], $\exp _{\sigma}(\partial Y)$ has no reason to lie in X. For this, we change the metric near X, as in the mentionned works.

Lemma 3.3 There exists a tubular neighborhood U of X and a metric \hat{g} such that $\hat{g}(x)=$ $g(x)$ for every $x \in X$, \hat{g} equals g outside U, and X is totally geodesic for \hat{g}.

Proof. The exponential gives a diffeomorphism Φ between a tubular neighborhood U of X in M and a neighborhood V of the vanishing section in the normal vector bundle N_{X} of X. Moreover, it sends X to the vanishing section. Consider on V the metric $h=\pi^{*} g_{\mid T X} \oplus g_{N}$, where g_{N} is the natural flat metric on the fibers induced by the metric $g, g_{\mid T X}$ is the induced metric on X and $\pi: N_{X} \rightarrow X$ denotes the natural projection. Now $H=\Phi^{*} h$ is a metric on U, for which X is clearly totally geodesic. Take χ a cut-off function with support in U, equal to 1 in a neighborhood of X. Then $\hat{g}=\chi H+(1-\chi) g$ satisfies all the conditions of the lemma.

Consider $\hat{\nu}$ the normal bundle over Y for the new metric \hat{g}. For every section $\sigma \in \Gamma(Y, \hat{\nu})$ we use the adapted function $\hat{F}(\sigma)=\widehat{\exp }_{\sigma}{ }^{*} \chi(\omega)$, where ω can be chosen as before and χ is the form associated to ϕ, but $\widehat{\exp }$ is the exponential map for the new metric \hat{g}. The proof of Theorem 2.1 shows that differentiating \hat{F} in the direction of $s \in \Gamma(Y, \hat{\nu})$ gives the same result $\nabla_{s} \hat{F}=D s \in \Gamma(Y, \nu)$, even if s does not belong to $\Gamma(Y, \nu)$. Now, given a bundle isomorphism between $\hat{\nu}$ and ν, it is straightforward to see that the kernel as the cokernel of $\hat{\nabla} F$ are isomorphic to the ones of D. The former conclusion in the totally geodesic case still holds.

3.1 Varying the coassociative submanifold

In paragraph 2.2, we perturbed the G_{2}-structure in order for the moduli space \mathcal{M}_{Y} to become smooth. When the associative submanifold has a boundary, we can repeat the same arguments. We can also move the boundary condition. As explained in the introduction, we will perturb generically X as a smooth ϕ-free submanifold, and no longer as a coassociative one.

Theorem 1.5 Let Y be a smooth associative submanifold with boundary in a smooth coassociative submanifold X. If the virtual dimension of $\mathcal{M}_{Y, X}$ is non negative, then for any sufficiently small generic smooth deformation of X into X^{\prime}, there exists a small associative deformation Y^{\prime} of Y such that $\mathcal{M}_{Y^{\prime}, X^{\prime}}$ is smooth near Y^{\prime} and of dimension equal to the index computed for the unperturbed situation.

Proof. Recall [16] that if X is a coassociative submanifold, its normal bundle N_{X} can be identified with the space of its self-dual two-forms $\Omega_{+}^{2}(X)$. For $\alpha \in \Omega_{+}^{2}(X)$, define $\sigma_{\alpha} \in \Gamma\left(\partial Y, N_{X}\right)$ the restriction to ∂Y of the associated normal vector field along X. By Theorem 3.1, $N_{X \mid \partial Y}=n \mathbb{R} \oplus \mu_{X}$, whith n the inward unit normal vector to $T \partial Y$ in $T Y$. Consider the subspace

$$
\mathcal{C}=\left\{\alpha \in \Omega_{+}^{2}(X), \sigma_{\alpha} \in \Gamma\left(\partial Y, \mu_{X}\right)\right\} .
$$

Note that infinitesimal deformations of X in these directions are normal to Y. This will be considered as the parameter space. For every $\alpha \in \mathcal{C}$, extend σ_{α} to $\Gamma(Y, \nu)$ in the following way. The associative Y is diffeomorphic to $Y_{\epsilon}=\partial Y \times[0, \epsilon]$ near ∂Y, where ∂Y holds for $\partial Y \times\{0\}$. This allows us to identify $\nu_{\mid Y_{\epsilon}}$ with $\nu_{\mid \partial Y} \times[0, \epsilon]$ and so this gives an extension of σ_{α} on Y_{ϵ}. Take χ a cut-off function satisfying $\chi=1$ in the neighborhood of ∂Y and with support in Y_{ϵ}. Then $\hat{\sigma}_{\alpha}=\chi \sigma_{\alpha}$ is a smooth normal vector bundle along Y such that $\hat{\sigma}_{\alpha}=\sigma_{\alpha}$ near ∂Y. Now, let \mathcal{E}_{∂} be the set

$$
\mathcal{E}_{\partial}=\left\{(\alpha, s) \in \mathcal{C} \times \Gamma(Y, \nu), \forall y \in \partial Y, s(y) \in T_{y} X\right\} .
$$

Here we will suppose that X is totally geodesic as in the first part of the proof of Proposition 3.2. If not, we change the metric by Lemma 3.3. Hence if $(\alpha, s) \in \mathcal{E}_{\partial}$ and if we define $\phi_{\alpha, s}=\exp _{\sigma_{\alpha}} \circ \exp _{s}$, then $Y_{\alpha, s}=\phi_{\alpha, s}(Y)$ is a smooth submanifold with boundary in $X_{\alpha}=$ $\exp _{\sigma_{\alpha}}(X)$. Let \mathcal{F} be the bundle over \mathcal{E}_{∂}, where the fiber $\mathcal{F}_{\alpha, s}$ equals $\Gamma\left(Y, \nu_{\alpha, s}\right)$ and $\nu_{\alpha, s}$ denotes the normal bundle of $Y_{\alpha, s}$. Define the section $F: \mathcal{E}_{\partial} \rightarrow \mathcal{F}$ by $F(\alpha, s)=\phi_{\alpha, s}^{*} \chi(\omega)$. Then $Y_{\alpha, s}$ is an associative submanifold if and only if $F(\alpha, s)=0$. Now for every fixed $\alpha \in \mathcal{C}$, consider the restriction map

$$
\begin{aligned}
F_{\alpha}:\left\{s \in \Gamma(Y, \nu), s_{\mid \partial Y} \in T X\right\} & \rightarrow \Gamma\left(Y, \nu_{\alpha, s}\right) \\
s & \mapsto F(\alpha, s)
\end{aligned}
$$

Two tedious computations analogous to the proof of Theorem 2.1 and the proof of Theorem 3.1 in Section 4 of [6] show that for every $\alpha \in \mathcal{C}$, the derivative of F_{α} is elliptic in the sense of Definition 18.1 of [3]. Further, F_{α} is clearly a deformation of F_{0}, hence F_{α} is a Fredholm map of index computed in Theorem 3.1. For a genericity result, we need the classical

