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Abstract. We use DEM simulations on a simple 2D model of a granular material to test for the applicability of the classical
concepts of elastoplasticity ( e.g., yield criterion, flow rule) to the response to stress increments of arbitrary directions. We
apply stress probes in a three-dimensional stress space to various intermediate states (investigation points) along the biaxial
compression path, and pay special attention to the influence of the magnitude of the increments. The elastic part of the material
response is systematically identified by building the elastic stiffness matrix of well-equilibrated configurations. The influences
of the contact stiffness level and of the dominant strain mechanism, contact deformation (I) or network rearrangement (II), are
considered. Stress increments sharing the same principal directions asthe stress state in the investigation point comply with
a standard (single-mechanism) elastoplastic model with a Mohr-Coulomb criterion and well-defined flow rules and plastic
moduli. Stress increments with principal axis rotation entail a response which is satisfactorily modeled by superimposing
3 plastic mechanisms, 2 of them symmetrically corresponding to shear stresses of both signs. The full dependence of strain
increments on stress increments is thus parametrized with three flow rules,two of which are essentially symmetric.

Keywords: Granular materials, Discret Element Method, quasi-static deformation, incremental response, stress probing, principalstress axes
rotation
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INTRODUCTION

Elasto-plastic models are insofar the most widely spread continuum models in the literature and in the engineering
practice concerned with granular materials under quasi-static loading conditions [1, 2]. These models have been
insofar tested, and their parameter fitted, almost exclusively on the basis of phenomenological observation and one
still counts a relatively small number of studies investigating the microscopic origin of the macroscopically observed
plastic behaviour by discrete, grain-level simulations [3, 4, 5, 6].

Testing the response of representative elementary volumes(REV’s) of a given material to “small” stress or strain
increments, superimposed in various directions on an equilibrium state is perhaps the most appropriate procedure
in order to assess the applicability of a continuum model. This procedure, known under the name of stress probing,
is anyway accompanied by some remarkable practical difficulties among which the most important is that one must
dispose of as many “identical” specimens as the stress increment directions to be explored (the stress probes). This is
the reason why physical experiments of this kind are rare andassessing applicability of elastoplasticity for granular
materials makes no exception: the only experimental work following this approach, to the author’s knowledge, is
the one by Royis and Doanh in 1998 [7] in which the stress probing procedure is applied on specimens issued from
CD (Consolidated Drained) triaxial tests on Hostun sand. Using discrete simulations of granular material instead of
physical specimens in the stress probing procedure was firstproposed by Bardet [8, 9] in 1989 and offers not just an
important work-around to these practical difficulties but also endows the stress probing technique with a remarkable
flexibility, as we try to show in this work. A more recent studyusing the stress probing procedure via DEM simulations
was authored by Calvetti and coworkers who focused on the elastoplastic behaviour of 3D specimens (assemblages of
spheres), subjected to axisymmetric loading history (triaxial test) and stress probes with the same principal directions



as the triaxial test [4, 10, 11]. Similar tests were run by Alonso-Marroqúın and coworkers in 2D on polygonal
particles [3, 12]. A substantial agreement can be found, among these authors, on the elastoplastic characters of the
response of the tested materials, at small strains and with monotonous loading histories from virgin isotropically
consolidated states. Two main features were confirmed in particular: the effectiveness, under the considered test
conditions, of plastic models based on a single mechanism ofplastic deformation and the “non associated” character
of the flow rule.

In this work we present some preliminary results of a study which aims at assessing or clarifying other aspects of the
elastoplastic response of granular materials, via a similar numerical implementation of the stress probing procedure.
We use 2D specimens (assemblages of circular disks) subjected to a standard biaxial compression and then tested
against stress probes in various directions of the stress space. The specificity of this work are the following: (i) the study
is parametric in that we widen the range of the model parameters to access a number of significantly different classes
of mechanical responses; (ii) we systematically test the dependence of the incremental response on the size of the
stress increments; (iii) stress probing is performed in a three-dimensional stress space, i.e., we apply stress increments
in the plane spanned by principal axes as well as stress increments inducing rotation of the latter (i.e., increments
adding amounts of shear stress on principal planes). One motivation of our study is the modelling of localisation
in granular media, where the applicability of such criteriaas Rudnicki and Rice’s may depend onsubtleties of the
incremental constitutive description[22]. As regards point (iii), in particular, let us remark that localisation appears to
be crucially sensitive to the stress increments inducing rotation of principal axes, as is the case when some simple
shear is superimposed on a biaxial compression [21].

