
HAL Id: hal-00532852
https://hal.science/hal-00532852v1

Submitted on 6 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a homotopy theory of higher dimensional
transition systems

Philippe Gaucher

To cite this version:
Philippe Gaucher. Towards a homotopy theory of higher dimensional transition systems. Theory and
Applications of Categories, 2011, 25 (12), pp.295-341. �hal-00532852�

https://hal.science/hal-00532852v1
https://hal.archives-ouvertes.fr


Theory and Applications of Categories, Vol. 25, No. 12, 2011, pp. 295–341.

TOWARDS A HOMOTOPY THEORY OF HIGHER DIMENSIONAL
TRANSITION SYSTEMS

PHILIPPE GAUCHER

Abstract. We proved in a previous work that Cattani-Sassone’s higher dimensional
transition systems can be interpreted as a small-orthogonality class of a topological
locally finitely presentable category of weak higher dimensional transition systems. In
this paper, we turn our attention to the full subcategory of weak higher dimensional
transition systems which are unions of cubes. It is proved that there exists a left proper
combinatorial model structure such that two objects are weakly equivalent if and only if
they have the same cubes after simplification of the labelling. This model structure
is obtained by Bousfield localizing a model structure which is left determined with
respect to a class of maps which is not the class of monomorphisms. We prove that the
higher dimensional transition systems corresponding to two process algebras are weakly
equivalent if and only if they are isomorphic. We also construct a second Bousfield
localization in which two bisimilar cubical transition systems are weakly equivalent. The
appendix contains a technical lemma about smallness of weak factorization systems in
coreflective subcategories which can be of independent interest. This paper is a first step
towards a homotopical interpretation of bisimulation for higher dimensional transition
systems.
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1. Introduction

Presentation of the paper. Directed homotopy is a field of research aiming at
studying the link between concurrency and algebraic topology. In such a setting, con-
currency is modelled by higher-dimensional “structures” between execution paths. In
topological models like the ones of d-space [Gra03], d-space generated by cubes [FR08],
flow [Gau03], globular complex [GG03], local po-space [FGR98], locally preordered space
[Kri08], multipointed d-space [Gau09], these homotopies are homotopies in the usual sense
which preserve the direction of time. In combinatorial models coming from the notion
of (pre)cubical sets [Gou02] [Wor04] [Dij68] [Pra91] [Gun94] [VG06] [Gau08] [Gau10a],
the concurrent execution of n actions is modelled by an n-cube, in which each axis of
coordinates corresponds to one action.

Concurrency is modelled in a somewhat different way in the formalism of higher di-
mensional transition systems introduced by Cattani and Sassone [CS96]. Indeed, the
concurrent execution of n actions is modelled by a multiset of n actions. A multiset is a
set with possible repetition of some elements (e.g. {0, 0, 2, 3, 3, 3}). This notion is a gen-
eralization of the 1-dimensional notion of transition system in which transitions between
states are labelled by one action (e.g., [WN95, Section 2.1]). The latter 1-dimensional no-
tion cannot of course model concurrency. It is proved in [Gau10b] that Cattani-Sassone’s
higher dimensional transition systems are a small-orthogonality class of a larger category
of weak higher dimensional transition systems (weak HDTS) enjoying very nice categorical
properties: topological and locally finitely presentable. Cattani-Sassone’s higher dimen-
sional transition systems are weak HDTS satisfying two axioms CSA1 (cf. Definition 7.1)
and CSA2 (understood first and second Cattani-Sassone Axiom): cf. Definition 6.4 for a
weaker form of CSA2. In plain English, the first one says that one action between two
given states can be realized by at most one transition 1 The axiom CSA1 used by Cattani
and Sassone is even stronger (see the remark after Definition 7.1) but we do not need it
by now. The second one is an analogue of the face operators in the setting of precubical
sets. These two axioms are satisfied by all examples coming from process algebras.

It is not really a surprise that most of the topological models of directed homotopy
can be endowed with mathematical structures which are very close to the ones existing
in algebraic topology. In particular, various model category structures can be related to
directed homotopy. It is more surprising that this kind of structure exists in the setting
of higher dimensional transition systems as well.

We introduce in this paper the full subcategory of cubical transition systems. A cubical
transition system is a weak HDTS which is equal to the union of its subcubes. Cubical
transition systems have a straightforward interpretation in concurrency. All examples
coming from process algebras are cubical because all these examples are already colimits
of cubes. However, a cubical transition system is not necessarily a colimit of cubes and
the full subcategory of weak HDTS generated by the colimits of cubes does not enjoy the
closure property we expect to find in such a setting. For example, the boundary of the

1In CCS, the transition a.P
a→ P is the unique transition from a.P to P .
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2-cube (cf. Definition 3.16) is never a colimit of cubes, but is always cubical.
The main result of this paper is that the category of cubical transition systems can

be endowed with a structure of left determined left proper combinatorial model category
structure with respect to a class of cofibrations which is not the class of monomorphisms.
This model category structure is really minimal. Indeed, the corresponding homotopy
category cannot even identify all pairs of cubical transition systems containing the same
cubes ! We prove that there exists a Bousfield localization such that two cubical transition
systems are weakly equivalent if and only if they have the same cubes after simplification
of the labelling. We also prove the existence of a Bousfield localization with respect to
the proper class of bisimulations so that in the latter localization, two bisimilar cubical
transition systems are weakly equivalent.

Organization of the paper. This paper starts in Section 2 with a reminder about
weak higher dimensional transition systems (weak HDTS). Some information about locally
presentable and topological categories are also collected here. It is important to say that
the topological structure plays an important role in the work, as well as the theory of
locally presentable categories which is extensively used, in particular in Appendix A.
Possible references for these subjects are [AR94] [AHS06] [Ros09] [Hov99].

In Section 3, we want to introduce the notion of cubical transition system. Two
equivalent definitions of them are given: the weak HDTS equal to the union of their
subcubes or coreflective small-injectivity class. The last characterization already implies
that the category is locally presentable. It is actually proved that it is locally finitely
presentable. It is not topological since the adjunction between cubical transition systems
and weak HDTS is not concrete. Indeed, the coreflector removes every action which is
not used in a transition (cf. Proposition 6.10). So what plays the role of the underlying
set varies. It is important to understand that the full subcategory of cubes is not a dense
or even a strong generator of the category of cubical transition systems. It is necessary
to add a new family of weak HDTS, the double transition ↑x↑ labelled by x for x running
over the set Σ of labels (cf. Definition 2.5).

Section 4 is a reminder about combinatorial model categories, that is cofibrantly gen-
erated model categories [Hir03] [Hov99] such that the underlying category is locally pre-
sentable. Olschok’s paper [Ols09], which generalizes to locally presentable categories
Cisinski’s techniques for constructing homotopical structures on toposes [Cis02], plays a
fundamental role in this work. The notions of Grothendieck localizer and of left deter-
mined model category are also recalled in this section.

Section 5 expounds the construction of the combinatorial model structure on weak
HDTS. This model category carries a segment object (which has nothing to do with the
1-cube !) which is the key to verifying all hypotheses of Olschok’s theorems. This model
category is left proper since all objects are cofibrant. It is also left determined with respect
to its class of cofibrations, i.e. it is the one with the smallest class of weak equivalences
with our class of cofibrations. This class of weak equivalences is actually really small,
as we will see. A cofibration of weak HDTS is by definition a map which is one-to-one
on actions, but not necessarily on states. So a map like R : {0, 1} → {0} (a set being
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identified with the weak HDTS with same set of states, no actions and no transitions)
is a cofibration of weak HDTS, and also of cubical transition systems since every set is
cubical as a disjoint sum of 0-cubes. A similar cofibration R : {0, 1} → {0} exists in the
model category of flows [Gau03] but we do not know whether there is a deeper connexion
between these two facts.

Section 6 restricts the previous structure to the full subcategory of cubical transition
systems. By definition, a cofibration of cubical transition systems is a map between
cubical transition systems which is a cofibration of weak HDTS. The main problem is to
prove the smallness of the class of cofibrations between cubical transition systems. The
set of generating cofibrations used for constructing the left determined model structure
of WHDTS cannot be reused since they involve weak HDTS which are not cubical. It
is certainly possible to use combinatorial methods to find a generating set of the class
of cofibrations of cubical transition systems. We use in this paper techniques of the
theory of locally presentable categories. This is the subject of Appendix A which is of
independent interest (cf. Theorem A.5). The argument is a kind of generalization of
Smith’s arguments to prove his well-known theorem (Theorem 4.8), and more specifically
for proving the smallness of the class of trivial cofibrations. But let us repeat: here the
purpose is the proof of the smallness of the class of cofibrations. The smallness of the
class of trivial cofibrations is a consequence of Olschok’s theorems. This model category
is also left proper since all objects are cofibrant. It is also left determined with respect to
its class of cofibrations.

The next Section 7 characterizes the weak equivalences in the left determined model
structure of cubical transition systems. It appears that CSA1 has a homotopical inter-
pretation. Roughly speaking, two cubical transition systems are weakly equivalent in
the left determined model structure if and only if they are isomorphic modulo the first
Cattani-Sassone axiom. It follows that the canonical map C1[x] ⊔ C1[x] −→ ↑x↑ sending
two copies of the 1-cube generated by x to the double transition labelled by x is not a
weak equivalence (cf. Figure 2). It is also proved in this section as intermediate result
that every cubical transition system which satisfies CSA1 is fibrant.

Section 8 overcomes this problem by proving that it is possible to Bousfield localize
with respect to the cubification functor. The above map becomes a weak equivalence
since C1[x] ⊔ C1[x] is precisely the cubification of ↑x↑. In this Bousfield localization, two
cubical transition systems are weakly equivalent if and only if they have the same cubes
after simplification of the labelling.

Finally Section 9 sketches the link with bisimulation. This will be the subject of future
works.

Appendix A is the categorical lemma used in the core of the paper which is of inde-
pendent interest.

There are some remarks scattered in the paper about process algebras with references
to [Gau10b]. But no knowledge about them is required to read this paper and these
remarks can be skipped without problem.
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2. Weak higher dimensional transition systems

All categories are locally small. The set of maps in a category K fromX to Y is denoted by
K(X, Y ). The locally small category those objects are the maps of K and those morphisms
are the commutative squares is denoted by Mor(K). The initial (final resp.) object, if it
exists, is always denoted by ∅ (1). The identity of an object X is denoted by IdX . A
subcategory will be by convention always isomorphism-closed.

2.1. Notation. A non empty set of labels Σ is fixed.

Let us recall in this section the definition of a weak HDTS and some fundamental
examples. We start by collecting some well-known facts about locally presentable and
topological categories.

