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Abstract. We use DEM simulations on a simple 2D model of a granular material to teitdapplicability of the classical
concepts of elastoplasticity ( e.g., yield criterion, flow rule) to the respémstress increments of arbitrary directions. We
apply stress probes in a three-dimensional stress space to varionsedi@te states (investigation points) along the biaxial
compression path, and pay special attention to the influence of the magoftilne increments. The elastic part of the material
response is systematically identified by building the elastic stiffness matriglbBguilibrated configurations. The influences
of the contact stiffness level and of the dominant strain mechanisrrgatateformation (l) or network rearrangement (1), are
considered. Stress increments sharing the same principal directitins stsess state in the investigation point comply with
a standard (single-mechanism) elastoplastic model with a Mohr-Coulaitebian and well-defined flow rules and plastic
moduli. Stress increments with principal axis rotation entail a responsehvighiatisfactorily modeled by superimposing
3 plastic mechanisms, 2 of them symmetrically corresponding to sheasesref both signs. The full dependence of strain
increments on stress increments is thus parametrized with three flowtwibesf which are essentially symmetric.

Keywords: Granular materials, Discret Element Method, quasi-staficrdetion, incremental response, stress probing, prinsipaess axes
rotation
PACS: 81.05.Rm, 83.80.Fg

INTRODUCTION

Elasto-plastic models are insofar the most widely spreadimoum models in the literature and in the engineering
practice concerned with granular materials under quasiestoading conditions [1, 2]. These models have been
insofar tested, and their parameter fitted, almost exalsion the basis of phenomenological observation and one
still counts a relatively small number of studies invediiggthe microscopic origin of the macroscopically observe
plastic behaviour by discrete, grain-level simulations4[35, 6].

Testing the response of representative elementary volufR&d/’s) of a given material to “small” stress or strain
increments, superimposed in various directions on an ibguin state is perhaps the most appropriate procedure
in order to assess the applicability of a continuum modeis Pphocedure, known under the name of stress probing,
is anyway accompanied by some remarkable practical diffiesubmong which the most important is that one must
dispose of as many “identical” specimens as the stressnraredirections to be explored (the stress probes). This is
the reason why physical experiments of this kind are rareassessing applicability of elastoplasticity for granular
materials makes no exception: the only experimental wollloviang this approach, to the author's knowledge, is
the one by Royis and Doanh in 1998 [7] in which the stress pigpbrocedure is applied on specimens issued from
CD (Consolidated Drained) triaxial tests on Hostun sandhdJdiscrete simulations of granular material instead of
physical specimens in the stress probing procedure wapfopbsed by Bardet [8, 9] in 1989 and offers not just an
important work-around to these practical difficulties bisbaendows the stress probing technique with a remarkable
flexibility, as we try to show in this work. A more recent stuasing the stress probing procedure via DEM simulations
was authored by Calvetti and coworkers who focused on tistaglkastic behaviour of 3D specimens (assemblages of
spheres), subjected to axisymmetric loading historyxigigest) and stress probes with the same principal doesti



as the triaxial test [4, 10, 11]. Similar tests were run by msle-Marroqin and coworkers in 2D on polygonal
particles [3, 12]. A substantial agreement can be found,rantbese authors, on the elastoplastic characters of the
response of the tested materials, at small strains and wdtihotonous loading histories from virgin isotropically
consolidated states. Two main features were confirmed iticpkar: the effectiveness, under the considered test
conditions, of plastic models based on a single mechanigohastic deformation and the “non associated” character
of the flow rule.

In this work we present some preliminary results of a studictvhims at assessing or clarifying other aspects of the
elastoplastic response of granular materials, via a similanerical implementation of the stress probing procedure
We use 2D specimens (assemblages of circular disks) salijésta standard biaxial compression and then tested
against stress probes in various directions of the streszesphe specificity of this work are the following: (i) thedy
is parametric in that we widen the range of the model paraméteaccess a number of significantly different classes
of mechanical responses; (ii) we systematically test thgeddence of the incremental response on the size of the
stress increments; (iii) stress probing is performed imregidimensional stress space, i.e., we apply stress ieatsm
in the plane spanned by principal axes as well as stressmigerts inducing rotation of the latter (i.e., increments
adding amounts of shear stress on principal planes). Oniatioh of our study is the modelling of localisation
in granular media, where the applicability of such critaa&Rudnicki and Rice’s may depend subtleties of the
incremental constitutive descriptig@2]. As regards point (iii), in particular, let us remarkatocalisation appears to
be crucially sensitive to the stress increments inducitatian of principal axes, as is the case when some simple
shear is superimposed on a biaxial compression [21].

In the remainder of this section we recall the basic ideafi®ftbnstitutive model to be assessed. Eventually, we
describe the model material and the biaxial test procechaeacterising the loading history of the specimens prior to
stress probes. The next two sections present our prelignheaults concerning the response to stress increments in
the plane of principal stress axes and in a general threerdiional stress space, respectively. The future stepssof th
study are outlined in the concluding section.