In the remainder of this section we recall the basic ideas of the constitutive model to be assessed. Eventually, we
describe the model material and the biaxial test procedure characterising the loading history of the specimens prior to
stress probes. The next two sections present our preliminary results concerning the response to stress increments in
the plane of principal stress axes and in a general three-dimensional stress space, respectively. The future steps of this
study are outlined in the concluding section.

Notation

The formulas we will be needing in the following use the standard, compact notation convention of continuum
mechanics. For ease of reading we will reserve boldface Greek characters to 2nd-order tensors and boldface Latin
characters for Euclidean vectors. Interposed dots betweentwo vectors or two tensors will denote the standard scalar
product in the inherent linear spaces. As often is the case when dealing with frictional materials, the sign convention
adopted here for the Cauchy stress tensorσσσ and for the infinitesimal strain tensorεεε is such that compressive states are
measured by positive values of the diagonal elements of stress and strain matrices.

Constitutive model

In most common scenarios of interest in civil engineering, granular materials are involved as large masses undergo-
ing quasistatic deformation processes and exhibiting a variety of mechanical behaviours, from solid-like to fluid-like
depending on the importance of the rearrangement of the contact network among the various microscopic ingredient
of the macroscopic deformation. In this work we focus on the behaviour for small amounts of deformation from a
virgin state, i.e.,‖εεε‖ ∼ 0.005, whereεεε is the infinitesimal strain tensor. We postpone to a further publication the anal-
yses for higher deformation levels. Despite some measurable network rearrangement can appear and even contribute
substantially to the macroscopic deformation [13, 15, 16],it is commonly accepted that use of continuum models for
solids is appropriate within this deformation threshold, provided the constitutive paradigm can take into account the
strong irreversibilities and non-linearities that appearsince the inception of deformation.

Classical plasticity models were imported in soil mechanics from metal plasticity and adapted to frictional-cohesive
materials [17]. A main contribution to the understanding offrictional-cohesive materials was then given by the authors
of a class of models grouped under the name of critical state soil mechanics (e.g., [18, 19]). The Cam-clay model and
its ancestor the Granta-gravel model were prototypes of this family.

Only a few basic ingredients of the elastoplastic theories for granular materials need to be recalled here.In primis
one usually mentions the hypothesis of rate-independence of the constitutive behaviour. The latter expresses the fact
that the deformation process does not depend on physical time. The corresponding mathematical statement is that the



strain rate is a homogeneous function of degree 1 of the stress rate, i.e.,

∀λ > 0 : ε̇εε(λ σ̇σσ) = λ ε̇εε(σ̇σσ) . (1)

Ensuring quasi-static conditions implies the use of very low time rates, at which this hypothesis is generally satisfied.
In terms of stress incrementsδσσσ and strain incrementsδεεε, Eq. 1 authorises to write that

∀λ > 0 : δεεε(λ δσσσ) = λ δεεε(δσσσ) , (2)

provided incrementsδσσσ andδεεε are small enough to be considered as infinitesimal. How smallis “small” is one of the
questions raised in this work and we will make use of Eq. 2 as a smallness criterion to filter out “non infinitesimal”
stress and strain increments in our experimental procedure.

A second ingredient of plasticity we are interested in is theso-calledpartition hypothesis. We refer to the assumption
that the strain incrementsδεεε can be decomposed additively into elastic strain increments δεεεE and plastic strain
incrementsδεεεP:

δεεε = δεεεE +δεεεP (3)

The former are computed according to a properly defined elastic compliance tensorC, i.e.,

δεεεE = Cδσσσ (4)

and relate to the amount of deformation workσσσ ·δεεε that is being reversibly stored as elastic energy. The latter relates to
the amount of deformation work that is being dissipated and should fit the plastic constitutive assumption as specified
here below in terms of ayield criterionand aplastic flow rule.

The yield criterion gives the recipe to compute plastic strain increments and distinguishes between “active” and
“inactive” stress increments with respect to the mechanismresponsible for plastic strains. With some simplification in
the terminology we refer here to the yield criterion as prescription

‖δεεεP‖ =











1
EP δσσσ ·ξξξ if f (σσσ) = 0 and δσσσ ·ξξξ ≥ 0
0 if f (σσσ) = 0 and δσσσ ·ξξξ < 0
0 if f (σσσ) < 0

(5)

in which the yield locusf (σσσ) = 0 has outward oriented unit normalξξξ := ∂ f
∂σσσ ‖

∂ f
∂σσσ ‖−1 and bounds the elastic domain

in stress space. According to the above criterion, the only stress increments that succeed in producing plastic strain
increments are those applied when the current stress stateσσσ has reached the yield locus, and that point outward from
the elastic domain. If these two conditions are met, the corresponding plastic strain increment will be proportional to
the active part of the stress increment, i.e. the componentδσσσ ·ξξξ , through the constantEP called plastic modulus.