Theorem 3.4 Let \mathcal{C}, \mathcal{E} and \mathcal{F} be Banach spaces, $F: \mathcal{C} \times \mathcal{E} \rightarrow \mathcal{F}$ a smooth map, such that for every $\alpha \in \mathcal{C}, F_{\alpha}=F(\alpha,$.$) is a Fredholm map between \mathcal{E}$ and \mathcal{F}. If $d F: \mathcal{C} \times \mathcal{E} \rightarrow \mathcal{F}$ is surjective at $\left(\alpha_{0}, x_{0}\right)$, then $F^{-1}\left(y_{0}\right)$ is locally a smooth manifold, where $y_{0}=F\left(\alpha_{0}, x_{0}\right)$. Further, for every generic $\alpha \in \mathcal{C}$ close to α_{0} enough, the fiber $F_{\alpha}^{-1}\left(y_{0}\right)$ is a smooth manifold of finite dimension equal to the index of F_{α}.
We compute the derivative of F at $(0,0) \in \mathcal{E}_{\partial}$. One can easily check using the proof of Theorem 2.1 that this is equal to

$$
\begin{aligned}
\nabla_{(0,0)} F: \mathcal{E}_{\partial} & \rightarrow \Gamma(Y, \nu) \\
(\alpha, s) & \mapsto D\left(s+\sigma_{\alpha}\right) .
\end{aligned}
$$

This derivative is surjective. Indeed, let s^{\prime} be a section in $\Gamma(Y, \nu)$. Since Y has a boundary, our Dirac-like operator D is surjective by Theorem 9.1 of the book [3], so there is a section $s \in \Gamma(Y, \nu)$ such that $D s=s^{\prime}$. Now decompose $s_{\mid \partial Y}$ as $s_{\nu}+s_{\mu}$ with $s_{\nu} \in \Gamma\left(\partial Y, \nu_{X}\right)$ and $s_{\mu} \in \Gamma\left(\partial Y, \mu_{X}\right)$. As in the beginning of the proof, we extend s_{μ} to an element of $\Gamma(Y, \nu)$. On Y we can now write globally $s=s_{\mu}+\left(s-s_{\mu}\right)$, where the first term has values in μ_{X} on ∂Y, and the second term has values in ν_{X} on ∂Y. Choosing the 2 -form $\alpha \in \mathcal{C}$ such that $s_{\mu}=\sigma_{\alpha}$, we have $D\left(\left(s-s_{\mu}\right)+\sigma_{\alpha}\right)=s^{\prime}$ with $\left(\alpha, s-s_{\mu}\right) \in \mathcal{E}_{\partial}$, hence the result.

Remark 3.5 As in Theorem 1.7, we can restrict our smoothing deformations to a finite dimensional space of dimension equal to $\operatorname{dim} \operatorname{coker} D$.

3.2 A vanishing theorem

Given Y an associative submanifold with boundary in a coassociative submanifold X, we turn now to metric conditions on Y that insure local smoothness of the moduli space $\mathcal{M}_{Y, X}$. Let ν be the normal bundle of Y and n is the inward normal vector to ∂Y in Y. Recall that if $L \subset \nu$ is a $n \times$-complex line bundle over ∂Y, the operator $\mathcal{D}_{L}: \Gamma(\partial Y, L) \rightarrow \Gamma(\partial Y, L)$ was defined in the introduction by $\mathcal{D}_{L} s=\pi_{L}\left(v \times \nabla_{w}^{\perp} s-w \times \nabla_{v}^{\perp} s\right)$, where $\pi_{L}: \nu \rightarrow L$ is the orthogonal projection to L and $\{v, w=n \times v\}$ a local orthonormal frame for $T \partial Y$. We refer to the appendix for the proof of the following proposition.

Proposition 3.6 The operator \mathcal{D}_{L} is of order 0 , symmetric, and its trace is $2 H$, where H is the mean curvature of ∂Y in Y with respect to $-n$.

Moreover, consider the operator (D, L) defined by $D:\left\{s \in \Gamma(Y, \nu), s_{\mid \partial Y} \in L\right\} \rightarrow \Gamma(Y, \nu)$. We will use the following lemma, whom proof can be found in the appendix.

Lemma 3.7 We have $\operatorname{coker}(D, L)=\operatorname{ker}\left(D, L^{\perp}\right)$, where L^{\perp} is the orthogonal complement of L in $\nu_{\mid \partial Y}$.

We can now prove the vanishing
Theorem 1.10 Let M be a manifold equipped with a torsion-free G_{2}-structure and Y be an associative submanifold with boundary in a coassociative submanifold X. If $\mathcal{D}_{\mu_{X}}$ and $\mathcal{R}-\mathcal{A}$ are positive, the moduli space $\mathcal{M}_{Y, X}$ is smooth near Y and of dimension given by the virtual one.

Proof. To prove Theorem 1.10, it is enough by Proposition 3.2 to show that coker $\left(D, \nu_{X}\right)$, which equals $\operatorname{ker}\left(D, \mu_{X}\right)$ by Lemma 3.7 , is trivial. So let $s \in \operatorname{ker}\left(D, \mu_{X}\right)$. Since Y has a boundary, we need to change the integration (6), because the divergence has to be considered:

$$
\begin{equation*}
\int_{Y}\left|\nabla^{\perp} s\right|^{2}+\left\langle\mathcal{R}_{\nu} s, s\right\rangle d y=\frac{1}{2} \int_{Y} \operatorname{div} \vec{\nabla}|s|^{2} d y \tag{7}
\end{equation*}
$$

By Stokes, the last is equal to

$$
-\frac{1}{2} \int_{\partial Y} d|s|^{2}(n) d \sigma=-\int_{\partial Y}\left\langle\nabla_{n}^{\perp} s, s\right\rangle d \sigma
$$

where n is the inward unit normal vector of ∂Y. Choosing a local orthonormal frame $\{v, w=n \times v\}$ of $T \partial Y$, and using the fact that $D s=0$, this is equal to

$$
\int_{\partial Y}\left\langle w \times \nabla_{v}^{\perp} s-v \times \nabla_{w}^{\perp} s, s\right\rangle d \sigma=-\int_{\partial Y}\left\langle\mathcal{D}_{\mu_{X}} s, s\right\rangle d \sigma
$$

Summing up, we get the equation

$$
\begin{equation*}
\int_{Y}\left|\nabla^{\perp} s\right|^{2} d y+\int_{Y}\left\langle\mathcal{R}_{\nu} s, s\right\rangle d y+\int_{\partial Y}\left\langle\mathcal{D}_{\mu_{X}} s, s\right\rangle d \sigma=0 \tag{8}
\end{equation*}
$$

If $\mathcal{D}_{\mu_{X}}$ and \mathcal{R}_{ν} are positive, s vanishes, hence the result.

4 Examples

4.1 Flatland

In flat spaces, the curvature tensor R vanishes, and so $\mathcal{R}_{\nu}=-\mathcal{A} \leq 0$. Consequently, a priori Theorem 1.10 does not apply. Nevertheless, we have the

Corollary 4.1 Let M be a manifold equipped with a torsion-free G_{2}-structure whom metric is flat, and Y be a totally geodesic associative submanifold with boundary in a coassociative X. If $\mathcal{D}_{\mu_{X}}$ is positive, then $\mathcal{M}_{Y, X}$ is smooth near Y and of the expected dimension.

Proof. The hypotheses on M and Y imply that $\mathcal{R}_{\nu}=0$. Consider $s \in \operatorname{coker}\left(D, \nu_{X}\right)=$ $\operatorname{ker}\left(D, \mu_{X}\right)$. Formula (8) shows that $\nabla^{\perp} s=0$ and $s_{\mid \partial Y}=0$. Using $d|s|^{2}=2\left\langle\nabla^{\perp} s, s\right\rangle=0$. This implies $s=0$ and the result.

When $M=\mathbb{R}^{7}$ with its canonical flat metric, we get the following very explicit example considered in [6]. Take a ball Y in $\mathbb{R}^{3} \times\{0\} \subset \mathbb{R}^{7}$ with real analytic boundary, and choose any normal real analytic vector field $e \in \Gamma(\partial Y, \nu)$. By [9$]$, there is a unique local coassociative X_{e} containing ∂Y such that its tangent bundle $T_{y} X_{e}$ contains $e(y)$ at every boundary point y.