Notation

The formulas we will be needing in the following use the stdgd compact notation convention of continuum
mechanics. For ease of reading we will reserve boldfacekGrkearacters to 2nd-order tensors and boldface Latin
characters for Euclidean vectors. Interposed dots bettweewectors or two tensors will denote the standard scalar
product in the inherent linear spaces. As often is the casmwlealing with frictional materials, the sign convention
adopted here for the Cauchy stress temmsand for the infinitesimal strain tenseiis such that compressive states are
measured by positive values of the diagonal elements afsstned strain matrices.

Constitutive model

In most common scenarios of interest in civil engineerimgnglar materials are involved as large masses undergo-
ing quasistatic deformation processes and exhibiting i2tyanf mechanical behaviours, from solid-like to fluiddik
depending on the importance of the rearrangement of thecobnétwork among the various microscopic ingredient
of the macroscopic deformation. In this work we focus on tebaviour for small amounts of deformation from a
virgin state, i.e.||€|| ~ 0.005, where is the infinitesimal strain tensor. We postpone to a furthéslipation the anal-
yses for higher deformation levels. Despite some measuradilvork rearrangement can appear and even contribute
substantially to the macroscopic deformation [13, 15, it6$, commonly accepted that use of continuum models for
solids is appropriate within this deformation thresholdyided the constitutive paradigm can take into account the
strong irreversibilities and non-linearities that app&ace the inception of deformation.

Classical plasticity models were imported in soil mechaffliom metal plasticity and adapted to frictional-cohesive
materials [17]. A main contribution to the understandindrmtional-cohesive materials was then given by the awghor
of a class of models grouped under the name of critical sttenechanics (e.g., [18, 19]). The Cam-clay model and
its ancestor the Granta-gravel model were prototypes sffamily.

Only a few basic ingredients of the elastoplastic theoregfanular materials need to be recalled hargarimis
one usually mentions the hypothesis of rate-independehite @onstitutive behaviour. The latter expresses the fact
that the deformation process does not depend on physioal Tilre corresponding mathematical statement is that the



strain rate is a homogeneous function of degree 1 of thesstags, i.e.,
VA>0: &(Ao)=A¢&(0). (1)

Ensuring quasi-static conditions implies the use of vewtime rates, at which this hypothesis is generally satisfied
In terms of stress incremend&r and strain incremenide, Eq. 1 authorises to write that

YA>0: &g(Ad0)=Ade(50), )

provided incrementdo andde are small enough to be considered as infinitesimal. How seYalmall” is one of the
guestions raised in this work and we will make use of Eq. 2 awallsess criterion to filter out “non infinitesimal”
stress and strain increments in our experimental procedure

A second ingredient of plasticity we are interested in issthealledpartition hypothesiswWe refer to the assumption
that the strain increment8e can be decomposed additively into elastic strain increméef and plastic strain
incrementde®:

3¢ = 5€F 4 5€” (3)
The former are computed according to a properly definedielesipliance tensdt, i.e.,
SeE =Coo (4)

and relate to the amount of deformation warkde that is being reversibly stored as elastic energy. Therladtates to
the amount of deformation work that is being dissipated dnadifsl fit the plastic constitutive assumption as specified
here below in terms of gield criterionand aplastic flow rule

The vyield criterion gives the recipe to compute plasticistracrements and distinguishes between “active” and
“inactive” stress increments with respect to the mechamésponsible for plastic strains. With some simplification i
the terminology we refer here to the yield criterion as pripsion

&o60-& if f(0)=0 and 50-& >0
6P| =<0 if f(d)=0 and d0-& <0 (5)
0 if f(g)<0

in which the yield locusf (o) = 0 has outward oriented unit normél= %H%H*l and bounds the elastic domain
in stress space. According to the above criterion, the angss increments that succeed in producing plastic strain
increments are those applied when the current stressastats reached the yield locus, and that point outward from
the elastic domain. If these two conditions are met, theesponding plastic strain increment will be proportional to
the active part of the stress increment, i.e. the compode@n€ , through the constarii® called plastic modulus.