Finally, and once more loosely speaking, the plastic flow rule assigns a unique direction in stress space for all plastic
strain increments, i.e., independently on the stress increment direction:

∀δσσσ : δ εεεP(δσσσ) = πππ(σσσ)‖δεεεP(δσσσ)‖ (6)

where the tensorπππ, ‖πππ‖ = 1, is calledplastic flow direction.
The particular yield criterion discussed in this work is of the Mohr-Coulomb type: we define functionf in Eq. 5

with the expression
f = |m ·σσσn|−µsn ·σσσn , n ·m = 0 (7)

whose terms can be described by rephrasing a few elements of Batdorf and Budiansky’s plastic slip theory for
polycrystalline materials [20] in the case of materials with particulate, frictional microstructure. Plastic strains are
the macroscopic effect of slips along families of micro-planes inside the specimen (slip planes), characterised in Eq.5
by an in-plane vectorm (the slip direction) and by the unit normaln. Plastic slip is activated when the threshold of
tangential stress is reached on the inherent slip plane. At the scale of the REV this mechanism is reflected by a yield
criterion f = 0 depending on a friction parameterµs. The latter is not a material constant but a parameter that evolves
so to ensureδ f = 0 during plastic loading (cf. Eq. 5). Implicit assumptions in Eq. 7 are thatn ·σσσn ≥ 0, as customary
for non-cohesive granular materials, and that all activated slip planes hold nearly the same orientation.

We remark that some algebra leads to

ξξξ = ±1
2
(m⊗n+n⊗m)−µsn⊗n (8)



where the sign of the first term on the r.h.s. depends on the waythe modulus operator has been resolved in Eq. 7. Using
Eq. 8 with this caution we obtain, finally, a more compact formfor the first equality in Eq. 7, i.e.,

f = ξξξ ·σσσ . (9)

SPECIMEN PREPARATION

We characterise here the different types of specimens whoseresponse under stress probes will be discussed in the
following sections. The specimens are grouped into classes, based on non-dimensional control parameters, reflecting
both the qualitative type of deformation response and the loading history.

Model material

The samples in use in our simulations consist of 5600 disks with diameters distributed uniformly between 0.7d
and 1.3d, whered is the average, representative diameter. All disks are assumed to be made of a homogeneous
material, andm denotes the mass of particles of diameterd. The disks are initially arranged in rectangular cells
whose wedges align along direction 1 and direction 2: the first is the “confinement” or “lateral” direction and the
latter is the “axial” or “vertical” direction, in referringto the usual laboratory conditions of biaxial/triaxial testing.
The cell can deform into an arbitrary parallelogram in orderto accommodate the generic configuration of a two-
dimensional cell undergoing homogeneous deformations at small-strains. Bi-periodicity is obtained, numerically,
by an adaptation to DEM simulations of Parrinello-Rahman and Lees-Edwards techniques for molecular dynamics
simulations (cf. [23, 24]). By these techniques we implement either mixed boundary conditions (for axial compression
during biaxial tests, performed at constant axial strain rate and constant lateral pressure) or simple stress-rate-
controlled boundary conditions (for isotropic compression during biaxial tests and for the application of stress probes).
Samples are regarded in our analyses as REV’s and are characterised macroscopically by the components of the stress
tensorσσσ and of the infinitesimal strain tensorεεε. The former are computed according to the classical Love formula
while the latter are retrieved, as usual, as linearised strain measures for the cell.

We use a standard linearly-elastic Coulomb-friction contact model: the normal contact force writesFN = KNhN
whereKN is the normal contact stiffness andhN ≥ 0 is the (numerical) interpenetration of contacting disks;FT = KThT
relates the tangential contact forceFT to the relative tangential displacementhT at contact (computed incrementally)
through the tangential contact stiffnessKT ; finally |FT | is bounded above byµFN whereµ is the contact friction
coefficient. Here we chooseKT = KN and µ = 0.3. An additional viscous forceFα

N = αNḣN adds to the elastic
forceFN as customary in DEM simulations, merely as a convenient means to accelerate the approach to equilibrium
configurations. To this purpose we setαN = 0.9

√
2KNm, where

√
2KNm is the critical value for a two-particle system

with massesm interactingvia a spring of stiffnessKN. Our focus being on constitutive information, gravity or other
non-inertial volume actions are not considered here.

Loading history

The specimens to which stress probes are applied were first subjected to a standard procedure of strain-rate-
controlled biaxial compression up to the desired stress ratio ς = Q/P, whereQ is the final value of the axial pressure
σ22 andP is the value of confining pressure to which the lateral pressure σ11 is set during axial loading. Prior to
axial loading the specimen were consolidated under isotropic stress conditions up to pressureP, starting from loose,
randomly agitated “granular gas” configurations.