Corollary 4.2 Suppose that Y is a strictly convex ball in \mathbb{R}^{3}. Then there exists a positive constant ϵ, such that for every normal vector field e satisfying $\|d e\|_{L^{\infty}} \leq \epsilon$, the moduli space $\mathcal{M}_{Y, X_{e}}$ is smooth near Y and one dimensional.

Proof. Since the fibre bundle $\nu_{X_{e}}$ is trivial and the genus of ∂Y is zero, the index equals here $c_{1}\left(\nu_{X}\right)+1-g=1$. We want to show that $\mathcal{D}_{\mu_{X}}$ is positive. To see that, we choose local orthogonal characteristic directions v and $w=n \times v$ in $T \partial Y$. From Theorem 3.1, we know that $v \times e$ is a non vanishing section of μ_{X}. Suppose first that e is constant. We compute

$$
\begin{aligned}
\mathcal{D}_{\mu_{X}}(v \times e) & =v \times\left(\nabla_{w}^{\perp \partial} v \times e\right)-w \times\left(\nabla_{v}^{\perp \partial} v \times e\right) \\
& =-k_{v} w \times(n \times e)=k_{v} v \times e
\end{aligned}
$$

where k_{v} is the principal curvature in the direction of v. This shows that k_{v} is an eigenvalue of $\mathcal{D}_{\mu_{X}}$, and since we know that its trace is $2 H$ by Proposition 3.6, we get that the other eigenvalue is k_{w}, the other principal curvature of ∂Y. These eigenvalues are positive if the boundary of Y is strictly convex and Corollary 4.1 gives the result. It is clear that the eigenvalues of the operator $\mathcal{D}_{\mu_{X}}$ vary continuously with μ_{X}, that is with e. Consequently, for e close enough to be a constant vector field, these eigenvalues are still positive, hence the general result.

Remark 4.3 In fact, in the case where e is constant, we can give a better statement. Indeed, let $s \in \operatorname{ker}\left(D, \nu_{X}\right)$, and decompose $s_{\partial Y}$ as $s=s_{1} e+s_{2} n \times e$. Of course, e is in the kernel of $\mathcal{D}_{\nu_{X}}$, and hence by Proposition 3.0, the second term is an eigenvector of $\mathcal{D}_{\nu_{X}}$ for the eigenvalue $2 H$. So formula (§) applied to s gives $\int_{Y}\left|\nabla^{\perp} s\right|^{2}+\int_{\partial Y} 2 H\left|s_{2}\right|^{2}=0$. If $H>0$, this implies immediatly that $s_{2}=0$ and s_{1} is constant, so s is proportional to e. This proves that $\operatorname{dim} \operatorname{ker}\left(D, \nu_{X}\right)=1$ under the weaker condition that $H>0$. Lastly, in fact we can even show that $\mathcal{M}_{Y, X_{e}}=\mathbb{R}$.

4.2 The Bryant Salamon construction

The spin bundle and its metric. As quickly recalled in the introduction, Bryant and Salamon [4] found on the total spin bundle $\mathcal{S} \simeq S^{3} \times \mathbb{R}^{4}$ of the round sphere S^{3} a complete metric with holonomy precisely equal to G_{2}. This metric is of the form

$$
g=\alpha(r) \pi^{*} g_{S}+\beta(r) g_{v}
$$

where g_{v} is the flat metric on the fiber $\mathcal{S}_{x} \simeq \mathbb{R}^{4}$ induced by g_{S}, r is its associated norm, g_{S} the round metric on S^{3} and $\pi: \mathcal{S} \rightarrow S^{3}$ the natural projection. For some particular smooth functions α and β, the authors proved that the holonomy of the metric is G_{2}. In this situation, the base S^{3} is associative and the Dirac operator D is the classical one for the spin bundle \mathcal{S}.
Corollary 4.4 (16]) The associative S^{3} is isolated as an associative submanifold.
Proof. By the famous computation of Lichnerowicz [15], $D^{2}=\nabla^{*} \nabla+S / 4$, where S is the scalar curvature of $\left(S^{3}, g_{S}\right)$ and ∇ is the induced connection on the spin bundle, which is in our case the connection ∇^{\perp}. Identifying with the equation in Theorem 2.6, we get that $\mathcal{R}_{\nu}=S / 4$. Since S is positive, so is \mathcal{R}_{ν}, and Theorem 1.8 concludes.

Example with boundary. Choose a point p on the base S^{3}, a ball $B_{\rho} \subset \mathcal{S}$ of radius ρ around p and define $Y_{\rho}=B_{\rho} \cap S^{3}$. Take a normal vector field $e \in \Gamma\left(\partial Y_{\rho}, \nu\right)$ at the boundary of the associative Y_{ρ}. Here $\nu_{y}=\mathcal{S}_{y}$ for $y \in \partial Y_{\rho}$. The round sphere is real algebraic as its metric g_{S}, hence we can find for ρ small enough a local chart $\Phi: B_{\rho} \rightarrow \mathbb{R}^{7}$ sending Y_{ρ} to $\mathbb{R}^{3} \times\{0\}$, and such that $\Phi_{*} g$ is a real analytic metric. Further we choose B_{ρ} and e in such a way that $\Phi\left(\partial Y_{\rho}\right)$ and $\Phi_{*} e$ are real analytic. Now, a straightforward generalization of the arguments in [9] based on the Cartan-Kähler theory proves that e and ∂Y_{ρ} generate a semi local coassociative submanifold X_{e} containing ∂Y_{ρ}.
Corollary 4.5 For ρ small enough, $\mathcal{M}_{Y_{\rho}, X_{e}}$ is smooth near Y_{ρ} and one dimensional.
Proof. The genus of ∂Y_{ρ} vanishes and the subbundle $\nu_{X_{e}}$ is trivial, hence the index of the associative deformations problem equals one. We can suppose that $\Phi_{*} g(0)$ is the standard metric of \mathbb{R}^{7}, hence $d_{p} \Phi\left(\mathcal{S}_{p}\right)=0 \oplus \mathbb{R}^{4}$. Moreover we choose Φ such that the Levi-Civita connection of $\Phi_{*} g$ vanishes at 0 . When ρ tends to zero, $\Phi\left(\partial Y_{\rho}\right)$ is asympototically close to be the round ball $\rho B^{3} \subset \mathbb{R}^{3}$ for the metric g_{0}. Then we know from the proof of Corollary 4.2 that the eigenvalues of the operator $\mathcal{D}_{\mu_{X_{e}}}$ computed in the model situation (i.e with the flat metric and connection) equal the principal curvatures, here the inverse of ρ. Hence for ρ small enough, $\mathcal{D}_{\mu_{X_{e}}}$ and $\mathcal{R}_{\nu}=S / 4$ are both positive. Theorem 1.10 then implies the result.

4.3 The Joyce construction

Consider one compact smooth manifold with holonomy G_{2} constructed by Joyce in paragraph 12.2 of [12], and Y_{1} one component not reduced to a point of the fixed point set of an involution preserving the G_{2}-structure. Then Y_{1} is an associative torus. For an example with boundary, take the first example of Section 5 in [6]. This is an associative submanifold Y_{2} diffeomorphic to $[0,1] \times T^{2}$ with boundary in two coassociative tori X_{1} and X_{2}, with trivial bundle ν_{X}. Namely, Y_{2} is one component of the fixed point set of an involution preserving the strucure whereas the X_{i} 's are components of the fixed point set of an involution inversing the structure. Since the genus of X_{1} and X_{2} vanishes, so does the index of the deformation problem. Now, Theorem 1.2 and Theorem 1.5 imply the following

Corollary 4.6 For every generic closed perturbation ψ of the G_{2}-structure, Y_{1} can be perturbed into an isolated ψ-associative torus. For every generic small ϕ-free deformation \tilde{X} of X there is a perturbation \tilde{Y} of Y_{2} such that $\mathcal{M}_{\tilde{Y}, \tilde{X}}$ is a singleton near \tilde{Y}.