Finally, and once more loosely speaking, the plastic flow agsigns a unique direction in stress space for all plastic
strain increments, i.e., independently on the stressiiment direction:

voo: 0€°(d0)=m(o)|de"(50)| (6)

where the tensan, || 11| = 1, is calledplastic flow direction
The particular yield criterion discussed in this work is lbé tMohr-Coulomb type: we define functidnin Eq. 5
with the expression
f=|m-on|—usn-on, n-m=0 (7

whose terms can be described by rephrasing a few elementatddbi® and Budiansky’s plastic slip theory for
polycrystalline materials [20] in the case of materialshapiarticulate, frictional microstructure. Plastic stsare
the macroscopic effect of slips along families of micror@a inside the specimen (slip planes), characterised ib Eq.
by an in-plane vectom (the slip direction) and by the unit normal Plastic slip is activated when the threshold of
tangential stress is reached on the inherent slip planéheAst¢ale of the REV this mechanism is reflected by a yield
criterion f = 0 depending on a friction parametey. The latter is not a material constant but a parameter tluvesy
so to ensuréd f = 0 during plastic loading (cf. Eq. 5). Implicit assumptionsdq. 7 are thah - on > 0, as customary
for non-cohesive granular materials, and that all activatg planes hold nearly the same orientation.
We remark that some algebra leads to

1
f:ié(m®n+n®m)—usn®n (8)



where the sign of the first term on the r.h.s. depends on theheaynodulus operator has been resolved in Eq. 7. Using
Eq. 8 with this caution we obtain, finally, a more compact fdomthe first equality in Eq. 7, i.e.,

f=¢.0. 9)

SPECIMEN PREPARATION

We characterise here the different types of specimens wiesg®wnse under stress probes will be discussed in the
following sections. The specimens are grouped into clagssed on non-dimensional control parameters, reflecting
both the qualitative type of deformation response and tadifay history.

Model material

The samples in use in our simulations consist of 5600 diskis diameters distributed uniformly betweerv@®
and 13d, whered is the average, representative diameter. All disks arenasguo be made of a homogeneous
material, andm denotes the mass of particles of diameaderThe disks are initially arranged in rectangular cells
whose wedges align along direction 1 and direction 2: th¢ irghe “confinement” or “lateral” direction and the
latter is the “axial” or “vertical” direction, in referringo the usual laboratory conditions of biaxial/triaxial tiag.
The cell can deform into an arbitrary parallelogram in orteaccommodate the generic configuration of a two-
dimensional cell undergoing homogeneous deformationsnat|strains. Bi-periodicity is obtained, numerically,
by an adaptation to DEM simulations of Parrinello-Rahmad bees-Edwards techniques for molecular dynamics
simulations (cf. [23, 24]). By these techniques we impletadther mixed boundary conditions (for axial compression
during biaxial tests, performed at constant axial straie @nd constant lateral pressure) or simple stress-rate-
controlled boundary conditions (for isotropic compreasiaring biaxial tests and for the application of stress psjb
Samples are regarded in our analyses as REV’s and are dr@éadtmacroscopically by the components of the stress
tensorg and of the infinitesimal strain tenser The former are computed according to the classical Lovedita
while the latter are retrieved, as usual, as lineariseéhstnaasures for the cell.

We use a standard linearly-elastic Coulomb-friction contaodel: the normal contact force writ€g = Kyhy
whereKy is the normal contact stiffness ahd > 0 is the (numerical) interpenetration of contacting disks= Krhr
relates the tangential contact forée to the relative tangential displacemémtat contact (computed incrementally)
through the tangential contact stiffnelés; finally |Fr| is bounded above byFy where it is the contact friction
coefficient. Here we choosiér = Ky and p = 0.3. An additional viscous forc&J = anhy adds to the elastic
force Fy as customary in DEM simulations, merely as a convenient sxeaaccelerate the approach to equilibrium
configurations. To this purpose we sgt = 0.9,/2Kym, where/2Kymis the critical value for a two-particle system
with massesn interactingvia a spring of stiffnes&y. Our focus being on constitutive information, gravity ohet
non-inertial volume actions are not considered here.

Loading history

The specimens to which stress probes are applied were fingtcded to a standard procedure of strain-rate-
controlled biaxial compression up to the desired stre$s gat Q/P, whereQ is the final value of the axial pressure
022 andP is the value of confining pressure to which the lateral presey; is set during axial loading. Prior to
axial loading the specimen were consolidated under ismtisipess conditions up to pressiestarting from loose,
randomly agitated “granular gas” configurations.

According to the loading history given above and to the mesicharacterisation of the model material, dimensional
analysis leads to the identification of five independent disienless parameters that characterise separate cldsses o
“equivalent” specimens: (i) stiffness parameter Ky /P setting the scale of contact deflectionshdd 00 k1; (ii)
stress ratiog = Q/P, as an indicator of the deviatoric stress; (iii) frictionefficient ut; (iv) the damping parameter
{ = an/+/2Kym and (v) inertia parameter = &:,/m/P; (vi) tangential to normal stiffness rati¢r /Ky. We use
¢ =0.9, as anticipated previously, and et 10~* in order to approach quasistatic conditions with sufficasturacy.



TABLE 1. Biaxial test families and values of
variable parameters.