Locally presentable categories. Let λ be a regular cardinal, i.e. such that the
poset λ is λ-directed [HJ99, p 160]. An object X of a category K is λ-presentable if
the functor K(X,−) preserves λ-directed colimits. A category K is λ-accessible if there
exists a set of λ-presentable objects such that every object of K is a λ-directed colimit
of objects of this set. A category K is locally λ-presentable if it is cocomplete and λ-
accessible. A subcategory A of a category K is accessibly-embedded if it is full and closed
under λ-directed colimits for some regular cardinal λ. A functor F : C → D is accessible
if there exists a regular cardinal λ such that C and D are λ-accessible and F preserves
λ-directed colimits. Every accessible functor satisfies the solution-set condition by [AR94,
Corollary 2.45]. When λ = ℵ0, the prefix “λ-” is replaced by “finitely”. In the preceding
definitions, λ-directed diagrams can be substituted by λ-filtered diagrams by [AR94, Re-
mark 1.21] since for every (small) λ-filtered category D, there exists a (small) λ-directed
poset D0 and a cofinal functor D0 → D.

Topological categories. The paradigm of topological category over the category of
Set is the one of general topological spaces with the notions of initial topology and final
topology [AHS06]. More precisely, a functor ω : C → D is topological (or C is topological
over D) if each cone (fi : X → ωAi)i∈I where I is a class has a unique ω-initial lift (the
initial structure) (f i : A → Ai)i∈I , i.e.: 1) ωA = X and ωf i = fi for each i ∈ I; 2)
given h : ωB → X with fih = ωhi, hi : B → Ai for each i ∈ I, then h = ωh for a
unique h : B → A. Topological functors can be characterized as functors such that each
cocone (fi : ωAi → X)i∈I where I is a class has a unique ω-final lift (the final structure)
f i : Ai → A, i.e.: 1) ωA = X and ωf i = fi for each i ∈ I; 2) given h : X → ωB with
hfi = ωhi, hi : Ai → B for each i ∈ I, then h = ωh for a unique h : A → B. Let us
suppose D complete and cocomplete. A limit (resp. colimit) in C is calculated by taking
the limit (resp. colimit) in D, and by endowing it with the initial (resp. final) structure.
In this work, a topological category is a topological category over the category Set{s}∪Σ

where {s} ∪ Σ is called the set of sorts.
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Weak higher dimensional transition systems (weak HDTS).

2.2. Definition. A weak higher dimensional transition system (weak HDTS) consists
of a triple

(S, µ : L→ Σ, T =
∪
n>1

Tn)

where S is a set of states, where L is a set of actions, where µ : L→ Σ is a set map called
the labelling map, and finally where Tn ⊂ S × Ln × S for n > 1 is a set of n-transitions
or n-dimensional transitions such that one has:

• (Multiset axiom) For every permutation σ of {1, . . . , n} with n > 2, if (α, u1, . . . , un,
β) is a transition, then (α, uσ(1), . . . , uσ(n), β) is a transition as well.

• (Coherence axiom) For every (n + 2)-tuple (α, u1, . . . , un, β) with n > 3, for ev-
ery p, q > 1 with p + q < n, if the five tuples (α, u1, . . . , un, β), (α, u1, . . . , up, ν1),
(ν1, up+1, . . . , un, β), (α, u1, . . . , up+q, ν2) and (ν2, up+q+1, . . . , un, β) are transitions,
then the (q + 2)-tuple (ν1, up+1, . . . , up+q, ν2) is a transition as well.

A map of weak higher dimensional transition systems

f : (S, µ : L→ Σ, (Tn)n>1)→ (S ′, µ′ : L′ → Σ, (T ′
n)n>1)

consists of a set map f0 : S → S ′, a commutative square

L
µ //

f̃
��

Σ

L′
µ′

// Σ

such that if (α, u1, . . . , un, β) is a transition, then (f0(α), f̃(u1), . . . , f̃(un), f0(β)) is a tran-
sition. The corresponding category is denoted by WHDTS. The n-transition (α, u1, . . . ,
un, β) is also called a transition from α to β.

2.3. Notation. The labelling map from the set of actions to the set of labels will be very
often denoted by µ.

A transition (α, u1, . . . , un, β) intuitively means that one goes from the state α to the
state β by executing concurrently n actions u1, . . . , un. Hence the Multiset axiom, which
replaces the multiset formalism of [CS96]. The Coherence axiom is more complicated
to understand. We just want to say here that it is the topological part (in the sense of
topological categories) of an axiom introduced by Cattani and Sassone themselves and
that it is necessary for the mathematical development of the theory: it is necessary to view
Cattani-Sassone’s higher dimensional transition systems as a small-orthogonality class of
WHDTS. All cubes satisfy this axiom and inside a given cube, the Coherence axiom
ensures that all transitions glue together properly. Formally, this axiom looks like a 5-ary
composition, even if it is topological. We refer to [Gau10b] for further explanations.
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The category WHDTS is locally finitely presentable by [Gau10b, Theorem 3.4]. The
functor

ω : WHDTS −→ Set{s}∪Σ

taking the weak higher dimensional transition system (S, µ : L → Σ, (Tn)n>1) to the
({s}∪Σ)-tuple of sets (S, (µ−1(x))x∈Σ) ∈ Set{s}∪Σ is topological by [Gau10b, Theorem 3.4]
too.

2.4. Notation. For n > 1, let 0n = (0, . . . , 0) (n-times) and 1n = (1, . . . , 1) (n-times).
By convention, let 00 = 10 = ().

We give now some important examples of weak HDTS. In each of the following exam-
ples, the Multiset axiom and the Coherence axiom are satisfied for trivial reasons.

1. Let n > 0. Let x1, . . . , xn ∈ Σ. The pure n-transition Cn[x1, . . . , xn]
ext is the weak

HDTS with the set of states {0n, 1n}, with the set of actions {(x1, 1), . . . , (xn, n)}
and with the transitions all (n+ 2)-tuples (0n, (xσ(1), σ(1)), . . . , (xσ(n), σ(n)), 1n) for
σ running over the set of permutations of the set {1, . . . , n}.

2. Every set X may be identified with the weak HDTS having the set of states X, with
no actions and no transitions.

3. For every x ∈ Σ, let us denote by x the weak HDTS with no states, one action
x, and no transitions. Warning: the weak HDTS {x} contains one state x and no
actions whereas the weak HDTS x contains no states and one action x.

4. For every x ∈ Σ, let us denote by ↑x↑ the weak HDTS with four states {1, 2, 3, 4},
one action x and two transitions (1, x, 2) and (3, x, 4).

2.5. Definition. The weak HDTS ↑x↑ is called the double transition (labelled by x)
where x ∈ Σ.

Let us introduce now the weak HDTS corresponding to the n-cube.

2.6. Proposition. [Gau10b, Proposition 5.2] Let n > 0 and x1, . . . , xn ∈ Σ. Let Td ⊂
{0, 1}n × {(x1, 1), . . . , (xn, n)}d × {0, 1}n (with d > 1) be the subset of (d+ 2)-tuples

((ϵ1, . . . , ϵn), (xi1 , i1), . . . , (xid , id), (ϵ
′
1, . . . , ϵ

′
n))

such that

• im = in implies m = n, i.e. there are no repetitions in the list (xi1 , i1), . . . , (xid , id)

• for all i, ϵi 6 ϵ′i

• ϵi ̸= ϵ′i if and only if i ∈ {i1, . . . , id}.
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Let µ : {(x1, 1), . . . , (xn, n)} → Σ be the set map defined by µ(xi, i) = xi. Then

Cn[x1, . . . , xn] = ({0, 1}n, µ : {(x1, 1), . . . , (xn, n)} → Σ, (Td)d>1)

is a well-defined weak HDTS called the n-cube.

For n = 0, C0[], also denoted by C0, is nothing else but the weak HDTS ({()}, µ : ∅→
Σ,∅). For every x ∈ Σ, one has C1[x] = C1[x]

ext. In [Gau10b], it is explained how the
n-cube Cn[x1, . . . , xn] is freely generated by the pure n-transition Cn[x1, . . . , xn]

ext. It is
not necessary to recall this point here.

3. Cubical transition systems

Definition of CTS. Before giving the definition of a cubical transition system, we
need first to check out that unions of objects exist in WHDTS. So this section starts by
studying the monomorphisms of WHDTS.

3.1. Proposition. A map f : X = (S, µ : L → Σ, T ) → X ′ = (S ′, µ′ : L′ → Σ, T ′) of

WHDTS is a monomorphism if and only if the set maps f0 : S → S ′ and f̃ : L→ L′ are
one-to-one.

Proof. Only if part. Suppose that f : X → X ′ is a monomorphism. Let α and β be
two states of X with f0(α) = f0(β). Consider the two maps of weak higher dimensional
transition systems g, h : {0} → X defined by g(0) = α and h(0) = β. Since f is a
monomorphism, one has g = h. Therefore α = β. Thus, the set map f0 : S → S ′ is
one-to-one. Now let u and v be two actions of X with f̃(u) = f̃(v). One necessarily
has µ(u) = µ(v) = x ∈ Σ. Let g, h : x → X be the two maps of higher dimensional
transition systems defined respectively by g(x) = u and h(x) = v. Then g = h since

f is a monomorphism. Therefore u = v and f̃ is one-to-one. If part. Let f : X → Y

be a weak higher dimensional transition system such that f0 and f̃ are both one-to-
one. Let g, h : Z → X be two maps of higher dimensional transition systems such that
fg = fh. Then f0g0 = f0h0 and f̃ g̃ = f̃ h̃. So g0 = h0 and g̃ = h̃. The forgetful functor
WHDTS → Set{s}∪Σ is topological, and therefore faithful by [AHS06, Theorem 21.3].
So g = h and f is a monomorphism.

3.2. Proposition. Every family of subobjects of a weak HDTS has an union, i.e. a least
upper bound in the family of subobjects.

Proof. Let (fi : Xi → X)i∈I be a family of subobjects of a weak HDTS X. Let Xi =
(Si, µ : Li → Σ, Ti). Consider the set of states S ′ =

∪
i∈I(fi)0(Si) and the set of actions

L′ =
∪
i∈I f̃i(Li) equipped with the final structure. We obtain a weak HDTS X ′ and by

Proposition 3.1, the canonical map X ′ → X is a monomorphism. The weak HDTS X ′ is
the union of the (fi : Xi → X)i∈I .
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We are now ready to give the definition of a cubical transition system.

3.3. Definition. Let X be a weak HDTS. A cube of X is a map Cn[x1, . . . , xn] −→ X.
A subcube of X is the image of a cube of X. A weak HDTS is a cubical transition system
if it is equal to the union of its subcubes. The full subcategory of cubical transition systems
is denoted by CTS.

Let x1, . . . , xn ∈ Σ with n > 0. For n > 2, the weak HDTS Cn[x1, . . . , xn]
ext is not

cubical since the union of its subcubes is equal to its set of states {0n, 1n}. The weak
HDTS Cn[x1, . . . , xn] is always a cubical transition system since the image of the identity
of Cn[x1, . . . , xn] is a subcube. The weak HDTS ↑x↑ is cubical for every x ∈ Σ. The weak
HDTS x is never cubical for any x ∈ Σ since the union of its subcube is equal to ∅. For
every set A, the corresponding weak HDTS A is cubical as a disjoint sum of 0-cubes.

Lifting property and small-injectivity class.