Remark 4.7 It is possible that Y_{1} or Y_{2} are in fact already isolated, even if we don't change the G_{2}-structure or the boundary condition. But the metric near our submanifolds is built as a global pertubation of a flat metric with flat boundary conditions. Consequently, it seems out of reach to prove the positivity of our operators \mathcal{R}_{ν} and $D_{\mu_{X}}$.

4.4 Extensions from the Calabi-Yau world

The closed case. Let (N, J, Ω, ω) be a Calabi-Yau 6-dimensional manifold, where J is an integrable complex stucture, Ω a non vanishing holomorphic 3-form and ω a Kähler form. Then $M=N \times S^{1}$ is a manifold with holonomy in $S U(3) \subset G_{2}$. One associated torsion-free G_{2}-structure on M is given by $\phi=\omega \wedge d t+\Re \Omega$. Recall that a closed special Lagrangian L in N is a 3-dimensional submanifold satisfying both conditions $\omega_{\mid T L}=0$ and $\Im \Omega_{\mid T L}=0$. We know from [16] that \mathcal{M}_{L} the moduli space of special Lagrangian deformations of L is smooth and of dimension $b^{1}(L)$. Now for every $t \in S^{1}$, the product $Y=L \times\{t\}$ of a special Lagrangian and a point is a ϕ-associative submanifold of M. The following is inspired by a analogous result on coassociative submanifolds of Leung (14], Proposition 5):
Proposition 4.8 Let $t \in S^{1}$. The moduli space $\mathcal{M}_{L \times\{t\}}$ of associative deformations of $L \times\{t\}$ is always smooth, and can be identified with the product $\mathcal{M}_{L} \times S^{1}$, hence of dimension $b^{1}(L)+1$.

Remark 4.9 Although the moduli space is smooth, we see that the deformation problem is always obstructed. Theorem 1.2 proves that any closed generic perturbation of the $G_{2^{-}}$ structure ϕ will make disappear the S^{1}-symmetry as the \mathcal{M}_{L}-family of associative submanifolds, and just keep locally one representative.

Proof. Consider a closed associative submanifold Y in the same homology class as $L \times\{t\}$. On the one hand, Y has a bigger volume than its projection $\pi(Y)$ to $N \times\{t\}$ and equality holds only if Y lies in $N \times\left\{t^{\prime}\right\}$ for a constant t^{\prime}. On the other hand, $\pi(Y)$ is in the same homology class as L, hence has volume larger than the one of L, since special Lagrangians minimize the volume in their homology class. But Y is associative, hence has the same volume than L. Consequently all these volumes equal, and Y writes $L^{\prime} \times\left\{t^{\prime}\right\}$. It is now immediate to see that ϕ-associativity of Y implies special Lagrangianity of L^{\prime}.

With boundary. Recall that if Σ is a complex surface of N and $t \in S^{1}$, then $X=\Sigma \times\{t\}$ is a coassociative submanifold of M. Consider the problem of associative deformations of $Y=L \times\{t\}$ with boundary in X :
Theorem 4.10 Let $t \in S^{1}$ and L be a special Lagrangian submanifold in a 6-dimensional Calabi-Yau N, such that L has boundary in a complex surface Σ. Let $Y=L \times\{t\}$ in $N \times S^{1}$ and $X=\Sigma \times\{t\}$.

1. The moduli space $\mathcal{M}_{Y, X}$ of associative deformations of $L \times\{t\}$ with boundary in the coassociative $\Sigma \times\{t\}$ can be identified with the moduli space of special Lagrangian deformations of L with boundary in the fixed Σ.
2. If the Ricci curvature of L is positive and if the boundary of L has positive mean curvature in L, then $\mathcal{M}_{Y, X}$ is locally smooth and has dimension g, where g is the genus of ∂L.

Remark 4.11 Although the moduli space is smooth, its dimension exceeds one the index of the deformation problem, see the begining of the proof of the second assertion. As a consequence, Theorem 1.5 shows that generic perturbations of the boundary condition will decrement by one the dimension of the initial moduli space.

Remark 4.12 The deformation theory in [5] concerns minimal Lagrangian submanifolds with boundary in Σ, a wider class than the one of special Lagrangian submanifolds.

Proof of Theorem 4.10 (1). Firstly, if M is equipped with a closed G_{2}-structure ϕ, remark that an associative submanifold Y with boundary in a coassociative X minimize the volume in the relative homology class $[Y] \in H^{3}(M, X, \mathbb{Z})$. Indeed, let Z be any 3 -cycle with boundary in X, such that $[Z]=[Y]$. There is a 4-chain S with boundary in X and T a 3-chain in X, such that $Z-Y=\partial S+T$. Since ϕ is a calibration,

$$
\operatorname{Volume}(Z) \geq \int_{Z} \phi=\int_{Y} \phi+\int_{\partial S} \phi+\int_{T} \phi=\int_{Y} \phi=\operatorname{Volume}(Y)
$$

by Stokes and the fact that ϕ vanishes on any coassociative submanifold. By the same arguments as in the closed case, this proves the identity of both mentionned moduli spaces.

For the second assertion, we begin by another
Proof of Proposition 4.8. Recall that since L is Lagrangian, its normal bundle is simply $J T L$, and the normal bundle ν of $Y=L \times\{t\}$ is isomorphic to $J T L \times \mathbb{R} \partial_{t}$, where ∂_{t} is the dual vector field of $d t$. In this situation, we don't use the expression of of D^{2} given in Theorem 2.6. Instead, we give another formula for it. If $s=J \sigma \oplus \tau \partial_{t}$ is a section of ν, with $\sigma \in \Gamma(L, T L)$ and $\tau \in \Gamma(L, \mathbb{R})=\Omega^{0}(L)$, we call $\sigma^{\vee} \in \Omega^{1}(L, \mathbb{R})$ the 1-form dual to σ, and we use the same symbol for its inverse. Moreover, we use the classical notation $*: \Omega^{k}(L) \rightarrow \Omega^{3-k}(L)$ for the Hodge star. Lastly, we define:

$$
\begin{aligned}
D^{\vee}: \Omega^{1}(L) \times \Omega^{0}(L) & \longrightarrow \Omega^{1}(L) \times \Omega^{0}(L) \\
(\alpha, \tau) & \mapsto\left(\left(-J \pi_{L} D\left(J \alpha^{\vee}, \tau\right)\right)^{\vee}, \pi_{t} D\left(J \alpha^{\vee}, \tau\right)\right)
\end{aligned}
$$

where π_{L} (resp. π_{t}) is the orthogonal projection $\nu=N L \oplus \mathbb{R}$ to the first (resp. the second) component. This is just a way to use forms on L instead of normal ambient vector fields.