Biaxial tests Lo K G (ca)
A3 10° 1.2,1.4,16,18
Ad 0 10 1.2,14,16,18
A5 10° 1.8,1.9
B3 100 1.2,1.4,16,1.8
B4 03 100 1.2,14,16,18
B5 1P 1.2,14,16,1.8

The friction coefficient is also fixed, i.gt = 0.3, as well as ratitr /Ky = 1, but we letk and¢ vary as detailed further
on.

To further widen the spectrum of specimen classes we pldythv value of contact friction coefficiepis, adopted
during isotropic consolidation [15]. The only possible w®oin real laboratory experiences is of coursg = u but
the numerical model allows us to getand piso < ¢ independently from each other. This possibility (suppleted
with an “agitation” stage [15]) can be used as a robust praetb obtain specimens that are “macroscopically
indistinguishable”, i.e. share the same solid fractipiut differ markedly in terms of microstructures and defation
responses [13, 14, 16]. “Lubricated conditions” duringtiigpic consolidations (i.e jiso = 0) drive the material
towards high values of the coordination numbgetesting the material in this state gives a characterigfornation
response at small strains where the leading microscopihamésm is the deformation at contacts (deformation
response of type I). Conversely, “non-lubricated condgiq(i.e., liso = 1), with some vibration, will result into much
lower coordination numbers and lead to a deformation resppdominated by a continuous network rearrangement due
to microscopic instabilities (deformation response oktyf). The biaxial compression tests considered in this work
were all performed with friction coefficieqt = 0.3, irrespective of the valugiso employed in sample preparation
(i.e., during isotropic compression).

The parameters used in this work are reported in Table 1. dbel IA3 on the first line refers to a family of
ten “equivalent” biaxial tests characterised iy, = 0 andk = 10°. They are equivalent in the sense that their
preparation procedures differ just by the initial randorfoeiy field at start up of the isotropic consolidation. The
values of stress ratio = 1,2, 1.4, 1.6, 1.8 at the end of the same line refer to the cordiguns selected during axial
loading, designated as specimens for the stress probirnggueoe. The following lines in the same table report the
same information but relative to other choices of paramseteand pso. Fig. 1 illustrates the deformation response
during axial loading for biaxial tests of families A3, A4 aA& (type | deformation response) while Fig. 2 gives the
same plots for biaxial tests of families B3, B4 and B5 (typddformation response). A comparison between the two
figures allows to visualise the macroscopic effect of the imicroscopic deformation mechanisms mentioned above.
The small-strain range of curves in Fig. 1 is sensitive tostiftness parametar: as shown in [16], strains are actually
inversely proportional ta, for a given stress ratiq. For the cases in Fig. 2, on the other hand, one notices that th
macroscopics behaviour, already at small strains, refuolts microscopic instabilities and does not depend on the
stiffness parametex.

BIAXIAL STRESS PROBES

For each test family in the Table 1, at least two of the ten\edeint biaxial tests have been considered insofar for
the anlysis of the incremental response: the respectiveirapas were testeda stress probing in the above range
of stress ratios. We present our results discussing casek®4 10%, type | deformation regime; ~ 1.2, 1.4, 1.6,
1.8) claiming that the qualitative features that we obsgmwere found repeatable in all the other cases, despite the
change in control parameters. The section reports on girebgs applied in the plane of principal stress axes, which
correspond in our case to a combination of increments afdbséresso; 1 and of axial stresens. It will be convenient

to refer to the representations in the plamgsvs. 22 Or €11 VS. €22 as to representations in thexial stress planer

in thebiaxial strain plang respectively.
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FIGURE 1. Normalised deviatoric stress.axial strain and volumetric strais.axial strain for typical biaxial tests of families
A3, A4 and A5: iiso = 0 (butp = 0.3) andk = 103, 10* and 16, respectively.
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FIGURE 2. Normalised deviatoric stress.axial strain and volumetric strais.axial strain for typical biaxial tests of families
B3, B4 and B5liso = 1t = 0.3 andk = 10°, 10* and 18, respectively.

Incremental response

The rose of stress increments applied to the specimens wensimoFig. 3: it consists in twelve increment levels
linearly distributed from|da|| = 2v/2P x 10-2 to 12x 2v/2P x 10~2 along sixteen orientations in the biaxial stress
plane, labelled from OA to OP, with constant angular spa2mgl6. The elastic response to the increments in Fig. 3
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FIGURE 3. Rose of applied increments for biaxial stress probing: 16 incremesttttins (OA to OP) for 12 amplitude values in
the biaxial plane.
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FIGURE 4. Elastic response for specimens at stress r@atiol.2 (left) and¢ ~ 1.8 (right) from a biaxial test of family A4.

is plotted in Fig. 4 for the specimen with lowest and highesdtigs of stress ratio: the material exhibits a marked
elastic anisotropy slightly evolving during the axial la=gl (i.e., from¢ ~ 1.2 to 1.8). The elastic strain increments
are assumed to be given by the expression in Eq. 4, where thearents of the elasticity tens@rare computed, by
assembling the contribution of the contact stiffnEgsandKt across the contact network [14]. To test the partition
hypothesis we identify plastic strain increments to théedénce

oeP = de — deF (10)

and checla posterioriwhether or not this definition is effective in giving evidenaf a plastic flow rule (cf. Eq 6) and
yield criterion (cf. Eq 5).