3.4. Definition. Let i : A −→ B and p : X −→ Y be maps of K. Then i has the left
lifting property (LLP) with respect to p (or p has the right lifting property (RLP) with
respect to i) if for every commutative square of solid arrows

A

i

��

α // X

p

��
B

k

??�
�

�
�

�
�

�
�

β
// Y,

there exists a morphism k called a lift making both triangles commutative. This situation
is denoted by f�g.

Let us introduce the notations injK(C) = {g ∈ K, ∀f ∈ C, f�g} and cofK(C) = {f ∈
K, ∀g ∈ injK(C), f�g} where C is a class of maps of K. The class of morphisms of K
that are transfinite compositions of pushouts of elements of C is denoted by cellK(C). An
element of cellK(C) is called a relative C-cell complex. The cocompleteness of K implies
cellK(C) ⊂ cofK(C). When the class C is a set I, every morphism of cofK(I) is a retract of
a morphism of cellK(I) by [Hov99, Corollary 2.1.15] since in a locally presentable category,
the domains of I are always small relative to cellK(I).

Sometimes, the letter K in the notations cofK, injK and cellK may be omitted if the
underlying category we are working with is obvious.

By convention, the letter K will be always omitted if K = WHDTS.

3.5. Definition. [AR94, Definition 4.1] Let S be a set of maps of a locally presentable
category K. The full subcategory of S-injective objects (called a small-injectivity class) of
K is generated by {X ∈ K | X → 1 ∈ inj(S)}.
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Let us recall that an object X is orthogonal to S if not only it is injective, but also
the factorization is unique. A small-injectivity class of a locally presentable category
is always accessible. A small-orthogonality class (the subclass of objects orthogonal to
a given set of objects) of a locally presentable category is always a reflective locally
presentable subcategory. Read [AR94, Chapter 1.C] and [AR94, Chapter 4] for further
details. For an epimorphism f , being f -orthogonal is equivalent to being f -injective.

The cubical transition systems as a small-injectivity class.

3.6. Theorem. The category of cubical transition systems is a small-injectivity class of
WHDTS. More precisely, a weak HDTS X is a cubical transition system if and only if
it is injective with respect to the set of inclusions Cn[x1, . . . , xn]

ext ⊂ Cn[x1, . . . , xn] and
x1 ⊂ C1[x1] for all n > 0 and all x1, . . . , xn ∈ Σ.

Proof. Only if part. 1) Let X be a cubical transition system. Let Cn[x1, . . . , xn]
ext → X

be a map of weak HDTS. Let (α, u1, . . . , un, β) be the image by this map of the transition
(0n, (x1, 1), . . . , (xn, n), 1n). By hypothesis, there exists a cube Cm[y1, . . . , ym]→ X of X
such that the image contains the transition (α, u1, . . . , un, β). There is not yet any reason
for m to be equal to n. This means that the image of Cm[y1, . . . , ym] → X contains the
image of Cn[x1, . . . , xn]

ext → X. In other terms, the latter map factors as a composite

Cn[x1, . . . , xn]
ext −→ Cm[y1, . . . , ym] −→ X.

By [Gau10b, Theorem 5.6], the map Cn[x1, . . . , xn]
ext → Cm[y1, . . . , ym] factors as a com-

posite Cn[x1, . . . , xn]
ext → Cn[x1, . . . , xn] → Cm[y1, . . . , ym] since the cube Cm[y1, . . . , ym]

is injective, and even orthogonal to the inclusion Cn[x1, . . . , xn]
ext ⊂ Cn[x1, . . . , xn]

2.
Thus, X is injective with respect to the set of maps Cn[x1, . . . , xn]

ext ⊂ Cn[x1, . . . , xn] for
all n > 0 and all x1, . . . , xn ∈ Σ. 2) Let x1 → X be a map of weak HDTS. By hypothesis,
there exists a cube Cm[y1, . . . , ym] → X of X such that the image contains the image of
x1 → X. In other terms, the latter map factors as a composite

x1 −→ Cm[y1, . . . , ym] −→ X.

Since the maps of weak HDTS preserve labellings, there exists k such that x1 = yk. Hence
the factorization

x1 −→ C1[x1] −→ Cm[y1, . . . , ym] −→ X.

So X is injective with respect to the set of maps x1 ⊂ C1[x1] for x1 running over Σ.
If part. Every transition and every state ofX belong to a subcube sinceX is injective with
respect to the maps Cn[x1, . . . , xn]

ext ⊂ Cn[x1, . . . , xn] for all n > 0 and all x1, . . . , xn ∈ Σ.
Every action of X belongs to a subcube because X is injective with respect to the maps
x1 ⊂ C1[x1] for x1 running over Σ.

2Orthogonality means that this factorization is unique but we do not need this fact here.
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It follows that the category CTS of cubical transition systems is accessible by [AR94,
Proposition 4.7]. It is even locally finitely presentable, as we will see.

Some elementary facts about (co)reflective subcategories. A coreflective
(resp. reflective) subcategory of a category C is a full isomorphism-closed category such
that the inclusion functor is a left (resp. right) adjoint. The right (resp. left) adjoint is
called the coreflector (resp. the reflector). The two following propositions are elementary
and well-known. We use them several times so we need to state them clearly.

3.7. Proposition. [ML98, page 89] Let D ⊂ C be a coreflective (isomorphism-closed)
subcategory of a category C, i.e. a full subcategory such that the inclusion D ⊂ C has a
right adjoint R : C → D. Then:

1. The counit R(X)→ X is an isomorphism if and only if X belongs to D

2. If C is cocomplete, then so is D.

3.8. Proposition. [Rap09, Proposition 3.1(i)] Let C be a cocomplete category. Let S be
a set of objects of C. The full subcategory of colimits of objects of S is a coreflective sub-
category CS of C. The right adjoint to the inclusion functor CS ⊂ C is the “Kelleyfication”
functor kS defined by:

kS(X) = lim−→
S → X
S ∈ S

S.

Coreflectivity of the category of cubical transition systems. First we recall
how colimits are calculated in WHDTS.

3.9. Proposition. [Gau10b, Proposition 3.5] Let X = lim−→Xi be a colimit of weak higher

dimensional transition systems with Xi = (Si, µi : Li → Σ, T i =
∪
n>1 T

i
n) and X = (S, µ :

L→ Σ, T =
∪
n>1 Tn). Then:

1. S = lim−→Si, L = lim−→Li, µ = lim−→µi

2. the union
∪
i T

i of the image of the T i in
∪
n>1(S × Ln × S) satisfies the Multiset

axiom.

3. T is the closure of
∪
i T

i under the Coherence axiom.

4. when the union
∪
i T

i is already closed under the Coherence axiom, this union is the
final structure.

3.10. Lemma. Consider a colimit lim−→Xi in WHDTS such that every action u of Xi is
used, i.e. there exists a transition (αi, ui, βi) of Xi. Then every action of X is used.

Proof. By Proposition 3.9, the set of transitions of lim−→Xi is obtained by taking the
closure under the Coherence axiom of the union of the transitions of the Xi, hence the
result since the set of actions of lim−→Xi is the union of the actions of the Xi.
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C1[µ(u)]

$$I
IIIIIIII

&&↑x↑ // X

C1[µ(v)]

::uuuuuuuuu

88

Figure 1: The crucial role of ↑x↑

3.11. Theorem. Let X ∈WHDTS. The counit map

qX : lim−→
f : Cn[x1, . . . , xn]→ X

or f : ↑x↑ → X

dom(f)→ X

where dom(f) is the domain of f is bijective on states and one-to-one on actions and
transitions. Moreover, the weak HDTS X is cubical if and only if qX is an isomorphism.

Proof. It is important to keep in mind that, since WHDTS is topological, the set of
states (resp. of actions) of dom(qX) is the colimit of the sets of states (resp. of actions)
of the dom(f) for f running over the set of maps of the form Cn[x1, . . . , xn] → X or
↑x↑ → X for n > 0, x1, . . . , xn, x ∈ Σ.

qX is one-to-one on states. Let α and β be two states of dom(qX) having the same
image γ in X. Then the diagram {α} ← {γ} → {β} is a subdiagram in the colimit
calculating dom(qX). Hence α = γ = β in dom(qX).

qX is onto on states. Let α be a state of X. Then the map C0[] → X mapping the
unique state of C0[] to α is in the colimit calculating dom(qX).

qX is one-to-one on actions. Let u and v be two actions of dom(qX) having the same
image w in X. By Lemma 3.10, the maps u → dom(qX) and v → dom(qX) factor as
composites

u −→ C1[µ(u)] −→ dom(qX) and v −→ C1[µ(v)] −→ dom(qX).

One has µ(u) = µ(v) = µ(w) = x ∈ Σ by definition of a map of weak HDTS. Therefore,
there exists a commutative diagram of weak HDTS like in Figure 1 Hence u = v in
dom(qX).

qX is one-to-one on transitions. Let (α, u1, . . . , un, β) and (α′, u′1, . . . , u
′
n′ , β′) be two

transitions of dom(qX) having the same image in X. Then one has n = n′. Since qX is
one-to-one on states, one gets α = α′ and β = β′. Since qX is one-to-one on actions, one
gets ui = u′i for 1 6 i 6 n.

Let us prove now the last part of the theorem. Let X be a cubical transition system.
Let u be an action of X. Then there exists a map µ(u) → X mapping µ(u) to u. By
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Theorem 3.6, the latter map factors as a composite

µ(u) −→ C1[µ(u)] −→ X

since X is cubical. Hence qX is onto on actions. Let (α, u1, . . . , un, β) be a transition of
X. Then there exists a map Cn[µ(u1), . . . , µ(un)]

ext → X mapping the transition

(0n, (µ(u1), 1), . . . , (µ(un), n), 1n)

to (α, u1, . . . , un, β). By Theorem 3.6, the latter map factors as a composite

Cn[µ(u1), . . . , µ(un)]
ext −→ Cn[µ(u1), . . . , µ(un)] −→ X

since X is cubical. Hence qX is onto on transitions. So qX is an isomorphism. Conversely,
let us suppose now that qX is an isomorphism. Let f : x→ X be a map of weak HDTS.
Then, by hypothesis, the action f̃(x) of X comes from an action u of dom(qX). The
corresponding map x = µ(u)→ dom(qX) factors as a composite

x = µ(u) −→ C1[µ(u)] −→ dom(qX)

by construction of qX . Hence X is injective with respect to the maps x→ C1[x] for x ∈ Σ.
Let g : Cn[x1, . . . , xn]

ext → X be a map of weak HDTS. Then, by hypothesis, the transi-
tion (g0(0n), g̃(x1, 1), . . . , g̃(xn, n), g0(1n)) of X comes from a transition (α, u1, . . . , un, β)
of dom(qX). The corresponding map Cn[µ(u1), . . . , µ(un)]

ext → dom(qX) factors as a
composite

Cn[µ(u1), . . . , µ(un)]
ext −→ Cn[µ(u1), . . . , µ(un)] −→ dom(qX)

by construction of qX . Hence X is injective with respect to the maps

Cn[µ(u1), . . . , µ(un)]
ext −→ Cn[µ(u1), . . . , µ(un)].

So by Theorem 3.6, the weak HDTS X is cubical.