Lemma 4.13 For every $(\alpha, \tau) \in \Omega^{1}(L) \times \Omega^{0}(L)$,

$$
\begin{aligned}
D^{\vee}(\alpha, \tau) & =(-* d \alpha-d \tau, * d * \alpha) \\
D^{\vee 2}(\alpha, \tau) & =-\Delta(\alpha, \tau)
\end{aligned}
$$

where $\Delta=d^{*} d+d d^{*}$ (note that it is $d^{*} d$ on τ).
We refer to the appendix for the proof of this lemma. We see that for an infinitesimal associative deformation of $L \times\{t\}$, then α and τ are harmonic over the compact L. In particular, τ is constant and α describes an infinitesimal special Lagrangian deformation of L (see [16]). In other words, the only way to displace Y is to perturb L as special Lagrangian in N or translate it along the S^{1}-direction. Lastly, $\operatorname{dim} \operatorname{coker} D=\operatorname{dim} \operatorname{ker} D=b^{1}(L)+1$ and by an immediate refinement of Proposition 2.3 for cokernels with constant dimension, \mathcal{M}_{Y} is smooth and of dimension $b^{1}(L)+1$.

Proof of Theorem 4.10 (2). Consider a special Lagrangian L with boundary ∂L in a complex surface Σ. If $Y=L \times\{t\}$ and $X=\Sigma \times\{t\}$, it is clear that the orthogonal complement ν_{X} of $T \partial Y$ in $T X$ is equal as a real bundle to $J T \partial L \oplus\{0\}$, and μ_{X} is the trivial $n \times$-complex line bundle generated by ∂_{t}, where n is the inward unit normal vector field of ∂Y in Y. We begin by computing the index of the boundary problem. This is very easy, since μ_{X} is trivial, and by Theorem 3.1, we have $\nu_{X} \cong T \partial L^{*}$ as $n \times$-bundles. Hence the index equals $-c_{1}(T \partial L)+1-g=-(2-g)+1-g=g-1$, where g is the genus of ∂L. Now let $\psi=s+\tau \frac{\partial}{\partial t}$ belonging to $\operatorname{coker}\left(D, \nu_{X}\right)=\operatorname{ker}\left(D, \mu_{X}\right)$, where s a section of $N L$ and $\tau \in \Gamma(L, \mathbb{R})$. Let $\alpha=-J s^{\vee}$. By Lemma 4.13, α is a harmonic 1 -form, and τ is harmonic (note that Y is not closed, so τ may be not constant). By classical results for harmonic 1 -forms, we have:

$$
\frac{1}{2} \Delta|\psi|^{2}=\frac{1}{2} \Delta\left(|\alpha|^{2}+|\tau|^{2}\right)=\left|\nabla_{L} \alpha\right|^{2}+|d \tau|^{2}+\frac{1}{2} \operatorname{Ric}(\alpha, \alpha) .
$$

Integrating on $L \times\{t\}$, we obtain the equivalence of formula (8):

$$
-\int_{\partial Y}\left\langle\mathcal{D}_{\mu_{X}} \psi, \psi\right\rangle d \sigma=\int_{Y}\left|\nabla_{L} \alpha\right|^{2}+|d \tau|^{2}+\frac{1}{2} \operatorname{Ric}(\alpha, \alpha) d y
$$

Lastly, let us compute the eigenvalues of $\mathcal{D}_{\mu_{X}}$. The constant vector $\frac{\partial}{\partial t}$ over ∂Y lies clearly in the kernel of $\mathcal{D}_{\mu_{X}}$. By Proposition 3.6, the other eigenvalue of $\mathcal{D}_{\mu_{X}}$ is $2 H$, with eigenspace generated by $n \times \frac{\partial}{\partial t}$. Over $\partial Y, s$ lies in $J T L \cap \mu_{X}$, hence is proportional to $n \times \frac{\partial}{\partial t}$. Consequently, $\mathcal{D}_{\mu_{X}} \psi=2 \mathrm{Hs}$ and

$$
-\int_{\partial Y} 2 H|s|^{2} d \sigma=\int_{Y}\left|\nabla_{L} \alpha\right|^{2}+|d \tau|^{2}+\frac{1}{2} \operatorname{Ric}(\alpha, \alpha) d y
$$

This equation, the positivity of the Ricci curvature and the positivity of H show that α vanishes and τ is constant. So we see that $\operatorname{dim} \operatorname{coker}\left(D, \nu_{X}\right)=1$, and by the constant rank theorem, $\mathcal{M}_{Y, X}$ is locally smooth and of dimension $\operatorname{dim} \operatorname{ker}\left(D, \nu_{X}\right)=g$.

Remark 4.14 Theorem 4.10 shows an equivalent result for deformations of special Lagrangian submanifold with metric conditions and boundary in a complex surface. Certainly, a direct proof would be shorter. But it seems to us that our proof has didactic virtues in our context of associative deformations.

5 Appendix

5.1 Proof of Lemma 3.7

In this paragraph, we suppose that the ambient manifold M has a torsion-free G_{2}-structure (ϕ, g). Consider Y an associative submanifold and ν its normal bundle in (M, g). We begin by the classical lemma

Lemma 5.1 For a torsion-free structure, the operator D defined in $⿴ 囗$ is formally selfadjoint, i.e for s and $s^{\prime} \in \Gamma(Y, \nu)$,

$$
\begin{equation*}
\int_{Y}\left\langle D s, s^{\prime}\right\rangle-\left\langle s, D s^{\prime}\right\rangle d y=-\int_{\partial Y}\left\langle n \times s, s^{\prime}\right\rangle d \sigma, \tag{9}
\end{equation*}
$$

where $d \sigma$ is the volume induced by the restriction of g on the boundary, and n is the inward unit normal vector of ∂Y.

Proof. The proof of this lemma is mutatis mutandis the one for the classical Dirac operator, see Proposition 3.4 in [3] for example. For the reader's convenience we give a proof of this.

$$
\begin{aligned}
\left\langle D s, s^{\prime}\right\rangle & =\left\langle\sum_{i} e_{i} \times \nabla_{i}^{\perp} s, s^{\prime}\right\rangle=-\sum_{i}\left\langle\nabla_{i}^{\perp} s, e_{i} \times s^{\prime}\right\rangle \\
& =-\sum_{i} d_{e_{i}}\left\langle s, e_{i} \times s^{\prime}\right\rangle+\left\langle s, \nabla_{i}^{\perp}\left(e_{i} \times s^{\prime}\right)\right\rangle \\
& =-\sum_{i} d_{e_{i}}\left\langle s, e_{i} \times s^{\prime}\right\rangle+\left\langle s, \nabla_{i}^{\top} e_{i} \times s^{\prime}+e_{i} \times \nabla_{i}^{\perp} s^{\prime}\right\rangle
\end{aligned}
$$

By a classical trick, define the vector field $X \in \Gamma(Y, T Y)$ by $\langle X, w\rangle=-\left\langle s, w \times s^{\prime}\right\rangle \forall w \in T Y$. Note that the product on the LHS is on $T Y$, and the one on the RHS is on ν. Now $-\sum_{i} d_{e_{i}}\left\langle s, e_{i} \times s^{\prime}\right\rangle=\sum_{i} d_{e_{i}}\left\langle X, e_{i}\right\rangle=\sum_{i}\left\langle\nabla_{i}^{\top} X, e_{i}\right\rangle+\left\langle X, \nabla_{i}^{\top} e_{i}\right\rangle=\sum_{i} \operatorname{div} X-\left\langle s, \nabla_{i}^{\top} e_{i} \times s^{\prime}\right\rangle$.
By Stokes we get

$$
\int_{Y}\left\langle D s, s^{\prime}\right\rangle d y=\int_{\partial Y}\langle X,-n\rangle d \sigma+\int_{Y}\left\langle s, D s^{\prime}\right\rangle d y=\int_{\partial Y}\left\langle s, n \times s^{\prime}\right\rangle d \sigma+\int_{Y}\left\langle s, D s^{\prime}\right\rangle d y
$$

which is what we wanted.
Now, consider L a subbundle of $\nu_{\mid \partial Y}$ of real rank equal to two and invariant under the action of $n \times$. Let $s^{\prime} \in \Gamma(Y, \nu)$ lying in $\operatorname{coker}(D, L)$. This means that for every $s \in \Gamma(Y, \nu)$ with $s_{\mid \partial Y} \in L$, we have $\int_{Y}\left\langle D s, s^{\prime}\right\rangle d y=0$. By the former result, we see that this equivalent to

$$
\int_{Y}\left\langle s, D s^{\prime}\right\rangle+\int_{\partial Y}\left\langle n \times s, s^{\prime}\right\rangle=0
$$

This clearly implies that $D s^{\prime}=0$, and $s_{\partial Y}^{\prime} \perp L$, because L is invariant under the action of $n \times$. So $s^{\prime} \in \operatorname{ker}\left(D, L^{\perp}\right)$. The reverse inclusion holds too by similar reasons.