Fig. 5 shows that the strain incremedts” neatly align along a direction in the biaxial strain planepfirming the
applicability of a flow rule. We measure in particular counteckwise angles of the plastic strain increment dirgttio
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FIGURE 5. Elastic vs. plastic response for specimens at stressqatid.2 (inner window) and; = 1.8 (resp. outer) from a
biaxial test of family A4.

with respect to directio; 1, ranging from 132° to 1383° (for ¢ ~ 1.2 and 1.8, resp.).

To investigate the existence of a yield criterion we constbe case ~ 1.2 and plot in Fig. 6 the norrde®|| of the
plastic strain increment against the angle of the stregenments in the biaxial stress plane. As for the plasticrstrai
increments, stress increment angles in the biaxial plaearsasured counterclockwise, with respect to direction
“11". The experimental points in Fig. 6 are fitted with a trated cosine function, expressive of the criterion in
Eq 5. The corresponding phase angle (B3 the figure) gives the direction of the nornéato the supposed yield
criterion in the biaxial stress space. Tload direction i.e., the direction associated to the current value of tress
tensoro is almost orthogonal t&, as expected (cf. Eq 9). On the other hand the plastic flowctiine 17 is close
but not at all coincident with the normélto the yield criterion (separated of about’},Qgiving evidence of the non
associated character of the flow rule. These two qualitédi@tires were systematically found in all investigateesas
for¢~1.2,1.4,1.6 and 18, as shown it upper-right quadrant of the same figure, and theewhole range of stress
increments. The angles for the direction of the norént the yield criterion and for the flow directionare compared
to the load direction in Table 2.

Stress increment size

An important question in the stress probing procedure amiscthe appropriate size of the strain increments to
apply in order to get measurements that are at the same tiealffected by systematic errors and representative of
the infinitesimal behaviour. To discuss this point we repnéi Fig. 7 the nornj 5€”|| of the plastic strain increments
versus the “active” component of the stress increment, the. positive values of the scalar proddas - €. Fitting
the yield criterion in Eq. 5 requires selecting an obseovatiindow in which the relation between the nofide® |
of the plastic strain increment and the active componenhefstress increment can be fitted as linear. The plot in
Fig. 7 suggests that, for specimens obtained from biaxstd &f type A4, the size should not exceed the eight-level of
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FIGURE 6. Fitting of the plastic strain increment amplitude with the truncated cosine funfdiospecimen at stress ratio
¢ ~ 1.2 (main window) from a biaxial test of family A4. Load directiary |||, normal to the yield criterio and plastic flow
direction 1t as they evolve counterclockwise from stress ratie 1.2, to 1.8 during the axial loading for the same biaxial test
(upper-right window).

increment considered here (i.£40|| = 8 x 2v/2P x 10~ ~ 2.263P x 10~?). According to the result analysed insofar
by the authors, this range seems also to depend sensitindlyeostiffness parameter. the higher the value of the
stiffness parameter, the smaller the maximal allowed npdim|| /P of the stress increment amplitude. On the other
hand it is not advisable to reduce as much as numericallyiljeske size of the increments, as the case1.8 in the
same figure shows: evidence of a residual elastic respompeeis by the absence of plastic deformation increments
in response to very small stress increments. This sourcgstématic errors can be corrected easily provided “large
enough” stress increments are used. Most important this dfisystematic error can be explained, mechanically, on
the basis of the procedure to which the specimen were seljgetor to to stress probing. We remark in particular
that, after the expected value of stress ratits attained during the axial compression, the specimenftisiteler
constant axial and lateral stresses for the time necessagath statical equilibrium, not to distort the increménta
response during stress probing. A small parasite effedtisfintermediate “creep” transition before stress prolng
that part of the plastic memory, stored at contact betwedic|ss, is erased due to a slight unavoidable rearrangemen
of the contact network. We expect this effect to gradualtiefaut as slower and slower numerical tests are performed,
in order to approach closer to the quasistatic limityof> 0. The appreciable non-zero intercept of the (dashed)
interpolation line for case ~ 1.8 in Fig. 7 can be seen as the macroscopic signature of thisaneen. In the end,

an appropriate choice of the size of the increment for stpesbing seems to bounded both above, by a linearity
requirement, and below, due to a parasite effect of resielaatic behaviour.