3.12. Corollary. The full subcategory of CTS generated by the cubes Cn[x1, . . . , xn]
for n > 0 and x1, . . . , xn ∈ Σ and by the weak HDTS ↑x↑ for x ∈ Σ is dense in CTS.

3.13. Definition. Let X ∈WHDTS. The cubification functor is the functor

Cub : WHDTS −→WHDTS

defined by
Cub = lim−→

Cn[x1,...,xn]→X

Cn[x1, . . . , xn].

Denote by pX : Cub(X)→ X the canonical map.
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C1[x] ⊔ C1[x])

x1−→
x2−→

px−→


lim−→(C1[x]← x→ C1[x])

x−→
x−→

Figure 2: Monomorphism in CTS with µ(x1) = µ(x2) = x

The full subcategory generated by the cubes Cn[x1, . . . , xn] for n > 0 and x1, . . . , xn ∈
Σ is not a dense, and even not a strong generator of CTS. It is not a dense generator
since the weak HDTS ↑x↑ is not a colimit of cubes. Indeed, the canonical map

C1[x] ⊔ C1[x] ∼= Cub(↑x↑) −→ ↑x↑

is not an isomorphism. The left-hand weak HDTS contains two distinct actions x1 and
x2 labelled by x, whereas the right-hand one contains only one action x. It is not a strong
generator either since the canonical map (cf. Figure 2)

Cub(↑x↑) −→ ↑x↑

is a monomorphism in CTS 3 and since every map Cn[x1, . . . , xn] → ↑x↑ factors as a
composite Cn[x1, . . . , xn]→ C1[x] ⊔ C1[x]→ ↑x↑ (n is necessarily equal to 1).

3.14. Remark. The map of Figure 2 is also an epimorphism.

3.15. Corollary. The category CTS is a coreflective locally finitely presentable subcat-
egory of WHDTS.

Proof. The right adjoint to the inclusion functor CTS ⊂ WHDTS is the functor
X 7→ dom(qX) by Proposition 3.8. The category is therefore cocomplete with set of dense
(and therefore strong) finitely presentable generators the cubes Cn[x1, . . . , xn] for n > 0
and x1, . . . , xn ∈ Σ and the weak HDTS ↑x↑ for x ∈ Σ. The category CTS is therefore
locally finitely presentable by [AR94, Theorem 1.20].

3.16. Definition. Let n > 1 and x1, . . . , xn ∈ Σ. Let ∂Cn[x1, . . . , xn] be the weak HDTS
defined by removing from its set of transitions all n-transitions. It is called the boundary
of Cn[x1, . . . , xn].

The weak HDTS ∂C2[x1, x2] is not a colimit of cubes but is cubical: it is obtained by
identifying states in the cubical transition system ↑x1↑ ⊔ ↑x2↑.

3It is not a monomorphism in WHDTS: the precompositions by x→ C1[x]⊔C1[x] mapping x to x1

and to x2 give the same result.
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4. About combinatorial model categories

4.1. Definition. [AHRT02] Let K be a locally presentable category. A weak factorization
system is a pair (L,R) of classes of morphisms of K such that injK(L) = R and such
that every morphism of K factors as a composite r ◦ ℓ with ℓ ∈ L and r ∈ R. The weak
factorization system is functorial if the factorization r ◦ ℓ can be made functorial.

For every set of maps I of a locally presentable category K, the pair of classes of maps
(cofK(I), injK(I)) is a weak factorization system by [Bek00, Proposition 1.3]. A weak
factorization system of the form (cofK(I), injK(I)) is said small, or generated by I. A
small weak factorization system is necessarily functorial.

For every weak factorization system (L,R), the class of maps L is closed under retract,
pushout and transfinite composition.

4.2. Definition. [Hov99] A combinatorial model category is a locally presentable cat-
egory equipped with three classes of morphisms (C,F ,W) (resp. called the classes of
cofibrations, fibrations and weak equivalences) such that:

1. the class of morphisms W is closed under retracts and satisfies the two-out-of-three
axiom i.e.: if f and g are morphisms of K such that g ◦ f is defined and two of f ,
g and g ◦ f are weak equivalences, then so is the third.

2. the pairs (C ∩W,F) and (C,F ∩W) are both small weak factorization systems. So
there exist two sets of maps I and J such that (C,F ∩W) = (cofK(I), injK(I)) and
(C ∩W ,F) = (cofK(J), injK(J)).

The triple (C,F ,W) is called a model category structure. An element of C ∩W is called
a trivial cofibration. An element of F ∩ W is called a trivial fibration. A map of I is
called a generating cofibration and a map of J a generating trivial cofibration.

There exists at most one model category structure (C,F ,W) for a given class of
cofibrations C and a given class of weak equivalences W . Indeed, the class of cofibrations
determines the class of trivial fibrations, and the intersection of the classes of cofibrations
and of weak equivalences determines the class of fibrations.

An object X is cofibrant (fibrant resp.) if the canonical map ∅ → X (X → 1) is
a cofibration (fibration resp.). A model category is left proper if the pushout along a
cofibration of a weak equivalence is a weak equivalence. By a well-know theorem due
to C. L. Reedy [Ree74], every model category such that every object is cofibrant is left
proper (e.g., [Hir03, Corollary 13.1.3]).

For every object X of a model category, the canonical map ∅ → X (X → 1 resp.)
factors as a composite 0 → Xcof → X (X → Xfib → 1 resp.) where Xcof is cofibrant
and Xcof → X is a trivial fibration (Xfib is fibrant and X → Xfib is a trivial cofibration
resp.). Xcof (Xfib resp.) is called the cofibrant (fibrant resp.) replacement functor.
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4.3. Definition. [Cis02, Definition 3.4] Let A be a class of morphisms of a category K.
A class of mapsW satisfying the two-out-of-three axiom, such that injK(A) ⊂ W and such
that A∩W is closed under pushout and transfinite composition is called a A-localizer, or
a localizer with respect to A.

The class of all maps of K is clearly an A-localizer and the intersection of any family
of A-localizers is a A-localizer. Therefore there exists a smallest A-localizer containing a
given set of maps S denoted by WK

A(S), or WA(S) if there is no ambiguity (once again,
K will be always omitted if K = WHDTS).

Let K be a locally presentable category. Let A be a class of morphisms of K. There
exists at most one model structure on K such that A is the class of cofibrations and
such that WA(∅) is the class of weak equivalences since the class of trivial cofibrations
is then completely known and by definition of a weak factorization system, the classes of
fibrations and trivial fibrations are determined as well. When it exists, it is called the
left determined model structure with respect to A [RT03]. Note that the existence of this
model structure implies that WA(∅) is closed under retract. However, this hypothesis is
not in the definition of a localizer.

4.4. Definition. [KR05] A very good cylinder of a weak factorization system (L,R) in
a locally presentable category K is a functorial factorization of the codiagonal X⊔X → X
as a composite

X ⊔X γX //Cyl(X)
σX //X

with γX ∈ L and σX ∈ R. Two maps f, g : X ⇒ Y are homotopy equivalent if the pair
(f, g) belongs to the symmetric transitive closure of the binary relation f ∼ g whenever
the map f ⊔ g : X ⊔X → Y factors as a composite

X ⊔X γX //Cyl(X) H //Y.

The homotopy relation does not depend on the choice of a very good cylinder by [KR05,
Observation 3.3].

The adjective very good (meaning that σX ∈ R) is not used in [KR05]. The adjective
final is used in [Ols09]. The terminology of [DS95, Definition 4.2] seems to be better to
avoid any confusion with the notion of final structure in a topological category.

4.5. Notation. The two composites

X ⊂ X ⊔X γX // Cyl(X)

are denoted by γ0X and γ1X .

4.6. Notation. For every map f : X → Y and every natural transformation α : F ⇒ F ′

between two endofunctors of K, the map f ⋆ α is the canonical map

f ⋆ α : FY ⊔FX F ′X −→ F ′Y
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induced by the commutative diagram of solid arrows

FX
αX //

Ff

��

F ′X

F ′f

��
FY

αY // F ′Y

and the universal property of the pushout.

4.7. Definition. [Ols09, Definition 3.8] A very good cylinder of a weak factorization
system (L,R) in a locally presentable category K is cartesian if the cylinder functor Cyl :
K → K is a left adjoint and if one has the inclusions L ⋆ γ ⊂ L and L ⋆ γk ⊂ L for
k = 0, 1.

A cylinder of a model category is a very good cylinder for the weak factorization system
formed by the cofibrations and the trivial fibrations.

Let us conclude the section by recalling well-known Smith’s theorem generating model
structures on locally presentable categories.

4.8. Theorem. (Smith) Let I be a set of morphisms of a locally presentable category
K. Let W be an accessible accessibly-embedded cofK(I)-localizer closed under retracts.
Then there exists a cofibrantly generated model structure on K with class of cofibrations
cofK(I), with class of fibrations injK(cofK(I) ∩W), and with class of weak equivalences
W.

Sketch of Proof. The class W satisfies the solution set condition by [AR94, Corol-
lary 2.45]. Hence the existence of the model structure by Smith’s theorem [Bek00, Theo-
rem 1.7].

The Bousfield localization of a model category M by a class of maps A is a model
category LAM with the same underlying category, the same class of cofibrations, together
with a map of model categories 4 M → LAM such that every map of model categories
M→N taking the cofibrant replacement of every map of A to a weak equivalence of N
factors uniquely as a compositeM→ LAM→N . The properties of this object used in
this paper are listed now:

1. The Bousfield localization of a left proper combinatorial model category with respect
to any set of maps always exists and is left proper combinatorial [Ros09] [Lur09]
[Hir03, Theorem 3.3.19].

2. A weak equivalence between two cofibrant-fibrant objects in LAM is a weak equiv-
alence ofM [Hir03, Theorem 3.2.13].

4i.e. a left adjoint preserving cofibrations and trivial cofibrations
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By Bousfield localization ofM with respect to a functor F :M →M preserving weak
equivalences, it is meant the Bousfield localization with respect to the class of maps f
such that F (f) is a weak equivalence.

5. The left determined model category of weak HDTS

The purpose of this section is the proof of the existence of the left determined model
structure with respect to the cofibrations of weak HDTS defined as follows:

5.1. Definition. A cofibration of weak HDTS is a map of weak HDTS inducing an
injection between the set of actions.

Note that the class of cofibrations is strictly bigger than the class of monomorphisms
of WHDTS since R : {0, 1} → {0} is a cofibration of weak HDTS. We do not know
if there is a link between this fact and the existence of an analogous cofibration on the
model category of flows introduced in [Gau03].

5.2. Proposition. The class of cofibrations of weak HDTS is closed under pushout,
transfinite composition and retract.

Proof. Since the functor ω : WHDTS −→ Set{s}∪Σ is topological, it is colimit preserv-
ing. So it suffices to observe that the class of injections in the category of sets is closed
under retract, pushout and transfinite composition, for example by considering the weak
factorization system of the category of sets (cofSet(C), injSet(C)) where C : ∅ ⊂ {0}
denotes the inclusion.