According to the loading history given above and to the previous characterisation of the model material, dimensional
analysis leads to the identification of five independent dimensionless parameters that characterise separate classes of
“equivalent” specimens: (i) stiffness parameterκ = KN/P setting the scale of contact deflections, ash/d ∝ κ−1; (ii)
stress ratioς = Q/P, as an indicator of the deviatoric stress; (iii) friction coefficient µ ; (iv) the damping parameter
ζ = αN/

√
2KNm and (v) inertia parameterγ = ε̇22

√

m/P; (vi) tangential to normal stiffness ratioKT/KN. We use
ζ = 0.9, as anticipated previously, and setγ = 10−4 in order to approach quasistatic conditions with sufficientaccuracy.



TABLE 1. Biaxial test families and values of
variable parameters.

Biaxial tests µiso κ ς (ca.)

A3
0

103 1.2,1.4,1.6,1.8
A4 104 1.2,1.4,1.6,1.8
A5 105 1.8,1.9

B3
0.3

103 1.2,1.4,1.6,1.8
B4 104 1.2,1.4,1.6,1.8
B5 105 1.2,1.4,1.6,1.8

The friction coefficient is also fixed, i.e.µ = 0.3, as well as ratioKT/KN = 1, but we letκ andς vary as detailed further
on.

To further widen the spectrum of specimen classes we play with the value of contact friction coefficientµiso adopted
during isotropic consolidation [15]. The only possible choice in real laboratory experiences is of courseµiso = µ but
the numerical model allows us to setµ and µiso < µ independently from each other. This possibility (supplemented
with an “agitation” stage [15]) can be used as a robust procedure to obtain specimens that are “macroscopically
indistinguishable”, i.e. share the same solid fractionΦ, but differ markedly in terms of microstructures and deformation
responses [13, 14, 16]. “Lubricated conditions” during isotropic consolidations (i.e.,µiso = 0) drive the material
towards high values of the coordination numberz; testing the material in this state gives a characteristic deformation
response at small strains where the leading microscopic mechanism is the deformation at contacts (deformation
response of type I). Conversely, “non-lubricated conditions” (i.e.,µiso = µ), with some vibration, will result into much
lower coordination numbers and lead to a deformation response dominated by a continuous network rearrangement due
to microscopic instabilities (deformation response of type II). The biaxial compression tests considered in this work
were all performed with friction coefficientµ = 0.3, irrespective of the valueµiso employed in sample preparation
(i.e., during isotropic compression).

The parameters used in this work are reported in Table 1. The label A3 on the first line refers to a family of
ten “equivalent” biaxial tests characterised byµiso = 0 andκ = 103. They are equivalent in the sense that their
preparation procedures differ just by the initial random velocity field at start up of the isotropic consolidation. The
values of stress ratioς = 1,2, 1.4, 1.6, 1.8 at the end of the same line refer to the configurations selected during axial
loading, designated as specimens for the stress probing procedure. The following lines in the same table report the
same information but relative to other choices of parameters κ andµiso. Fig. 1 illustrates the deformation response
during axial loading for biaxial tests of families A3, A4 andA5 (type I deformation response) while Fig. 2 gives the
same plots for biaxial tests of families B3, B4 and B5 (type IIdeformation response). A comparison between the two
figures allows to visualise the macroscopic effect of the twomicroscopic deformation mechanisms mentioned above.
The small-strain range of curves in Fig. 1 is sensitive to thestiffness parameterκ : as shown in [16], strains are actually
inversely proportional toκ , for a given stress ratioς . For the cases in Fig. 2, on the other hand, one notices that the
macroscopics behaviour, already at small strains, resultsfrom microscopic instabilities and does not depend on the
stiffness parameterκ .

BIAXIAL STRESS PROBES

For each test family in the Table 1, at least two of the ten equivalent biaxial tests have been considered insofar for
the anlysis of the incremental response: the respective specimens were testedvia stress probing in the above range
of stress ratios. We present our results discussing case A4 (κ = 104, type I deformation regime,ς ≃ 1.2, 1.4, 1.6,
1.8 ) claiming that the qualitative features that we observed were found repeatable in all the other cases, despite the
change in control parameters. The section reports on stressprobes applied in the plane of principal stress axes, which
correspond in our case to a combination of increments of lateral stressσ11 and of axial stressσ22. It will be convenient
to refer to the representations in the planesσ11 vs.σ22 or ε11 vs.ε22 as to representations in thebiaxial stress planeor
in thebiaxial strain plane, respectively.
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Incremental response