ROTATION OF PRINCIPAL STRESS AXES

The same set of specimens considered in the previous seesisriested under stress probes inducing rotation of
principal stress axes. We discuss here a few preliminagjtsgsand possible interpretations, that we expect to study
systematically on a larger base. The stress space to whickfereis now the general stress space with coordinates
011, 022 and 012, where gy» is the third component of the stress tensor, dismissedanswfd corresponding to
tangential stresses along the planes orthogonal to thallated axial direction. Analogously, the deformation @s®e

is measured in a three-dimensional strain space with coat@ke: 1, £22 andéero.

Plastic flow direction

For this preliminary analysis, the stress increments lag specific plane of the stress space: the plane spanned
by the direction of the normal to the yield criteridn detected previously, and by the direction associateddo th



TABLE 2.  Load direction, normal to yield criterion and flow direction for tested speogrfrom

two biaxial tests in each family of Table 1: averaged values over the i@rigerement sizes.
family A3

biaxial test A3-1 [

biaxial test A3-2

C
arctano»p/011) (deg)
arctan&22/&11) (deg)
arctan(7e,/m1) (deg)

1.198
50.2
133.1
138.7

1.402 | 1.602
545 | 58.0
133.3 | 134.7
142.4 | 1434

1.801 | 1.198
61.0 | 50.2
137.1| 132.6
143.8 | 138.4

1.400 | 1.599
545 | 58.0
132.6 | 134.0
141.6 | 141.7

1.801
61.0
137.2
141.7

family A4
biaxial test A4-1 [

1.404 | 1.605| 1.803
545 | 58.1 | 61.0
143.8 | 148.9| 151.7 | 146.8
133.6 | 135.6 | 138.3 | 135.6

family A5
biaxial test A5-1 [

1.914 | 1.919| 1.929
62.4 | 625 | 62.6
154.0 | 154.0| 155.3| 153.2
142.4 | 143.4| 143.8| 138.4

family B3
biaxial test B3-1 {

1.401| 1.601| 1.801
545 | 58.0 | 61.0
145.4 | 149.4| 152.8 | 140.7
133.9 | 137.9| 141.1| 130.8

family B4
biaxial test B4-1 [

1.401 | 1.600| 1.800
545 | 58.0 | 60.9
1458 | 146.2| — 140.1
135.0 | 136.5| 141.5| 131.3

family B5
biaxial test B5-1 [

1.399 | 1.605| 1.799
544 | 58.1 | 60.9
145.1 | 148.9 | 1525
135.2 | 137.4| 140.7

biaxial test A4-2

1.403 | 1.604
545 | 58.1
147.9 | 149.5
136.8 | 138.3

9 1.228
arctan(ozp/011) (deg) | 50.8
arctan(&»2/&11) (deg) | 138.6
arctan(mpo/m1) (deg) | 132.2

1.228
50.8

1.802
61.0
150.1
141.8

biaxial test A5-2

1.905| 1.929
62.3 | 62.6
154.4 | 152.9
141.6 | 141.7

C 1.799
arctan(oz2/011) (deg) | 60.9

arctar(&/&11) (deg) | 153.2
arctan(tp,/m1) (deg) | 138.7

1.782
60.7

1.929
62.6
153.4
141.7

biaxial test B3-2

1.401 | 1.600
545 | 58.0
1449 | 148.9
133.9 | 137.5

1.199
50.2
140.8
130.3

1.200
50.2

1.800
60.9
152.8
141.9

C
arctanosp/011) (deg)
arctan(éz2/¢é11) (deg)
arctan7e,/ 1) (deg)

biaxial test B4-2

1.403 | 1.601
545 | 58.0
146.3 | 149.0
136.0 | 139.6

1.202
50.2
141.5
130.8

1.202
50.2

1.800
60.9
152.2
140.9

c
arctan o2/ 011) (deg)
arctan(§22/&11) (deg)
arctan e,/ 1) (deg)

biaxial test B5-2

1.401 | 1.600
545 | 58.0
146.4 | 150.0
136.1 | 138.9

G 1.200
arctan(ozz/011) (deg) | 50.2

arctar(&,,/&11) (deg) | 142.1
arctan(mmy/m1) (deg) | 133.4

1.206
50.3
141.2
131.9

1.804
61.0
152.0
142.2

shear stress componeot,. This simplifying choice ensures anyway that we have actesise highest values of
plastic deformation increments. As was the case for biastralss probing, the increments are applied along sixteen
equally distributed directions of our stress plane, fromt@AP, and vary in amplitude fromdo | = 2v/2P x 103

to || 60| = 12x 2/2P x 10~2 (see Fig 8). Points of this plane will be mapped by coordmatemputed ag - & /P
and+/201,, where the factox/2 is adopted, due to the tensorial naturedof, so to visualise families of equal-norm
increments as circles.