5.2 Proof of Proposition 3.6

Proof. Let Y be an smooth compact associative with boundary, and L be a subbundle of $\nu_{\mid \partial Y}$ invariant under the action of $n \times$. It is straighforward to check that \mathcal{D}_{L} defined in Definition 1.9 does not depend on the chosen orthonormal frame $\{v, w=n \times v\}$. For every $\psi \in \Gamma(\partial Y, L)$ and f a function,

$$
\begin{aligned}
\mathcal{D}_{L}(f \psi) & =\pi_{L}\left(v \times \nabla_{w}(f \psi)-w \times \nabla_{v}(f \psi)\right) \\
& =f \mathcal{D}_{L} \psi+\left(d_{w} f\right) \pi_{L}(v \times \psi)-\left(d_{v} f\right) \pi_{L}(w \times \psi)=f \mathcal{D}_{L} \psi
\end{aligned}
$$

because $w \times L$ and $v \times L$ are orthogonal to L. Now, decompose the connexion ∇^{\top} on $T Y$ as $\nabla^{\top}=\nabla^{\top \partial}+\nabla^{\perp \partial}$ into its two projections along $T \partial Y$ and along the normal (in $T Y$) n-direction. For the computations, choose v and $w=n \times v$ the two orthogonal characteristic directions on $T \partial Y$, i.e $\nabla_{v}^{\top \partial} n=-k_{v} v$ and $\nabla_{w}^{\top \partial} n=-k_{w} w$, where k_{v} and k_{w} are the two principal curvatures. We have $\nabla_{v}^{\perp \partial} v=k_{v} n$ and $\left\langle\nabla_{w}^{\perp \partial} v, n\right\rangle=0$, and the same, mutatis mutandis, for w. Then, for ψ and $\phi \in \Gamma(\partial Y, L)$, using the fact that $T \partial Y \times L$ is orthogonal to L,

$$
\begin{aligned}
\left\langle\mathcal{D}_{L} \psi, \phi\right\rangle & =\left\langle\nabla_{w}^{\perp}(v \times \psi)-\left(\nabla_{w}^{\perp \partial} v\right) \times \psi-\nabla_{v}^{\perp}(w \times \psi)+\left(\nabla_{v}^{\perp \partial} w\right) \times \psi, \phi\right\rangle \\
& =\left\langle\nabla_{w}^{\perp}(v \times \psi)-\nabla_{v}^{\perp}(w \times \psi), \phi\right\rangle=-\left\langle v \times \psi, \nabla_{w}^{\perp} \phi\right\rangle+\left\langle w \times \psi, \nabla_{v}^{\perp} \phi\right\rangle \\
& =\left\langle\psi, v \times \nabla_{w}^{\perp} \phi-w \times \nabla_{v}^{\perp} \phi\right\rangle=\left\langle\psi, \mathcal{D}_{L} \phi\right\rangle
\end{aligned}
$$

To prove that the trace of \mathcal{D}_{L} is $2 H$, let $e \in L$ be a local unit section of L. We have $n \times e \in L$ too, and

$$
\begin{aligned}
\left\langle\mathcal{D}_{L}(n \times e), n \times e\right\rangle= & \left\langle v \times\left(\left(\nabla_{w}^{\top \partial} n\right) \times e\right)+v \times\left(n \times \nabla_{w}^{\perp} e\right), n \times e\right\rangle \\
& -\left\langle w \times\left(\nabla_{v}^{\top \partial} n\right) \times e-w \times\left(n \times \nabla_{v}^{\perp} e\right), n \times e\right\rangle \\
= & \left\langle v \times\left(-k_{w} w \times e\right)-w \times\left(-k_{v} v \times e\right), n \times e\right\rangle \\
& +\left\langle v \times\left(n \times \nabla_{w}^{\perp} e\right)-w \times\left(n \times \nabla_{v}^{\perp} e\right), n \times e\right\rangle \\
= & k_{w}+k_{v}-\left\langle n \times\left(w \times\left(n \times \nabla_{v}^{\perp} e\right)-v \times\left(n \times \nabla_{w}^{\perp} e\right)\right), e\right\rangle \\
= & 2 H-\left\langle\mathcal{D}_{L} e, e\right\rangle .
\end{aligned}
$$

This shows that trace $\mathcal{D}_{L}=2 H$.

5.3 Computation of D^{2}

Proof of Theorem 2.6. Before diving into the calculi, we need the following trivial lemma:

Lemma 5.2 Let ∇ be the Levi-Civita connection on M and R its curvature tensor. For any vector fields w, z, u and v on M, we have

$$
\begin{aligned}
\nabla(u \times v) & =\nabla u \times v+u \times \nabla v \\
R(w, z)(u \times v) & =R(w, z) u \times v+u \times R(w, z) v
\end{aligned}
$$

If Y is an associative submanifold of M with normal bundle $\nu, u \in \Gamma(Y, T Y), v \in \Gamma(Y, T Y)$ and $\eta \in \Gamma(Y, \nu)$, then

$$
\begin{aligned}
\nabla^{\top}(u \times v) & =\nabla^{\top} u \times v+u \times \nabla^{\top} v \\
\nabla^{\perp}(u \times \eta) & =\nabla^{\top} u \times v+u \times \nabla^{\perp} v
\end{aligned}
$$

where $\nabla^{\top}=\nabla-\nabla^{\perp}$ is the orthogonal projection of ∇ to $T Y$.
Proof. Let x_{1}, \cdots, x_{7} be normal coordinates on M near x, and $e_{i}=\frac{\partial}{\partial x_{i}}$ their derivatives, orthonormal at x. We have

$$
u \times v=\sum_{i}\left\langle u \times v, e_{i}\right\rangle e_{i}=\sum_{i} \phi\left(u, v, e_{i}\right) e_{i}
$$

so that at x, where $\nabla_{e_{j}} e_{i}=0$,

$$
\begin{aligned}
\nabla(u \times v) & =\sum_{i}\left(\nabla \phi\left(u, v, e_{i}\right)+\phi\left(\nabla u, v, e_{i}\right)+\phi\left(u, \nabla v, e_{i}\right)+\phi\left(\nabla u, v, \nabla e_{i}\right)\right) e_{i} \\
& =\sum_{i}\left(\phi\left(\nabla u, v, e_{i}\right)+\phi\left(u, \nabla v, e_{i}\right)\right) e_{i}=\nabla u \times v+u \times \nabla v
\end{aligned}
$$

because $\nabla \phi=0$. Now if u and v are in $T Y$, then we get the result after remarking that $(\nabla u \times v)^{\top}=\nabla^{\top} u \times v$, because $T Y$ is invariant under \times. The last relation is implied by $T Y \times \nu \subset \nu$ and $\nu \times \nu \subset T Y$. The curvature relation is easily derived from the definition $R(w, z)=\nabla_{w} \nabla_{z}-\nabla_{z} \nabla_{w}-\nabla_{[w, z]}$ and the differentiation of the vector product.