5.3. Notation. Let I be the set of maps C : ∅ → {0}, R : {0, 1} → {0}, ∅ ⊂ x for
x ∈ Σ and {0n, 1n} ⊔ x1 ⊔ · · · ⊔ xn ⊂ Cn[x1, . . . , xn]

ext for n > 1 and x1, . . . , xn ∈ Σ.

5.4. Proposition. One has cell(I) = cof(I) and this class of maps is the class of
cofibrations of weak HDTS.

Proof. Every map of I is a cofibration of weak HDTS. Since I is a set, the class of maps
cof(I) is the closure under retract of transfinite composition of pushouts of elements of
I. So cell(I) ⊂ cof(I) and by Proposition 5.2, every map of cof(I) is a cofibration of
weak HDTS. It then suffices to prove that every cofibration of weak HDTS belongs to
cell(I).

Let f : X = (S, µ : L → Σ, T ) → X ′ = (S ′, µ′ : L′ → Σ, T ′) be a cofibration of
weak HDTS. The set map f0 : S → S ′ factors as a composite S → f0(S) ⊂ S ′. The
left-hand map is a transfinite composition of pushouts of R : {0, 1} → {0}. The inclusion
f0(S) ⊂ S ′ is a transfinite composition of pushouts of C : ∅ → {0}. By hypothesis, the
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set map f̃ : L→ L′ is one-to-one. Consider the pushout diagram of weak HDTS

S ⊔
(⊔

u∈L µ(u)
)

⊂ //

f⊔f̃

��

X

��
S ′ ⊔

(⊔
u∈L′ µ′(u)

)
// Y.

The universal property of the pushout yields a map of weak HDTS g : Y → X ′ such that
g0 and g̃ are bijections. Consider the pushout diagram of weak HDTS

⊔
(α,u1,...,un,β)∈T ′\T

({0n, 1n} ⊔ µ′(u1) ⊔ · · · ⊔ µ′(un))

0n 7→ α
1n 7→ β

µ′(ui) 7→ µ′(ui)
//

��

Y

��⊔
(α,u1,...,un,β)∈T ′\T

Cn[µ
′(u1), . . . , µ

′(un)]
ext

// Z.

The universal property of the pushout yields a map h : Z → X ′ such that h0 and h̃ are
bijections. So the set of transitions of Z can be identified with a subset of the set of
transitions of X ′. By construction, the map h induces an onto map between the set of
transitions. So h is an isomorphism of weak HDTS and cell(I) = cof(I).

The terminal object 1 of WHDTS is described as follows: the set of states is {0},
the set of actions is Σ, the labelling map is the identity of Σ and the set of transitions is∪
n>1Σ

n. In other terms, one has 1 ∼= ({0}, IdΣ,
∪
n>1Σ

n). Let V be the weak HDTS

V := ({0}, pr1 : Σ× {0, 1} → Σ, {0} × (
∪
n>1

(Σ× {0, 1})n)× {0})

V is called the segment object of WHDTS.

5.5. Proposition. Let X = (S, µ : L → Σ, T ) and X ′ = (S ′, µ′ : L′ → Σ, T ′) be two
weak HDTS. The binary product X × X ′ has the set of states S × S ′, the set of actions
L ×Σ L

′ = {(x, x′) ∈ L × L′, µ(x) = µ′(x′)} and the labelling map µ ×Σ µ
′ : L ×Σ L

′ →
Σ. A tuple ((α, α′), (u1, u

′
1), . . . , (un, u

′
n), (β, β

′)) is a transition of X ×X ′ if and only if
µ(ui) = µ′(u′i) for 1 6 i 6 n with n > 1, the tuple (α, u1, . . . , un, β) is a transition of X
and (α′, u′1, . . . , u

′
n, β

′) a transition of X ′.
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Proof. The forgetful functor ω : WHDTS −→ Set{s}∪Σ is limit-preserving by [AHS06,
Proposition 21.12] since it is topological. So the set of states is S × S ′, the set of actions
L ×Σ L

′ and the labelling map µ ×Σ µ
′ : L ×Σ L

′ → Σ. Consider the set T ′′′ of tuples
((α, α′), (u1, u

′
1), . . . , (un, u

′
n), (β, β

′)) such that µ(ui) = µ′(u′i) for 1 6 i 6 n with n > 1,
the tuple (α, u1, . . . , un, β) is a transition of X and (α′, u′1, . . . , u

′
n, β

′) a transition of X ′.
The existence of the projections X × X ′ → X and X × X ′ → X ′ implies that the set
of transitions T ′′ of X × X ′ satisfies T ′′ ⊂ T ′′′. Let t = (α, u1, . . . , un, β) ∈ T and
t′ = (α′, u′1, . . . , u

′
n, β

′) ∈ T ′ such that µ(ui) = µ′(u′i) for 1 6 i 6 n with n > 1. Let t× t′
be the weak HDTS with set of states S × S ′, with set of actions L ×Σ L

′, with labelling
map µ×Σ µ

′, and with set of transitions

{((α, α′), (uσ(1), u
′
σ(1)), . . . , (uσ(n), u

′
σ(n)), (β, β

′)), σ permutation of {1, . . . , n}}.
Since the set of transitions T ′′ is given by an initial structure, the cone of weak HDTS
(t× t′ → X, t× t′ → X ′) induced by the projections factors uniquely by a map t× t′ →
X ×X ′ which is the identity on the set of states and the set of actions. So T ′′′ ⊂ T ′′.

5.6. Proposition. Let X = (S, µ : L → Σ, T ) and X ′ = (S ′, µ′ : L′ → Σ, T ′) be two
weak higher dimensional transition systems. The binary coproduct X ⊔X ′ has the set of
states S ⊔ S ′, the set of actions L ⊔ L′ and the labelling map µ ⊔ µ′ : L ⊔ L′ → Σ. A
tuple (α, u1, . . . , un, β) is a transition of X ⊔X ′ if and only if it is a transition of X or a
transition of X ′.

Proof.The forgetful functor ω : WHDTS −→ Set{s}∪Σ is colimit-preserving by [AHS06,
Proposition 21.12] since it is topological. So the set of states is S ⊔ S ′, the set of actions
L⊔L′ and the labelling map µ⊔ µ′ : L⊔L′ → Σ. The disjoint union of the transitions of
X and X ′ is closed under the Coherence axiom. So it is equal to the set of transitions of
X ⊔X ′ by Proposition 3.9.

5.7. Proposition. The canonical map 1⊔1→ 1 factors as a composite 1⊔1 −→ V −→
1 such that the left-hand map is a cofibration and such that the right-hand map satisfies
the right lifting property with respect to every cofibration.

Proof. Proposition 5.6 tells us that the set of states (resp. of actions) of 1 ⊔ 1 is the
disjoint union of the set of states (resp. of actions) of 1. Let 1 ⊔ 1 → V be the map
of weak HDTS defined on states by the constant set map (V has only one state) and on
actions by the bijection Σ ⊔ Σ→ Σ× {0, 1} taking the left-hand copy Σ to Σ× {0} and
the right-hand copy of Σ to Σ× {1}. The composite 1 ⊔ 1 → V → 1 is the unique map
of weak HDTS from 1 ⊔ 1 to 1. The map 1 ⊔ 1→ V is a cofibration.

Consider the commutative square of solid arrows

X
g //

f

��

V

��
X ′ //

k

>>~
~

~
~

~
~

~
~

1
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where f : X → X ′ is a cofibration of weak HDTS. Let X = (S, µ : L → Σ, T ) and
X ′ = (S ′, µ′ : L′ → Σ, T ′). Since V has only one state, the definition of k0 is clear: k0 = 0.

Since f is a cofibration, L can be identified with a subset of L′. Let k̃ : L′ → Σ× {0, 1}
be the set map defined as follows:

• k̃(u) = g̃(u) if u ∈ L (we have no choice here)

• k̃(u) = (µ′(u), 0) if u ∈ L′\L.

Let (α, u1, . . . , un, β) be a transition of X ′. One always has k̃(ui) ∈ {µ′(ui)}× {0, 1}, and
necessarily k̃(ui) = (µ′(ui), 0) if ui ∈ L′\L for every i ∈ {1, . . . , n}. So the set maps k0
and k̃ takes the transition (α, u1, . . . , un, β) to the tuple (0, (µ′(u1), ϵ1), . . . , (µ

′(un), ϵn), 0)
with ϵ1, . . . , ϵn ∈ {0, 1}. The tuple (0, (µ′(u1), ϵ1), . . . , (µ

′(un), ϵn), 0) is a transition of V
by definition of V . So k is a map of weak HDTS and the map V → 1 satisfies the RLP
with respect to every cofibration.

5.8. Proposition. The weak HDTS V is exponentiable, i.e. the functor V × − :
WHDTS→WHDTS has a right adjoint denoted by (−)V : WHDTS→WHDTS.

Proof. Let Y = (SY , µ : LY → Σ, TY ) be a weak HDTS. Recall that

V := ({0}, pr1 : Σ× {0, 1} → Σ, {0} × (
∪
n>1

(Σ× {0, 1})n)× {0}).

Let us describe at first the right adjoint

Y V = (SV , µV : LV → Σ, T V ).

One must have the bijection of sets

WHDTS(V × {0}, Y ) ∼= WHDTS({0}, Y V ) ∼= SV .

By Proposition 5.5, one has V ×{0} ∼= {0}. So necessarily there is the equality SV = SY .
Let x ∈ Σ. One must have the bijection of sets

WHDTS(V × x, Y ) ∼= WHDTS(x, Y V ) = (µV )−1(x).

By Proposition 5.5 again, one has V × x ∼= x ⊔ x. Therefore one has

(µV )−1(x) ∼= WHDTS(x ⊔ x,X) ∼= µ−1(x)× µ−1(x).

Thus, one must necessarily have LV = LY ×ΣLY (the fibered product of LY by itself over
Σ). Finally, one must have the bijection of sets

WHDTS(V × Cn[x1, . . . , xn]ext, Y ) ∼= WHDTS(Cn[x1, . . . , xn]
ext, Y V )
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for every x1, . . . , xn ∈ Σ. By Proposition 5.5 again, the n-transitions of Y V are of the form
(α, (u−1 , u

+
1 ), . . . , (u

−
n , u

+
n ), β) such that the 2n tuples (α, u±1 , . . . , u

±
n , β) are transitions of

Y .
Let X = (SX , µ : LX → Σ, TX) be another weak HDTS. Using Proposition 5.5 again,

let us describe now the binary product X × V . The set of states of X × V is SX , the set
of actions is LX ×Σ (Σ × {0, 1}) = LX × {0, 1} and a tuple (α, (u1, ϵ1), . . . , (un, ϵn), β) is
a transition if and only if (α, u1, . . . , un, β) is a transition of X.

The bijection WHDTS(X × V, Y ) ∼= WHDTS(X, Y V ) is then easy to check.