In order to discuss the validity of the partition hypothasisler rotation of principal stress axes, we refer once more
to Eq. 10 as a definition for plastics strain increments. Tdresequence of this choice is shown in Fig. 9, for a specimen
with stress ratia ~ 1.8 and loading history from a biaxial test of family A4. Elastind plastic strain increments are
plotted in coordinates of typg2d¢ - randdes,, i.e., we study exclusively the components of strain inaetalong
a plane parallel to the plastic flow directian found during biaxial stress probing, and orthogonal todlagial strain
plane. Due tar and for reasons of symmetry of the mechanical responseldkgstrain increments are expected to
be confined to this plane. Fig. 10 confirms this expectati@wghg that the plastic response is negligible along a third
plane, chosen orthogonal to the biaxial strain plane ankde®@hbe in Fig. 9.

The plot in Fig. 9 completes the one in Fig.&+ 1.8) and shows, compared to it, that stress increments ingucin



g B Tog~12 .
X 70 X ¢~14 .

| . -
= 60 ® ¢~16 . P
K] 4 * ¢~18 ,’/

3.0 35

50-&/P for 60-&>0 (x10P)

FIGURE 7. Plastic strain increment amplituds. active part of the stress increments for specimens at stressqatids? to 1.8
from a biaxial test of family A4.
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FIGURE 8. Rose of applied increments for stress probing with rotation of principesstaxes: 16 increment directions (1A to
1P) for 12 amplitude values in the plane paralleft(biaxial stress probing) and orthogonal to the biaxial stress plane.

rotation of principal stress axes cause, at least, lossigtieness of the plastic flow direction. One notices in Fig. 9
as many plastic strain increment directions as the numbstre$s increment directions: dotted lines in the figure
are drawn on naked-eye visible experimental point to shaw plastic strain increments originated by proportional
stress increments align along precise directions. Thetipuesrises whether or not this kind of incremental behaviou
is representative of a non-trivial flow rule, or should be ®elt#t in a different constitutive framework than the
elastoplastic one. The issue of the flow rule cannot be tleatgway isolated from that of the yield criterion, which
is considered next.

A final remark on Fig. 10 is that the envelopes of the plaspogase, traced in figure for three different values of
the stress increment, obey loosely the symmetry with reéspéice axis corresponding to directianlt is questionable
whether or not the appreciable deviation from symmetry waligappear for REV’s of larger sizes.
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FIGURE 9. Elastic strain increments (solid circular marks) and plastic strain increni@hisr marks, resp.) for a specimen at
stress ratia; = 1.8 from a biaxial test of family A4. Dotted lines show the alignment of plast&iistincrements for proportional

stress increments while dashed segments mark the response enatlipesments of normdo|| = 4 x 2/2P, 8 x 2/2P and
12x 2V/2P.
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FIGURE 10. Elastic strain increments (solid circular marks) and plastic strain increr(@hes marks, resp.) for a specimen at
stress ratia; = 1.8 from a biaxial test of family A4. The representation is given in a straireiment plane orthogonal to those in

Fig. 9 and 5: the directiomr", ||7r-|| = 1, belongs to the biaxial plane and lays orthogonat{@rctari 1,/ ;) = 1383° + 90°,
cf. Table 2).

Yield criterion

The shapes of the envelopes of the elastic and plastic respaine represented in Fig. 11-a for a specimens selected
at stress ratig ~ 1.2 from a biaxial test of family A5. Due to the low level of stsastio, the plastic envelope is still
bounded by the elastic one and the plastic strain increntetated to stress increments of pure shear are dominant
with respect to “biaxial” strain increment (parallel ). The open shape of the plastic strain envelope denies the
existence of a uniquely defined flow rule (cf. Fig 9).



The behaviour shown in fig. 11-a can still be modelled anyvweaglastoplastic, provided one drops the assumption
of a unique mechanism of plastic deformation [26, 27]. Wetpmse a detailed exposition of our idea to a further
publication and give here an example of the procedure to ditcdise in the figure with a first generalisation of
the classical elastoplastic framework. We consider ini@aer the possibility of three distinct and independent
plastic mechanisms of deformation: a first mechanism daéetvith biaxial stress probes and two pseudo-symmetric
additional mechanisms activated by shear stress incremépbsitive and negative values, respectively. The jpamtit
hypothesis now writes in the form

o5& = O€F + 5el + oef] + S¢f), (11)
where the amplitudes of the three separate plastic incresno@rthe r.h.s. are given by the respective yield criteréa, i

L50-& if f(o)=0 and 50-& >0

EIP =
157l =S 0 if f(o)=0 and 50 -& <O - (12)
0 if f(o)<0
>060-& if f(0)=0 and 50-&; >0
11
I5€fi1l = 4 0 if f(o)=0 and 30-&, <O (13)
0 if f(g)<0
Eipéa-fm if f(g)=0 and d00-&, >0
11
I5&fii | = 4 0 if f(6)=0 and 60-&y <O . (14)
0 if f(g)<0

and by the respective flow rules, grouped here below:

5eP(50) = m (0) || 57 (30)
0 - { 5P (50) = (0) || €T, (56)|| (15)
Seb (50) = m (0) || 5€F, (50))|