The rose of stress increments applied to the specimens is shown in Fig. 3: it consists in twelve increment levels
linearly distributed from‖δσσσ‖ = 2

√
2P×10−3 to 12×2

√
2P×10−3 along sixteen orientations in the biaxial stress

plane, labelled from 0A to 0P, with constant angular spacing2π/16. The elastic response to the increments in Fig. 3
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is plotted in Fig. 4 for the specimen with lowest and highest values of stress ratio: the material exhibits a marked
elastic anisotropy slightly evolving during the axial loading (i.e., fromς ≃ 1.2 to 1.8). The elastic strain increments
are assumed to be given by the expression in Eq. 4, where the components of the elasticity tensorC are computed, by
assembling the contribution of the contact stiffnessKN andKT across the contact network [14]. To test the partition
hypothesis we identify plastic strain increments to the difference

δεεεP = δεεε −δεεεE (10)

and checka posterioriwhether or not this definition is effective in giving evidence of a plastic flow rule (cf. Eq 6) and
yield criterion (cf. Eq 5).

Fig. 5 shows that the strain incrementsδεεεP neatly align along a direction in the biaxial strain plane, confirming the
applicability of a flow rule. We measure in particular counterclockwise angles of the plastic strain increment direction
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with respect to directionε11, ranging from 132.2◦ to 138.3◦ (for ς ≃ 1.2 and 1.8, resp.).
To investigate the existence of a yield criterion we consider the caseς ≃ 1.2 and plot in Fig. 6 the norm‖δεεεP‖ of the

plastic strain increment against the angle of the stress increments in the biaxial stress plane. As for the plastic strain
increments, stress increment angles in the biaxial plane are measured counterclockwise, with respect to direction
“11”. The experimental points in Fig. 6 are fitted with a truncated cosine function, expressive of the criterion in
Eq 5. The corresponding phase angle (132.3◦ in the figure) gives the direction of the normalξξξ to the supposed yield
criterion in the biaxial stress space. Theload direction, i.e., the direction associated to the current value of the stress
tensorσσσ is almost orthogonal toξξξ , as expected (cf. Eq 9). On the other hand the plastic flow direction πππ is close
but not at all coincident with the normalξξξ to the yield criterion (separated of about 10◦), giving evidence of the non
associated character of the flow rule. These two qualitativefeatures were systematically found in all investigated cases:
for ς ≃ 1.2,1.4,1.6 and 1.8, as shown it upper-right quadrant of the same figure, and over the whole range of stress
increments. The angles for the direction of the normalξξξ to the yield criterion and for the flow directionπ are compared
to the load direction in Table 2.

Stress increment size

An important question in the stress probing procedure concerns the appropriate size of the strain increments to
apply in order to get measurements that are at the same time little affected by systematic errors and representative of
the infinitesimal behaviour. To discuss this point we represent in Fig. 7 the norm‖δεεεP‖ of the plastic strain increments
versus the “active” component of the stress increment, i.e., the positive values of the scalar productδσσσ ·ξξξ . Fitting
the yield criterion in Eq. 5 requires selecting an observation window in which the relation between the norm‖δεεεP‖
of the plastic strain increment and the active component of the stress increment can be fitted as linear. The plot in
Fig. 7 suggests that, for specimens obtained from biaxial tests of type A4, the size should not exceed the eight-level of
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increment considered here (i.e.,‖δσσσ‖= 8×2
√

2P×10−3 ≃ 2.263P×10−2). According to the result analysed insofar
by the authors, this range seems also to depend sensitively on the stiffness parameterκ : the higher the value of the
stiffness parameter, the smaller the maximal allowed norm‖δσσσ‖/P of the stress increment amplitude. On the other
hand it is not advisable to reduce as much as numerically possible the size of the increments, as the caseς ≃ 1.8 in the
same figure shows: evidence of a residual elastic response isgiven by the absence of plastic deformation increments
in response to very small stress increments. This source of systematic errors can be corrected easily provided “large
enough” stress increments are used. Most important this type of systematic error can be explained, mechanically, on
the basis of the procedure to which the specimen were subjected prior to to stress probing. We remark in particular
that, after the expected value of stress ratioς is attained during the axial compression, the specimen is left under
constant axial and lateral stresses for the time necessary to reach statical equilibrium, not to distort the incremental
response during stress probing. A small parasite effect of this intermediate “creep” transition before stress probingis
that part of the plastic memory, stored at contact between particles, is erased due to a slight unavoidable rearrangement
of the contact network. We expect this effect to gradually fade out as slower and slower numerical tests are performed,
in order to approach closer to the quasistatic limit ofγ → 0. The appreciable non-zero intercept of the (dashed)
interpolation line for caseς ≃ 1.8 in Fig. 7 can be seen as the macroscopic signature of this mechanism. In the end,
an appropriate choice of the size of the increment for stressprobing seems to bounded both above, by a linearity
requirement, and below, due to a parasite effect of residualelastic behaviour.