We compute D^{2} at a point $x \in Y$. For this, we choose normal coordinates on Y and $e_{i} \in \Gamma(Y, T Y)$ their associated derivatives, orthonormal at x. To be explicit, $\nabla^{\top} e_{i}=0$ at x. Let $\psi \in \Gamma(Y, \nu)$.

$$
\begin{aligned}
D^{2} \psi & =\sum_{i, j} e_{i} \times \nabla_{i}^{\perp}\left(e_{j} \times \nabla_{j}^{\perp} \psi\right) \\
& =\sum_{i, j} e_{i} \times\left(e_{j} \times \nabla_{i}^{\perp} \nabla_{j}^{\perp} \psi\right)+\sum_{i, j} e_{i} \times\left(\nabla_{i}^{\top} e_{j} \times \nabla_{j}^{\perp} \psi\right) \\
& =-\sum_{i} \nabla_{i}^{\perp} \nabla_{i}^{\perp} \psi-\sum_{i \neq j}\left(e_{i} \times e_{j}\right) \times \nabla_{i}^{\perp} \nabla_{j}^{\perp} \psi \\
& =\nabla^{\perp *} \nabla^{\perp} \psi-\sum_{i\langle j}\left(e_{i} \times e_{j}\right) \times\left(\nabla_{i}^{\perp} \nabla_{j}^{\perp}-\nabla_{j}^{\perp} \nabla_{i}^{\perp}\right) \psi \\
& =\nabla^{\perp *} \nabla^{\perp} \psi-\sum_{i\langle j}\left(e_{i} \times e_{j}\right) \times R^{\perp}\left(e_{i}, e_{j}\right) \psi
\end{aligned}
$$

Since $\left(e_{i} \times e_{j}\right) \times R^{\perp}\left(e_{i}, e_{j}\right)$ is symmetric in i, j, this is equal to

$$
\nabla^{\perp *} \nabla^{\perp} \psi-\frac{1}{2} \sum_{i, j}\left(e_{i} \times e_{j}\right) \times R^{\perp}\left(e_{i}, e_{j}\right) \psi
$$

The main tool for what follows is the Ricci equation. Let u, v be sections of $\Gamma(Y, T Y)$ and ϕ, ψ be elements of $\Gamma(Y, \nu)$.

$$
\left\langle R^{\perp}(u, v) \psi, \phi\right\rangle=\langle R(u, v) \psi, \phi\rangle+\left\langle\left(A_{\psi} A_{\phi}-A_{\phi} A_{\psi}\right) u, v\right\rangle
$$

where $A_{\phi}(u)=A(\phi)(u)=-\nabla_{u}^{\top} \phi$. Choosing $\eta_{1}, \cdots, \eta_{4}$ an orthonormal basis of ν at the point x, we get

$$
\begin{aligned}
-\frac{1}{2} \sum_{i, j}\left(e_{i} \times e_{j}\right) \times R^{\perp}\left(e_{i}, e_{j}\right) \psi= & -\frac{1}{2} \sum_{i, j, k}\left\langle\left(e_{i} \times e_{j}\right) \times R^{\perp}\left(e_{i}, e_{j}\right) \psi, \eta_{k}\right\rangle \eta_{k} \\
= & \frac{1}{2} \sum_{i, j, k}\left\langle R^{\perp}\left(e_{i}, e_{j}\right) \psi,\left(e_{i} \times e_{j}\right) \times \eta_{k}\right\rangle \eta_{k} \\
= & -\frac{1}{2} \pi_{\nu} \sum_{i, j}\left(e_{i} \times e_{j}\right) \times R\left(e_{i}, e_{j}\right) \psi \\
& +\frac{1}{2} \sum_{i, j, k}\left\langle\left(A_{\psi} A_{\left(e_{i} \times e_{j}\right) \times \eta_{k}}-A_{\left(e_{i} \times e_{j}\right) \times \eta_{k}} A_{\psi}\right) e_{i}, e_{j}\right\rangle \eta_{k}
\end{aligned}
$$

Using the classical Bianchi relation $R\left(e_{i}, e_{j}\right) \psi=-R\left(\psi, e_{i}\right) e_{j}-R\left(e_{j}, \psi\right) e_{i}$, the first part of the $\operatorname{sum}-\frac{1}{2} \pi_{\nu} \sum_{i, j}\left(e_{i} \times e_{j}\right) \times R\left(e_{i}, e_{j}\right) \psi$ is equal to

$$
\begin{array}{r}
I=-2 \pi_{\nu}\left(e_{1} \times R\left(e_{2}, \psi\right) e_{3}+e_{2} \times R\left(e_{3}, \psi\right) e_{1}+e_{3} \times R\left(e_{1}, \psi\right) e_{2}\right)= \\
-2 \pi_{\nu}\left(e_{1} \times R\left(e_{2}, \psi\right)\left(e_{1} \times e_{2}\right)+e_{2} \times R\left(e_{3}, \psi\right)\left(e_{2} \times e_{3}\right)+e_{3} \times R\left(e_{1}, \psi\right)\left(e_{3} \times e_{1}\right)\right)= \\
-2 \pi_{\nu}\left(e_{1} \times\left(R\left(e_{2}, \psi\right) e_{1} \times e_{2}+e_{1} \times R\left(e_{2}, \psi\right) e_{2}\right)+e_{2} \times\left(R\left(e_{3}, \psi\right) e_{2} \times e_{3}+e_{2} \times R\left(e_{3}, \psi\right) e_{1}\right)+\right. \\
\left.e_{3} \times\left(R\left(e_{1}, \psi\right) e_{3} \times e_{1}+e_{3} \times R\left(e_{1}, \psi\right) e_{2}\right)\right)= \\
-I+2 \pi_{\nu} \sum_{i} R\left(e_{i}, \psi\right) e_{i}
\end{array}
$$

which gives $I=\pi_{\nu} \sum_{i} R\left(e_{i}, \psi\right) e_{i}$. The Weingarten endomorphisms are symmetric, so that the second part of the sum is

$$
\frac{1}{2} \sum_{i, j, k}\left\langle A_{\left(e_{i} \times e_{j}\right) \times \eta_{k}} e_{i}, A_{\psi} e_{j}\right\rangle \eta_{k}-\frac{1}{2} \sum_{i, j, k}\left\langle A_{\psi} e_{i}, A_{\left(e_{i} \times e_{j}\right) \times \eta_{k}} e_{j}\right\rangle \eta_{k} .
$$

It is easy to see that the second sum is the opposite of the first one. We compute

$$
A_{\left(e_{i} \times e_{j}\right) \times \eta_{k}} e_{i}=-\left(\nabla_{i}^{\perp} e_{i} \times e_{j}\right) \times \eta_{k}-\left(e_{i} \times \nabla_{i}^{\perp} e_{j}\right) \times \eta_{k}+\left(e_{i} \times e_{j}\right) \times A_{\eta_{k}} e_{i} .
$$