We identify in particulaé to the normal to the criterion detected by the biaxial stpeebing procedure, i.€; =&,

and seel€ |, and&,, in the plane of Fig. 8. Analogously we set= i and pick i, andm, in the plane of Fig. 11-a.
As to the fitting of the flow rule, compared to the case in Figore is now bound to use the sum of three truncated

cosine functions, one for each of the three orthogonalr@ite Eqs. 12-14:

0—6)" 6—-6,)" 0-6 *
5 = <[C°S( o L gy L0 = WL g, Lod e )] 7T|||> 15| (16)

where [-]* denotes the positive part of the argument function and thglear®, 6,, 6, and 6, are measured
counterclockwise in the plane of Fig. 8 starting from direct. Angles6,, 6, and 6, refer to&,, &, and&,
respectively (e.gf = 0). Our fitting parameters are the angBysand 6, the three plastic moduk”, EY, Ef;, and
the anglesu; andaw referred torm, andm;; and measured counterclockwise in the plane of Fig. 11 stpftom it
(e.g.w =0). The quality of the fitting in Fig. 12 is encouraging. We ggkanyway that this setting does not apply
immediately to the cases with highest stress ratio (§e-, 1.6 and¢ ~ 1.8) where some degree further generality
needs to be added to the model.

To conclude on the case in Fig. 11a and validate our renewtitiggahypothesis, we plot in Fig. 11b the difference
oe” — 50 - &, /EF in order to visualise the response envelope exclusivelgHerplastic increments of competence
of the second and third mechanisms, i&f, and d€f},. The plastic envelop in the figure now conforms to two
clearly-defined directions, i.e. the two “missing” flow ditensm, andm, .

CONCLUSION

Our concern in this work is an assessment of some featurdseoélastoplastic behaviour of granular materials
and an evaluation on the representativity of the measurentieat can be obtained from the stress probing procedure
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FIGURE 11. Elastic and plastic response envelopes for specimen at stresg ratiol.2, from a biaxial test of family A4,
under stress increments of amplitude 2v/2P in Fig. 8. Total plastic respons¥eF (a) or plastic response for mechanisms Il and
Il (b). .

A oM sON
35 Jvle)
7 .OD
3.0 OC.
8 25 oP
X 1 0B®
2.0 7 ‘
T 10A o |l
% 1.5 R Sl
w E o0 ! ~ |
T - N~ | NN
107 I Al
0.0 0 360°

FIGURE 12. Fitting of the plastic strain increment amplitude with Eq. 16, for specimen esstatio = 1.2, from a biaxial
test of family A4, under stress increments of amplitude2,/2P in Fig. 8.

via DEM simulations. To this extent, our study was conceivedarametrical form, and we play on the size of the
stress increments, the stiffness parameter Ky /P and the stress ratig, within two distinct qualitative classes of
deformation response (cf. Table 1 and Fig. 1-2). The regpuisented here were obtained from a limited number of
prototype stress probing tests.

For the case of stress probes in the biaxial stress plane seg\au the existence of a clear direction of accumulation
for plastic strain increments, i.e. a plastic flow directinrthe language of plasticity. Measurements of this qugantit
were robust, i.e. not affected significantly by the stressdment size. On the other hand both the normal to the yield
criterion and the plastic moduluB” were found sensitive to the increment size, especially dtterl We propose
in particular that a criterion for the detection of the apprate range of stress increments should be based on a
requirement of linearity between plastic strain incrersesmtd “active” stress increments (cf. Fig. 7) with stable
coefficient YEP.

The normal to the yield criterion was found systematicalyrogonal, with very good approximation, to the load
direction. According to the presentation in the introdoictand to Eq. 9, this is the explicit signature of a yield ciite



of the Mohr-Coulomb type in the sense of the pastic slip theal in all the response of the tested specimens to
stress probes in the biaxial stress plane can be certaiofibed to the class of elastoplastic materials with single
mechanism of plastic deformation, as found in the litea{d0, 11, 12]. A variable difference in angle, of the order
of 10°, was observed between the plastic flow direction and the alotonthe yield criterion, confirming the non
associated character of the flow rule.

As to the incremental response to stress probes with ratafiprincipal stress axes, i.e. with non-null tangential
components, the first remark concerns the loss of a uniquefipetl plastic flow direction. The stress increment
were applied in a plane orthogonal to the biaxial plane andlighto the (biaxial) normal to the yield criterion.
The plastic strain increments were found exclusively inglane orthogonal to the biaxial plane and parallel to the
(biaxial) plastic flow direction. We showed that this scémaan still be modelled in the elastoplastic framework by
introducing additional mechanisms of plastic deformation

The above features were observed for the different valupsi@meters and classes of qualitative behaviour, but a
study of their quantitative variability is part of the work ¢come.
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