ROTATION OF PRINCIPAL STRESS AXES

The same set of specimens considered in the previous sectionwas tested under stress probes inducing rotation of
principal stress axes. We discuss here a few preliminary results, and possible interpretations, that we expect to study
systematically on a larger base. The stress space to which werefer is now the general stress space with coordinates
σ11, σ22 and σ12, whereσ12 is the third component of the stress tensor, dismissed insofar and corresponding to
tangential stresses along the planes orthogonal to the lateral and axial direction. Analogously, the deformation response
is measured in a three-dimensional strain space with coordinatesε11, ε22 andε12.

Plastic flow direction

For this preliminary analysis, the stress increments lay ina specific plane of the stress space: the plane spanned
by the direction of the normal to the yield criterionξξξ , detected previously, and by the direction associated to the



TABLE 2. Load direction, normal to yield criterion and flow direction for tested specimens from
two biaxial tests in each family of Table 1: averaged values over the rangeof increment sizes.

family A3
biaxial test A3-1 biaxial test A3-2

ς 1.198 1.402 1.602 1.801 1.198 1.400 1.599 1.801
arctan(σ22/σ11) (deg) 50.2 54.5 58.0 61.0 50.2 54.5 58.0 61.0
arctan(ξ22/ξ11) (deg) 133.1 133.3 134.7 137.1 132.6 132.6 134.0 137.2
arctan(π22/π11) (deg) 138.7 142.4 143.4 143.8 138.4 141.6 141.7 141.7

family A4
biaxial test A4-1 biaxial test A4-2

ς 1.228 1.404 1.605 1.803 1.228 1.403 1.604 1.802
arctan(σ22/σ11) (deg) 50.8 54.5 58.1 61.0 50.8 54.5 58.1 61.0
arctan(ξ22/ξ11) (deg) 138.6 143.8 148.9 151.7 146.8 147.9 149.5 150.1
arctan(π22/π11) (deg) 132.2 133.6 135.6 138.3 135.6 136.8 138.3 141.8

family A5
biaxial test A5-1 biaxial test A5-2

ς 1.799 1.914 1.919 1.929 1.782 1.905 1.929 1.929
arctan(σ22/σ11) (deg) 60.9 62.4 62.5 62.6 60.7 62.3 62.6 62.6
arctan(ξ22/ξ11) (deg) 153.2 154.0 154.0 155.3 153.2 154.4 152.9 153.4
arctan(π22/π11) (deg) 138.7 142.4 143.4 143.8 138.4 141.6 141.7 141.7

family B3
biaxial test B3-1 biaxial test B3-2

ς 1.199 1.401 1.601 1.801 1.200 1.401 1.600 1.800
arctan(σ22/σ11) (deg) 50.2 54.5 58.0 61.0 50.2 54.5 58.0 60.9
arctan(ξ22/ξ11) (deg) 140.8 145.4 149.4 152.8 140.7 144.9 148.9 152.8
arctan(π22/π11) (deg) 130.3 133.9 137.9 141.1 130.8 133.9 137.5 141.9

family B4
biaxial test B4-1 biaxial test B4-2

ς 1.202 1.401 1.600 1.800 1.202 1.403 1.601 1.800
arctan(σ22/σ11) (deg) 50.2 54.5 58.0 60.9 50.2 54.5 58.0 60.9
arctan(ξ22/ξ11) (deg) 141.5 145.8 146.2 — 140.1 146.3 149.0 152.2
arctan(π22/π11) (deg) 130.8 135.0 136.5 141.5 131.3 136.0 139.6 140.9

family B5
biaxial test B5-1 biaxial test B5-2

ς 1.200 1.399 1.605 1.799 1.206 1.401 1.600 1.804
arctan(σ22/σ11) (deg) 50.2 54.4 58.1 60.9 50.3 54.5 58.0 61.0
arctan(ξ22/ξ11) (deg) 142.1 145.1 148.9 152.5 141.2 146.4 150.0 152.0
arctan(π22/π11) (deg) 133.4 135.2 137.4 140.7 131.9 136.1 138.9 142.2

shear stress componentσ12. This simplifying choice ensures anyway that we have accessto the highest values of
plastic deformation increments. As was the case for biaxialstress probing, the increments are applied along sixteen
equally distributed directions of our stress plane, from 1Ato 1P, and vary in amplitude from‖δσσσ‖ = 2