But we know that an associative submanifold is minimal, so that $\sum_{i} \nabla_{i}^{\perp} e_{i}=0$. Moreover, differentiating the relation $e_{3}= \pm e_{1} \times e_{2}$, one easily checks that $\sum_{i} e_{i} \times \nabla_{j}^{\perp} e_{i}=0$. Summing, the only resting term is

$$
\sum_{i, j, k}\left\langle\left(e_{i} \times e_{j}\right) \times A_{\eta_{k}} e_{i}, A_{\psi} e_{j}\right\rangle \eta_{k} .
$$

We now use the classical formula for vectors u, v and w in $T Y$:

$$
(v \times w) \times u=\langle u, v\rangle w-\langle u, w\rangle v,
$$

hence

$$
\left(e_{i} \times e_{j}\right) \times A_{\eta_{k}} e_{i}=\left\langle A_{\eta_{k}} e_{i}, e_{i}\right\rangle e_{j}-\left\langle A_{\eta_{k}} e_{i}, e_{j}\right\rangle e_{i} .
$$

One more simplification comes from $\sum_{i}\left\langle A_{\eta_{k}} e_{i}, e_{i}\right\rangle=0$ for all k because Y is minimal, so our sum is now equal to

$$
-\sum_{i, j, k}\left\langle A_{\eta_{k}} e_{i}, e_{j}\right\rangle\left\langle e_{i}, A_{\psi} e_{j}\right\rangle \eta_{k}=-\mathcal{A} \psi .
$$

5.4 Computation of D^{2} in the Calabi-Yau extension

Proof of Lemma 4.13. We will use the simple formula $\nabla^{\perp} J s=J \nabla^{\top} s$ for all sections $s \in \Gamma(L, N L)$. For $(s, \tau) \in \Gamma(L, N L) \times \mathbb{R}$, and e_{i} local orthonormal frame on L,

$$
\begin{aligned}
D(s, \tau) & =\sum_{i, j}\left\langle e_{i} \times \nabla_{i}^{\perp} s, J e_{j}\right\rangle J e_{j}+\sum_{i}\left\langle e_{i} \times \nabla_{i}^{\perp} s, \partial_{t}\right\rangle \partial_{t}+\sum_{i} \partial_{i} \tau e_{i} \times \partial_{t} \\
& =J \sum_{i, j} \phi\left(e_{i}, \nabla_{i}^{\perp} s, J e_{j}\right) e_{j}+\sum_{i} \phi\left(e_{i}, \nabla_{i}^{\perp} s, \partial_{t}\right) \partial_{t}+J \sum_{i, j} \partial_{i} \tau\left\langle e_{i} \times \partial_{t}, J e_{j}\right\rangle e_{j},
\end{aligned}
$$

where we used that $e_{i} \times \partial_{t} \perp \partial_{t}$.

$$
\begin{aligned}
& =J \sum_{i, j} \Re \Omega\left(e_{i}, \nabla_{i}^{\perp} s, J e_{j}\right) e_{j}+\sum_{i} \omega\left(e_{i}, \nabla_{i}^{\perp} s\right) \partial_{t}+J \sum_{i, j} \partial_{i} \tau \phi\left(e_{i}, \partial_{t}, J e_{j}\right) e_{j} \\
& =J \sum_{i, j} \Re \Omega\left(e_{i}, J \nabla_{i}^{\top} \sigma, J e_{j}\right) e_{j}+\sum_{i} \omega\left(e_{i}, J \nabla_{i}^{\top} \sigma\right) \partial_{t}+J \sum_{i, j} \partial_{i} \tau \omega\left(J e_{j}, e_{i}\right) e_{j},
\end{aligned}
$$

where $\sigma=-J s \in \Gamma(L, T L)$.

$$
\begin{aligned}
& =-J \sum_{i, j} \Re \Omega\left(e_{i}, \nabla_{i}^{\top} \sigma, e_{j}\right) e_{j}+\sum_{i}\left\langle e_{i}, \nabla_{i}^{\top} \sigma\right\rangle \partial_{t}-J \sum_{i, j} \partial_{i} \tau\left\langle e_{j}, e_{i}\right\rangle e_{j} \\
& =-J \sum_{i, j} \operatorname{Vol}\left(e_{i}, \nabla_{i}^{\top} \sigma, e_{j}\right) e_{j}+\sum_{i}\left\langle e_{i}, \nabla_{i}^{\top} \sigma\right\rangle \partial_{t}-J \sum_{i} \partial_{i} \tau e_{i},
\end{aligned}
$$

since $\Re \Omega$ is the volume form on $T L$. It is easy to find that this is equivalent to

$$
D(s, \tau)=-J\left(* d \sigma^{\vee}\right)^{\vee}+\left(* d * \sigma^{\vee}\right) \partial_{t}-J(d \tau)^{\vee}
$$

and so $D^{\vee}\left(\sigma^{\vee}, \tau\right)=\left(-* d \sigma^{\vee}-d \tau, * d * \sigma^{\vee}\right)$. Now, since $d^{*}=(-1)^{3 p+1} * d *$ on the p-forms, one easily checks the formula for D^{2}.

References

[1] S. Akbulut, S. Salur, Deformations in G_{2} manifolds, Adv. Math. 217 no. 5 (2008), 2130-2140.
[2] S. Akbulut, S. Salur, Calibrated manifolds and gauge theory, J. Reine Angew. Math. 625 (2008), 187-214.
[3] B. Booss, K. Wojciechowski, Elliptic Boundary Problems for Dirac Operators, Birkhäuser Verlag, Boston, 1993.
[4] R. Bryant, S. Salamon, On the construction of some complete metrics with exceptional holonomy, Duke Math. J. 58 no. 3 (1989), 829-850.
[5] A. Butscher, Deformations of minimal Lagrangian submanifolds with boundary, Proc. Amer. Math. Soc. 131 (2002), 1953-1964.
[6] D. Gayet, F. Witt, Deformations of associative submanifolds with boundary, arXiv:0802.1283v2, to appear in Adv. Math.
[7] M. Fernández, A. Gray, Riemannian manifolds with structure group G_{2}, Annali Mat. Pura ed Applic. 132, (1983), 19-45.
[8] A. Kovalev, J. Lotay, Deformations of compact coassociative 4-folds with boundary, J. Geom. Phys. 59 (2009), no. 1, 63-73.
[9] R. Harvey, H. Lawson, Calibrated geometries, Acta Math. 148, (1982), 47-157.
[10] R. Harvey, H. Lawson, Duality of positive currents and plurisubharmonic functions in calibrated geometry, Am. J. Math. 131, no. 5, (2009), 1211-1239.
[11] H. Hofer, V. Lizan, J-C Sikorav, On genericity for holomorphic curves in fourdimensional almost-complex manifolds, J. Geom. Anal., 7, no. 1 (1997), 149-157.
[12] D. Joyce, Compact manifolds with special holonomy, OUP, Oxford, 2000.
[13] D. Joyce, Special Lagrangian submanifolds with isolated conical singularities. II. Moduli spaces. Ann. Global Anal. Geom. 25 (2004), 4, 301-352.
[14] N. C. Leung, Topological Quantum Field Theory for Calabi-Yau threefolds and G2manifolds, Adv. Theor. Math. Phys. 6 (2002) 575-591.
[15] A. Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci. Paris Ser A-B 257, (1963), 7-9.
[16] R. McLean, Deformations of calibrated submanifolds, Comm. Anal. Geom. 6 no. 4 (1998), 705-747.
[17] J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math., 88, no. 1 (1968), 62-105.
D. Gayet

Université de Lyon, CNRS, Université Lyon 1, Institut Camille Jordan, F-69622 Villeurbanne Cedex, France
e-mail: gayet@math.univ-lyon1.fr