5.9. Notation. Let Cyl(X) := X × V .

5.10. Proposition.One has cof(I)⋆γ0 ⊂ cof(I), cof(I)⋆γ1 ⊂ cof(I) and cof(I)⋆γ ⊂
cof(I).

Proof. Let f : X → X ′ be a cofibration of weak HDTS. Let X = (S, µ : L→ Σ, T ) and
X ′ = (S ′, µ′ : L′ → Σ, T ′). The map of weak HDTS f ⋆ γ : (X ′ ⊔ X ′) ⊔X⊔X Cyl(X) →
Cyl(X ′) is a cofibration since the set map f̃ ⋆ γ is the identity of L′⊔L′. The map of weak
HDTS f ⋆γk : X ′⊔XCyl(X)→ Cyl(X ′), where γkX : X → Cyl(X) and γkX′ : X ′ → Cyl(X ′)

are the canonical maps is a cofibration of weak HDTS since the set map f̃ ⋆ γk is the
inclusion L ⊔ L′ → L′ ⊔ L′.

5.11. Theorem. Let S be an arbitrary set of maps of WHDTS. The triple

(cof(I), inj(cof(I) ∩Wcof(I)(S)),Wcof(I)(S))

is a left proper combinatorial model structure of WHDTS. The segment object V is fi-
brant and contractible (i.e. weakly equivalent to the terminal object) for this model struc-
ture. All objects are cofibrant.

Proof. By Proposition 5.8, Proposition 5.10 and Proposition 5.7, the functor Cyl(X) =
V ×X is a cartesian very good cylinder for the weak factorization system (cof(I), inj(I)).
The latter weak factorization system is cofibrant, i.e. all maps ∅→ X belongs to cof(I)
by Proposition 5.4. The theorem is therefore a consequence of [Ols09, Corollary 4.6].

When S = ∅, the above model structure is left determined in the sense of [RT03],
i.e. the class of weak equivalences is the smallest localizer closed under retract. Indeed,
Wcof(I)(S) is included in this smallest localizer closed under retract and it is closed under
retract itself since it is the class of weak equivalences of a model category structure.

Note that the category WHDTS is distributive in the following sense:

5.12. Proposition. The category WHDTS is distributive, i.e. for every weak higher
dimensional transition system X, Y and Z, there is the isomorphism (X×Y )⊔(X×Z) ∼=
X × (Y ⊔ Z).
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Proof. Since the forgetful functorWHDTS→ Set{s}∪Σ is topological, it preserves limits
and colimits by [AHS06, Proposition 21.12]. So the canonical map (X × Y )⊔ (X ×Z)→
X×(Y ⊔Z) induces a bijection between the sets of states and the sets of actions. So the set
of transitions T of (X×Y )⊔(X×Z) can be identified with a subset of the set of transitions
T ′ of X × (Y ⊔ Z). So T ⊂ T ′. By Proposition 5.5, a transition of X × (Y ⊔ Z) is of the
form ((α, γ), (u1, v1), . . . , (un, vn), (β, δ)) where the tuple (α, u1, . . . , un, β) is a transition
of X and where the tuple (γ, v1, . . . , vn, δ) is a transition of Y ⊔ Z. By Proposition 5.6,
the transition (γ, v1, . . . , vn, δ) is then either a transition of Y or a transition of Z. So by
Proposition 5.5 again, the tuple ((α, γ), (u1, v1), . . . , (un, vn), (β, δ)) is either a transition
of X × Y or a transition of X × Z. Thus, T ′ ⊂ T .

The class of cofibrations is also stable under pullback along any map (not necessarily
product projection). Therefore, [Ols09, Remark 4.7] applies here: any factorization of
the codiagonal 1 + 1 → 1 as a composite 1 + 1 → W ′ → 1 with the left-hand map a
cofibration and the right-hand map an element of inj(I) will provide a very good cylinder.

6. The left determined model category of cubical transition systems

In this section, A is a coreflective full subcategory of WHDTS.

6.1. Theorem. Let A be a coreflective accessible subcategory of WHDTS such that:

• The class of cofibrations of WHDTS between objects of A is generated by a set,
i.e. there exists a set IA of maps of A such that cofA(IA) is this class of maps.

• The segment object V belongs to A.

• The inclusion functor A ⊂WHDTS preserves binary products by V .

Let S be an arbitrary set of maps of A. The triple

(cofA(IA), injA(cofA(I) ∩WA
cof(IA)(S)),WA

cof(IA)(S))

is a left proper combinatorial model structure of A.

Proof. The category A is cocomplete by Proposition 3.7. Therefore it is locally pre-
sentable. So the cylinder functor X 7→ V ×X is a left adjoint. The proof then goes as for
that of Theorem 5.11. The latter theorem is in fact the particular case A = WHDTS.

When S = ∅, the above model structure is left determined in the sense of [RT03], i.e.
the class of weak equivalences is the smallest localizer closed under retract.

6.2. Notation. Let ΛA(Cyl, S, IA) be the set of maps:

• Λ0
A(Cyl, S, IA) = S ∪ (IA ⋆ γ

0) ∪ (IA ⋆ γ
1)

• Λn+1
A (Cyl, S, IA) = ΛnA(Cyl, S, IA) ⋆ γ
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• ΛA(Cyl, S, IA) =
∪
n>0 Λ

n
A(Cyl, S, IA).

By [Ols09, Theorem 3.16, Theorem 4.5 and corollary 4.6], the class of weak equiva-
lencesWA

cof(IA)(S) coincides with the class of maps denoted byW(ΛA(Cyl, S, IA)) defined

as follows. A map f : X → Y of A belongs to W(ΛA(Cyl, S, IA)) if and only if for every
object T of A such that the canonical map T → 1 ∈ injA(ΛA(Cyl, S, IA)), the induced
set map

WHDTS(Y, T )/ ≃−→WHDTS(X,T )/ ≃
is a bijection where ≃ means the homotopy relation associated with the cylinder Cyl.
Moreover, the fibrant objects of the model category of Theorem 6.1 are exactly the objects
T such that T → 1 ∈ injA(ΛA(Cyl, S, IA)).

6.3. Theorem. Let A and B be two coreflective accessible subcategories of WHDTS
with A ⊂ B satisfying the hypotheses of Theorem 6.1. Let us suppose that the class of
cofibrations of WHDTS between objects of A (resp. B) is generated by a set IA (resp.
IB). Let S be an arbitrary set of maps of A. Let us equip A with the model structure

(cofA(IA), injA(cofA(I) ∩WA
cof(IA)(S)),WA

cof(IA)(S))

and B with the model structure

(cofB(IB), injB(cofB(I) ∩WB
cof(IB)

(S)),WB
cof(IB)

(S)).

Then the inclusion functor A ⊂ B is a left Quillen adjoint.

Proof. The two categories A and B are cocomplete by Proposition 3.7 and therefore
locally presentable. Since the inclusion functor A ⊂ B preserves colimits (which are the
same as the colimits of WHDTS), it is a left adjoint. it is clear that the inclusion functor
takes cofibrations to cofibrations. We must prove that it takes trivial cofibrations to trivial
cofibrations. It actually takes every weak equivalence to a weak equivalence. Let X → Y
be a weak equivalence of A. Let T be a fibrant object of B. Then the map T → 1 satisfies
the RLP with respect to any map of ΛA(Cyl, S, IA) ⊂ ΛB(Cyl, S, IB). So by adjunction,
R(T ) → 1 satisfies the RLP with respect to the maps of ΛA(Cyl, S, IA), where R(−) is
the right adjoint to the inclusion functor. So R(T ) is fibrant in A. Therefore the induced
set map

WHDTS(Y,R(T ))/ ≃−→WHDTS(X,R(T ))/ ≃
is a bijection. So by adjunction again, X → Y is a weak equivalence of B.

We want to apply Theorem 6.1 to the case A = CTS and B = WHDTS.

6.4. Definition. A weak HDTS X satisfies the Intermediate state axiom if for every
n > 2, every p with 1 6 p < n and every transition (α, u1, . . . , un, β) of X, there exists
a (not necessarily unique) state ν such that both (α, u1, . . . , up, ν) and (ν, up+1, . . . , un, β)
are transitions.

Note that the Unique intermediate state axiom CSA2 introduced in [Gau10b] is slightly
stronger than the axiom above. Indeed, it states that the intermediate states in a higher
dimensional transition are unique.
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6.5. Proposition. [Gau10b, Proposition 5.5] Let n > 0 and a1, . . . , an ∈ Σ. Let X =
(S, µ : L → Σ, T =

∪
n>1 Tn) be a weak higher dimensional transition system. Let f0 :

{0, 1}n → S and f̃ : {(a1, 1), . . . , (an, n)} → L be two set maps. Then the following
conditions are equivalent:

1. The pair (f0, f̃) induces a map of weak higher dimensional transition systems from
Cn[a1, . . . , an] to X.

2. For every transition ((ϵ1, . . . , ϵn), (ai1 , i1), . . . , (air , ir), (ϵ
′
1, . . . , ϵ

′
n)) of Cn[a1, . . . , an]

with (ϵ1, . . . , ϵn) = 0n or (ϵ′1, . . . , ϵ
′
n) = 1n, the tuple

(f0(ϵ1, . . . , ϵn), f̃(ai1 , i1), . . . , f̃(air , ir), f0(ϵ
′
1, . . . , ϵ

′
n))

is a transition of X.

6.6. Proposition. A weak HDTS satisfies the Intermediate state axiom if and only if it
is injective with respect to the maps Cn[x1, . . . , xn]

ext ⊂ Cn[x1, . . . , xn] for all n > 0 and
all x1, . . . , xn ∈ Σ.

Recall that if a weak HDTS satisfies the Unique intermediate state axiom CSA2, not
only it is injective with respect to the maps Cn[x1, . . . , xn]

ext ⊂ Cn[x1, . . . , xn] for all
n > 0 and all x1, . . . , xn ∈ Σ, but also the factorization is unique: i.e. the weak HDTS is
orthogonal to this set of maps [Gau10b, Theorem 5.6].

Proof. The proof is essentially an adaptation of the one of [Gau10b, Theorem 5.6].
Only if part. Let X = (S, µ : L → Σ, T =

∪
n>1 Tn) be a weak HDTS satisfying the

Intermediate state axiom. Let n > 0 and x1, . . . , xn ∈ Σ. We have to prove that the
inclusion of weak HDTS Cn[x1, . . . , xn]

ext ⊂ Cn[x1, . . . , xn] induces an onto set map

WHDTS(Cn[x1, . . . , xn], X) −→WHDTS(Cn[x1, . . . , xn]
ext, X).