√
2P×10−3

to ‖δσσσ‖ = 12×2
√

2P×10−3 (see Fig 8). Points of this plane will be mapped by coordinates computed asσσσ ·ξξξ/P
and

√
2σ12, where the factor

√
2 is adopted, due to the tensorial nature ofδσσσ , so to visualise families of equal-norm

increments as circles.
In order to discuss the validity of the partition hypothesisunder rotation of principal stress axes, we refer once more

to Eq. 10 as a definition for plastics strain increments. The consequence of this choice is shown in Fig. 9, for a specimen
with stress ratioς ≃ 1.8 and loading history from a biaxial test of family A4. Elastic and plastic strain increments are
plotted in coordinates of type

√
2δε ·πππ andδε12, i.e., we study exclusively the components of strain increment along

a plane parallel to the plastic flow directionπππ, found during biaxial stress probing, and orthogonal to thebiaxial strain
plane. Due toπππ and for reasons of symmetry of the mechanical response, the plastic strain increments are expected to
be confined to this plane. Fig. 10 confirms this expectation showing that the plastic response is negligible along a third
plane, chosen orthogonal to the biaxial strain plane and to the one in Fig. 9.

The plot in Fig. 9 completes the one in Fig. 5 (ς ≃ 1.8) and shows, compared to it, that stress increments inducing
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rotation of principal stress axes cause, at least, loss of uniqueness of the plastic flow direction. One notices in Fig. 9
as many plastic strain increment directions as the number ofstress increment directions: dotted lines in the figure
are drawn on naked-eye visible experimental point to show that plastic strain increments originated by proportional
stress increments align along precise directions. The question arises whether or not this kind of incremental behaviour
is representative of a non-trivial flow rule, or should be modelled in a different constitutive framework than the
elastoplastic one. The issue of the flow rule cannot be treated anyway isolated from that of the yield criterion, which
is considered next.

A final remark on Fig. 10 is that the envelopes of the plastic response, traced in figure for three different values of
the stress increment, obey loosely the symmetry with respect to the axis corresponding to directionπππ. It is questionable
whether or not the appreciable deviation from symmetry would disappear for REV’s of larger sizes.
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11) = 138.3◦ +90◦,

cf. Table 2).

Yield criterion

The shapes of the envelopes of the elastic and plastic responses are represented in Fig. 11-a for a specimens selected
at stress ratioς ≃ 1.2 from a biaxial test of family A5. Due to the low level of stress ratio, the plastic envelope is still
bounded by the elastic one and the plastic strain incrementsrelated to stress increments of pure shear are dominant
with respect to “biaxial” strain increment (parallel toπππ). The open shape of the plastic strain envelope denies the
existence of a uniquely defined flow rule (cf. Fig 9).



The behaviour shown in fig. 11-a can still be modelled anyway as elastoplastic, provided one drops the assumption
of a unique mechanism of plastic deformation [26, 27]. We postpone a detailed exposition of our idea to a further
publication and give here an example of the procedure to fit the case in the figure with a first generalisation of
the classical elastoplastic framework. We consider in particular the possibility of three distinct and independent
plastic mechanisms of deformation: a first mechanism detectable with biaxial stress probes and two pseudo-symmetric
additional mechanisms activated by shear stress increments of positive and negative values, respectively. The partition
hypothesis now writes in the form

δεεε = δεεεE +δεεεP
I +δεεεP

II +δεεεP
III (11)

where the amplitudes of the three separate plastic increments on the r.h.s. are given by the respective yield criteria, i.e.,

‖δεεεP
I ‖ =











1
EP

I
δσσσ ·ξξξ I if f (σσσ) = 0 and δσσσ ·ξξξ I ≥ 0

0 if f (σσσ) = 0 and δσσσ ·ξξξ I < 0
0 if f (σσσ) < 0

, (12)

‖δεεεP
II ‖ =











1
EP

II
δσσσ ·ξξξ II if f (σσσ) = 0 and δσσσ ·ξξξ II ≥ 0

0 if f (σσσ) = 0 and δσσσ ·ξξξ II < 0
0 if f (σσσ) < 0

, (13)

‖δεεεP
III ‖ =











1
EP

III
δσσσ ·ξξξ III if f (σσσ) = 0 and δσσσ ·ξξξ III ≥ 0

0 if f (σσσ) = 0 and δσσσ ·ξξξ III < 0
0 if f (σσσ) < 0

, (14)

and by the respective flow rules, grouped here below:

∀δσσσ :











δ εεεP
I (δσσσ) = πππ I (σσσ)‖δεεεP

I (δσσσ)‖
δ εεεP

II (δσσσ) = πππ III (σσσ)‖δεεεP
II (δσσσ)‖

δ εεεP
III (δσσσ) = πππ II (σσσ)‖δεεεP

III (δσσσ)‖
(15)

We identify in particularξξξ I to the normal to the criterion detected by the biaxial stressprobing procedure, i.e.ξξξ I ≡ ξξξ ,
and seekξξξ II andξξξ III in the plane of Fig. 8. Analogously we setπππ ≡πππ I and pickπππ II andπππ III in the plane of Fig. 11-a.