This fact is trivial for n = 0 and n = 1 since the inclusion Cn[x1, . . . , xn]
ext ⊂ Cn[x1, . . . , xn]

is an equality. Let f : Cn[x1, . . . , xn]
ext → X be a map of weak HDTS. The map f in-

duces a set map f0 : {0n, 1n} → S and a set map f̃ : {(x1, 1), . . . , (xn, n)} → L. Let
(ϵ1, . . . , ϵn) ∈ [n] be a state of Cn[x1, . . . , xn] different from 0n and 1n. Then there exist
(at least) two transitions

(0n, (xi1 , i1), . . . , (xir , ir), (ϵ1, . . . , ϵn))

and
((ϵ1, . . . , ϵn), (xir+1 , ir+1), . . . , (xir+s , ir+s), 1n)

of Cn[x1, . . . , xn] with r, s > 1. Let f0(ϵ1, . . . , ϵn) be a state of X such that

(f0(0n), f̃(xi1 , i1), . . . , f̃(xir , ir), f0(ϵ1, . . . , ϵn))
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and
(f0(ϵ1, . . . , ϵn), f̃(xir+1 , ir+1), . . . , f̃(xir+s , ir+s), f0(1n))

are two transitions of X. Since every transition from 0n to (ϵ1, . . . , ϵn) is of the form

(0n, (xiσ(1)
, iσ(1)), . . . , (xiσ(r)

, iσ(r)), (ϵ1, . . . , ϵn))

where σ is a permutation of {1, . . . , r} and since every transition from (ϵ1, . . . , ϵn) to 1n
is of the form

((ϵ1, . . . , ϵn), (xiσ′(r+1)
, iσ′(r+1)), . . . , (xiσ′(r+s)

, iσ′(r+s)), 1n)

where σ′ is a permutation of {r + 1, . . . , r + s}, one obtains a well-defined set map f0 :

[n] → S. The pair of set maps (f0, f̃) induces a well-defined map of weak HDTS by
Proposition 6.5. Therefore the set map

WHDTS(Cn[x1, . . . , xn], X) −→WHDTS(Cn[x1, . . . , xn]
ext, X)

is onto.
If part. Conversely, let X = (S, µ : L → Σ, T =

∪
n>1 Tn) be a weak HDTS injective

to the set of inclusions {Cn[x1, . . . , xn]ext ⊂ Cn[x1, . . . , xn], n > 0 and x1, . . . , xn ∈ Σ}.
Let (α, u1, . . . , un, β) be a transition of X with n > 2. Then there exists a (unique) map
Cn[µ(u1), . . . , µ(un)]

ext −→ X taking the transition (0n, (µ(u1), 1), . . . , (µ(un), n), 1n) to
the transition (α, u1, . . . , un, β). By hypothesis, this map factors as a composite

Cn[µ(u1), . . . , µ(un)]
ext ⊂ Cn[µ(u1), . . . , µ(un)]

g−→ X.

Let 1 6 p < n. There exists a (unique) state ν of Cn[µ(u1), . . . , µ(un)] such that the
tuples (0n, (µ(u1), 1), . . . , (µ(up), p), ν) and (ν, (µ(up+1), p+ 1), . . . , (µ(un), n), 1n) are two
transitions of the HDTS Cn[µ(u1), . . . , µ(un)] by Proposition 2.6. Hence the existence of a
state g0(ν) of X such that the tuples (α, u1, . . . , up, g0(ν)) and (g0(ν), up+1, . . . , un, β) are
two transitions of X. Thus, the weak HDTS X satisfies the Intermediate state axiom.

6.7. Proposition. A weak HDTS is a cubical transition system if and only if it satis-
fies the Intermediate state axiom and every action u is used in at least one 1-transition
(α, u, β).

Proof. The statement is a corollary of Proposition 6.6 and Theorem 3.6.

6.8. Corollary. There exists a left determined model structure with respect to the class
of cofibrations between cubical transition systems. The adjunction CTS � WHDTS is
a Quillen adjunction. All objects of CTS are cofibrant.

Proof. The class of cofibrations between cubical transition systems is generated by a
set ICTS by Theorem A.5. The segment V is cubical by Proposition 6.7. The other
hypotheses of Theorem 6.1 are easy to check. Hence the proof is complete.
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Proposition 6.6 has a consequence which will not be used in the paper but which is
worth mentioning anyway. This is about an explicit description of the coreflector from
WHDTS to CTS.

6.9. Definition. Let X be a weak HDTS. A (n+ 1)-transition (α, u1, . . . , un+1, β) of X
is divisible if either n = 0 or there exists a state γ such that the tuples (α, u1, . . . , up, γ)
and (γ, up+1, . . . , un+1, β) are two divisible transitions of X for some p > 1.

6.10. Proposition. Let X be a weak HDTS. The image X of X by the coreflector is the
weak HDTS having the same states as X, having as set of actions the actions of X which
are used in a 1-transition (in the sense of Lemma 3.10) and having as set of transitions
the divisible transitions.

Proof. It is clear by Proposition 6.6 that all transitions of X are divisible. Conversely,
let (α, u1, . . . , un, β) be a divisible transition of X. Then the corresponding map

Cn[µ(u1), . . . , µ(un)]
ext −→ X

factors as a composite

Cn[µ(u1), . . . , µ(un)]
ext −→ Cn[µ(u1), . . . , µ(un)] −→ X.

Therefore every divisible transition belongs to a subcube.

7. First Cattani-Sassone axiom and weakly equivalent cubical transition
systems

From now on, we work in the category of cubical transition systems CTS. So cof =
cofCTS, inj = injCTS, cell = cellCTS. The localizer (with respect to the class of cofibra-
tions of cubical transition systems) generated by a set S is denoted by W(S).

We want to characterize the weak equivalences of the left determined model structure
of cubical transition systems. The following axiom, introduced in [Gau10b], will be useful.

7.1. Definition. A cubical transition system satisfies the First Cattani-Sassone axiom
(CSA1) if for every transition (α, u, β) and (α, u′, β) such that the actions u and u′ have
the same label in Σ, one has u = u′.

The axiom CSA1 used by Cattani and Sassone in their paper [CS96] is even stronger,
but we do not need this stronger form. In our language, their stronger form states that
if (α, u1, . . . , un, β) and (α, u′1, . . . , u

′
n, β) are two n-dimensional transitions with µ(ui) =

µ(u′i) for 1 6 i 6 n, then one has (α, u1, . . . , un, β) = (α, u′1, . . . , u
′
n, β).

7.2. Proposition. The full subcategory of cubical transition systems satisfying CSA1 is
a full reflective subcategory of CTS.

Proof. The full subcategory of cubical transition systems satisfying CSA1 is a small-
orthogonality class of CTS. Indeed a cubical transition system satisfies CSA1 if and only
if it is orthogonal to the set of maps C1[x] ⊔{01,11} C1[x] −→ C1[x] for x running over Σ.
The proof goes exactly as in [Gau10b, Corollary 5.7].
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7.3. Notation. Let us denote by CSA1 the reflector.

7.4. Proposition. Let Y be a cubical transition system satisfying CSA1. Let X be
a cubical transition system. Then two homotopy equivalent maps f, g : X → Y are
equal. In other terms, each of the two canonical maps X → X × V induces a bijection
CTS(X × V, Y ) ∼= CTS(X, Y ).

Proof. The cubical transition system X×V is calculated in the proof of Proposition 5.8.
Let us recall the results. The cubical transition system X×V and X have the same states.
If L is the set of actions ofX, then L×{0, 1} is the set of actions ofX×V and the labelling
map is the composite L × {0, 1} → L → Σ. Finally, a tuple (α, (u1, ϵ1), . . . , (un, ϵn), β)
for ϵ1, . . . , ϵn ∈ {0, 1} is a transition of X × V if and only if the tuple (α, u1, . . . , un, β) is
a transition of X.

Let us consider a homotopy H : X × V → Y between two maps f and g from X to
Y . Since X × V and X have the same states, f0 = g0 = H0, i.e. f and g coincide on
states. Let u be an action of X. Since X is injective with respect to the map µ(u) −→
C1[µ(u)] by Theorem 3.6, there exists a transition (α, u, β) ofX. So the tuples (α, (u, 0), β)

and (α, (u, 1), β) are two transitions of X × V . Therefore (H0(α), H̃(u, 0), H0(β)) and

(H0(α), H̃(u, 1), H0(β)) are two transitions of Y . By CSA1, one has f̃(u) = H̃(u, 0) =

H̃(u, 1) = g̃(u). Hence f = g.

7.5. Corollary. Let T be a cubical transition system satisfying CSA1. Then there is
the canonical isomorphism T V ∼= T in CTS 5

7.6. Proposition. Let T be a cubical transition system such that T V ∼= T (in CTS).
Then one has:

1. T is orthogonal to every map of the form f ⋆ γϵ with ϵ = 0, 1 and with f any map
of cubical transition systems.

2. T is injective with respect to a map of the form f ⋆ γ with f a map of cubical
transition systems if and only if for every diagram of the form

X
g //

f
��

T

Y
k

>>~
~

~
~

there exists at most one lift k.

3. T is injective with respect to every map of the form f ⋆ γ with f a map of cubical
transition systems such that f0 and f̃ are onto 6.

5The weak HDTS (TV )WHDTS (the right adjoint being calculated in WHDTS) is not isomorphic to
T ; the calculations in the proof of Proposition 5.8 show that the two weak HDTS have a different set of
actions, L×Σ L for (TV )WHDTS if L is the set of actions of T .

6In fact, this assertion holds whenever f is an epimorphism.
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4. T is injective with respect to every map of the form (f ⋆ γ) ⋆ γ where f is a map of
cubical transition systems.

Proof. By adjunction, T is injective with respect to a map of the form f ⋆ γϵ if and only
if f satisfies the LLP with respect to the map πϵ : T

V → T which is an isomorphism.
Hence the first assertion.

By adjunction again, T is injective with respect to a map of the form f ⋆ γ if and only
if f satisfies the LLP with respect to the canonical map π : T V → T × T which turns out
to be the diagonal. Two lifts k1 and k2 in the diagram

X
g //

f
��

T

Y
k1,k2

>>~
~

~
~

give rise to the commutative diagram of solid arrows

X
g //

f

��

T V

��
Y

(k1,k2) //

k

<<z
z

z
z

z
z

z
z

z
T × T.

One deduces k1 = k = k2. Conversely, let us suppose that there is always at most one lift
k in the diagram

X
g //

f
��

T

Y
k

>>~
~

~
~

Consider a commutative diagram of solid arrows of the form

X
g //

f

��

T V ∼= T

��
Y

(k1,k2) // T × T.

Then k1 = k2 and therefore T is (f ⋆ γ)-injective. Hence the second assertion.
Let us suppose now that f is a map of cubical transition systems such that f0 and

f̃ are onto. Let k1 and k2 be two lifts. Then ω(k1)ω(f) = ω(g) = ω(k2)ω(f). So
ω(k1) = ω(k2). Since the forgetful functor ω is faithful, one deduces that k1 = k2. Hence
the third assertion.
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Let f : X → X ′ be a map of cubical transition systems with X = (S, µ : L → Σ, T )
and X ′ = (S ′, µ′ : L′ → Σ, T ′). The map f ⋆γ is obtained by considering the commutative
diagram of solid arrows

X ⊔X

��

// Cyl(X)

��
X ′ ⊔X ′ // Cyl(X ′)

and by using the universal property of the pushout, giving the map

f ⋆ γ : (X ′ ⊔X ′) ⊔X⊔X Cyl(X) −→ Cyl(X ′)

The latter map induces on the set of states the map (S ′ ⊔ S ′) ⊔S⊔S S ∼= S ′ ⊔S S ′ → S ′

which is onto, and on the set of actions the map (L′⊔L′)⊔L⊔L (L⊔L) ∼= L′⊔L′ → L′⊔L′

which is onto as well. So the fourth assertion is a consequence of the third one.