As to the fitting of the flow rule, compared to the case in Fig. 6,one is now bound to use the sum of three truncated
cosine functions, one for each of the three orthogonal criteria in Eqs. 12-14:

δεεε =

(

[cos(θ −θI )]
+

EP
I

πππ I +
[cos(θ −θII )]

+

EP
II

πππ II +
[cos(θ −θIII )]

+

EP
III

πππ III

)

‖δσσσ‖ (16)

where [ · ]+ denotes the positive part of the argument function and the angles θ , θI , θII and θIII , are measured
counterclockwise in the plane of Fig. 8 starting from direction ξξξ . AnglesθI , θII andθIII , refer toξξξ I , ξξξ II andξξξ III ,
respectively (e.g.θI = 0). Our fitting parameters are the anglesθII andθIII , the three plastic moduliEP

I , EP
II , EP

III and
the anglesωII andωIII referred toπππ II andπππ III and measured counterclockwise in the plane of Fig. 11 starting fromπππ
(e.g.ωI = 0). The quality of the fitting in Fig. 12 is encouraging. We remark anyway that this setting does not apply
immediately to the cases with highest stress ratio (i.e.,ς ≃ 1.6 andς ≃ 1.8) where some degree further generality
needs to be added to the model.

To conclude on the case in Fig. 11a and validate our renewed partition hypothesis, we plot in Fig. 11b the difference
δεεεP − δσσσ ·ξξξ I/EP

I in order to visualise the response envelope exclusively forthe plastic increments of competence
of the second and third mechanisms, i.e.,δεεεP

II and δεεεP
III . The plastic envelop in the figure now conforms to two

clearly-defined directions, i.e. the two “missing” flow directionsπππ II andπππ III .

CONCLUSION

Our concern in this work is an assessment of some features of the elastoplastic behaviour of granular materials
and an evaluation on the representativity of the measurements that can be obtained from the stress probing procedure
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via DEM simulations. To this extent, our study was conceived in parametrical form, and we play on the size of the
stress increments, the stiffness parameterκ = KN/P and the stress ratioς , within two distinct qualitative classes of
deformation response (cf. Table 1 and Fig. 1-2). The resultspresented here were obtained from a limited number of
prototype stress probing tests.

For the case of stress probes in the biaxial stress plane we observed the existence of a clear direction of accumulation
for plastic strain increments, i.e. a plastic flow directionin the language of plasticity. Measurements of this quantity
were robust, i.e. not affected significantly by the stress increment size. On the other hand both the normal to the yield
criterion and the plastic modulusEP were found sensitive to the increment size, especially the latter. We propose
in particular that a criterion for the detection of the appropriate range of stress increments should be based on a
requirement of linearity between plastic strain increments and “active” stress increments (cf. Fig. 7) with stable
coefficient 1/EP.

The normal to the yield criterion was found systematically orthogonal, with very good approximation, to the load
direction. According to the presentation in the introduction and to Eq. 9, this is the explicit signature of a yield criterion



of the Mohr-Coulomb type in the sense of the pastic slip theory. All in all the response of the tested specimens to
stress probes in the biaxial stress plane can be certainly ascribed to the class of elastoplastic materials with single
mechanism of plastic deformation, as found in the literature [10, 11, 12]. A variable difference in angle, of the order
of 10◦, was observed between the plastic flow direction and the normal to the yield criterion, confirming the non
associated character of the flow rule.

As to the incremental response to stress probes with rotation of principal stress axes, i.e. with non-null tangential
components, the first remark concerns the loss of a uniquely defined plastic flow direction. The stress increment
were applied in a plane orthogonal to the biaxial plane and parallel to the (biaxial) normal to the yield criterion.
The plastic strain increments were found exclusively in theplane orthogonal to the biaxial plane and parallel to the
(biaxial) plastic flow direction. We showed that this scenario can still be modelled in the elastoplastic framework by
introducing additional mechanisms of plastic deformation.

The above features were observed for the different values ofparameters and classes of qualitative behaviour, but a
study of their quantitative variability is part of the work to come.
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