7.7. Proposition. Let S be a set of maps of cubical transition systems. Let T be a
cubical transition system satisfying CSA1. Then T is Λ(Cyl,S, ICTS)-injective if and
only if T is S-orthogonal.

Proof. If T is Λ(Cyl,S, ICTS)-injective, then it is Λ0(Cyl,S, ICTS)-injective, and there-
fore S-injective. Such a T is also Λ1(Cyl,S, ICTS)-injective with

Λ1(Cyl,S, ICTS) = Λ0(Cyl,S, ICTS) ⋆ γ.

Therefore T is S-orthogonal by Proposition 7.6 (2). Conversely, let us suppose that
T is S-orthogonal. Then T is Λ0(Cyl,S, ICTS)-injective by Proposition 7.6 (1). By
Proposition 7.6 (2) and (1), T is Λ1(Cyl,S, ICTS)-injective as well. The injectivity with
respect to Λn(Cyl,S, ICTS) for n > 2 is a consequence of Proposition 7.6 (4).

Hence the theorems:

7.8. Proposition. Every cubical transition system satisfying CSA1 is fibrant in the left
determined model structure of CTS.

Proof. The statement is a corollary of Proposition 7.7 with S = ∅.

7.9. Proposition. Two cubical transition systems satisfying CSA1 are weakly equivalent
if and only if they are isomorphic.

Proof. Let f : X → Y be a weak equivalence between two cubical transition systems
satisfying CSA1. Since X and Y are both cofibrant and fibrant by Proposition 7.8, there
exists a map g : Y → X such that f ◦ g is homotopy equivalent to IdY and such that
g ◦ f is homotopy equivalent to IdX . So by Proposition 7.4, f ◦ g = IdY and g ◦ f = IdX .
Hence X and Y are isomorphic.
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7.10. Theorem. The reflector CSA1 detects the weak equivalences of the left determined
model structure of CTS. In other terms, a map f of cubical transition systems is a weak
equivalence in the left determined model structure of CTS if and only if CSA1(f) is an
isomorphism.

In particular, this theorem means that two cubical transition systems interpreting two
process names in a process algebra are weakly equivalent in this model structure if and
only if they are isomorphic. See [Gau10b] for further details.

Proof. By Proposition 7.9, it suffices to prove that for every cubical transition system
X, the unit X → CSA1(X) is a weak equivalence in the left determined model structure
of CTS. An object X is orthogonal to a map of the form C1[x] ⊔{01,11} C1[x] −→ C1[x]
for x ∈ Σ if and only if it is injective with respect to it since this map is an epimorphism.
So the map X → CSA1(X) is obtained by factoring the canonical map X → 1 (from
X to the terminal object) as a composite X → CSA1(X) → 1 where the left-hand map
belongs to cellCTS(U) and the right-hand map belongs to injCTS(U) where

U = {C1[x] ⊔{01,11} C1[x] −→ C1[x] | x ∈ Σ}.

So it suffices to prove that every pushout of a map of the form C1[x]⊔{01,11}C1[x]→ C1[x]
for x ∈ Σ is a weak equivalence of the left determined model structure of CTS. The
identity of C1[x] factors as a composite

C1 −→ C1[x] ⊔{01,11} C1[x] −→ C1[x].

By the calculation made in the proof of Proposition 5.8, there is the isomorphism C1[x]×
V ∼= C1[x] ⊔{01,11} C1[x]. Hence the left-hand map is a weak equivalence, and also the
right-hand map by the two-out-of-three axiom. Consider a pushout diagram of the form

C1[x] ⊔{01,11} C1[x]
ϕ //

��

X

f

��
C1[x] // Y

The cubical transition system C1[x] ⊔{01,11} C1[x] contains two actions x1 and x2 labelled

by x. There are two mutually exclusive cases. Either ϕ̃(x1) = ϕ̃(x2) or ϕ̃(x1) ̸= ϕ̃(x2).
In the first case, the commutative square above factors as a composite of commutative
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squares

C1[x] ⊔{01,11} C1[x] //

ϕ

))

��

C1[x] //

��

X

f

��
C1[x] // C1[x] // Y

Hence X ∼= Y . In the second case, ϕ is one-to-one on actions, i.e. a cofibration of cubical
transition systems. In that case, f is a weak equivalence since the left determined model
structure of CTS is left proper. So the map X → CSA1(X) is a transfinite composition
of weak equivalences. The class of weak equivalences of a combinatorial model category
is always accessible accessibly-embedded by e.g. [Lur09, Corollary A.2.6.6]. Hence a
transfinite composition of weak equivalences is always a weak equivalence. The proof is
complete.

7.11. Corollary. The counit map px : Cub(↑x↑) −→ ↑x↑ is not a weak equivalence in
the left determined model structure of CTS.

Corollary 7.11 shows that this model structure is really minimal. Even cubical tran-
sition systems having the same cubes may be not weakly equivalent. The next section
explains how it is possible to add weak equivalences so that two cubical transition sys-
tems containing the same cubes after simplification of the labelling are always weakly
equivalent.

8. Bousfield localization with respect to the cubification functor

Let us denote by WCub the smallest localizer generated by the class of maps of cubical
transition systems f : X → Y such that Cub(f) is a weak equivalence in the left deter-
mined model structure of CTS. We want to prove that it is small, more precisely that it
is generated by the set of maps S = {px : C1[x] ⊔ C1[x]→ ↑x↑ | x ∈ Σ}.

Let us prove first that the two functors Cub(−) and CSA1(−) commute with one
another.

8.1. Proposition. Let X be a cubical transition system. Then there exists a natural
isomorphism CSA1(Cub(X)) ∼= Cub(CSA1(X)).

Proof. That CSA1(X) satisfies CSA1 means that for every x ∈ Σ, the map C1[x]⊔{01,11}
C1[x]→ C1[x] induces a bijection

CTS(C1[x],CSA1(X)) ∼= CTS(C1[x] ⊔{01,11} C1[x],CSA1(X)).

By Proposition 3.8, the functor Cub is right adjoint to the inclusion functor of the full
subcategory of CTS generated by the cubes Cn[x1, . . . , xn] for n > 0 and x1, . . . , xn ∈ Σ
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into CTS. Both C1[x] and C1[x] ⊔{01,11} C1[x] are colimits of cubes. Therefore one has
the bijections

CTS(C1[x] ⊔{01,11} C1[x],Cub(CSA1(X)))
∼= CTS(C1[x] ⊔{01,11} C1[x],CSA1(X)) by adjunction
∼= CTS(C1[x],CSA1(X)) since CSA1(X) satisfies CSA1
∼= CTS(C1[x],Cub(CSA1(X))) by adjunction again.

Hence Cub(CSA1(X)) satisfies CSA1. Therefore the canonical map

Cub(X)
Cub(ϕX) // Cub(CSA1(X))

factors uniquely as a composite

Cub(X)
ϕCub(X) // CSA1(Cub(X))

ψX // Cub(CSA1(X)).

The functors Cub and CSA1 preserve states. So the map ψX is a bijection on states.
The map ψX is also surjective on actions and on transitions since any of them comes
respectively from an action or a transition of Cub(X).

It remains to understand why the map ψX is one-to-one on actions for the proof to be
complete. Consider the commutative diagram of cubical transition systems of Figure 3.
Since the cubical transition systems of the bottom line of Figure 3 satisfy CSA1, this
square factors uniquely as a composite of commutative squares as in Figure 4. Let u1 and
u2 be two actions of CSA1(Cub(X)) such that ψX(u1) = ψX(u2) = u. Let u′1 and u′2 be
two actions of Cub(X) such that ϕCub(X)(u

′
1) = u1 and ϕCub(X)(u

′
2) = u2. Let v

′
1 = pX(u

′
1),

v′2 = pX(u
′
2), v1 = CSA1(pX)(u1), v2 = CSA1(pX)(u2) and finally v = pCSA1(X)(u)

7 By
commutativity of the diagram, we obtain v1 = v2 = v. By construction of the functor
CSA1(−), there exist two states α and β such that the triple (α, v′1, β) and (α, v′2, β)
are two transitions of X. Therefore by definition of Cub, the two triples (α, u′1, β) and
(α, u′2, β) are two transitions of Cub(X). So u1 = u2 since CSA1(Cub(X)) satisfies CSA1.

8.2. Proposition. The functor Cub : CTS→ CTS preserves weak equivalences.

Proof. Let f be a weak equivalence of CTS. Then CSA1(f) is an isomorphism by
Theorem 7.10. So CSA1(Cub(f)) is an isomorphism by Proposition 8.1. Therefore by
Theorem 7.10 again, Cub(f) is a weak equivalence of CTS.

7We denote in the same way a map of cubical transition systems f and the set map f̃ between actions
in order to not overload the notations.
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Cub(X)
pX //

Cub(ϕX)

��

X

ϕX

��
Cub(CSA1(X))

pCSA1(X) // CSA1(X)

Figure 3: Composition of Cub and CSA1 (I)

Cub(X)
pX //

ϕCub(X)

��

X

ϕX

��
CSA1(Cub(X))

CSA1(pX) //

ψX

��

CSA1(X)

Cub(CSA1(X))
pCSA1(X) // CSA1(X)

Figure 4: Composition of Cub and CSA1 (II)
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8.3. Corollary. Every weak equivalence of CTS belongs to WCub.

8.4. Proposition. Let X be a cubical transition system. The counit pX : Cub(X)→ X
is a transfinite composition of pushouts of the maps px : C1[x]⊔C1[x]→ ↑x↑ for x running
over Σ.

Proof. We already know that the map pX : Cub(X) → X is bijective on states. let
u be an action of X. Since X is cubical, there exists a 1-transition (α, u, β) of X,
which corresponds to a map C1[µ(u)] → X. Hence the map pX : Cub(X) → X is
onto on actions. Let (α, u1, . . . , un, β) be a transition of X, which corresponds to a map
Cn[µ(u1), . . . , µ(un)]

ext → X. Since X is cubical, the latter map factors as a composite
Cn[µ(u1), . . . , µ(un)]

ext → Cn[µ(u1), . . . , µ(un)] → X by Theorem 3.6. Hence the map
pX : Cub(X) → X is onto on transitions. Let us factor the map pX as a composite
Cub(X)→ Z → X where the left-hand map belongs to cell(S) and the right-hand map
belongs to inj(S). The right-hand map g : Z → X is still bijective on states, and onto
on actions and transitions. Let u1 and u2 be two actions of Z mapped to the same action
u of X. Then µ(u1) = µ(u2) = µ(u) = x. Let us suppose that the action u1 is used in a
transition (α1, u1, β1), and the action u2 in a transition (α2, u2, β2) of Z. Then consider
the commutative diagram of cubical transition systems

C1[x] ⊔ C1[x] //

��

Z

��
↑x↑

ℓ

::v
v

v
v

v
v

v
v

v
v

// X,

where each copy of C1[x] corresponds to one of the two transitions (αi, ui, βi). The exis-
tence of the lift ℓ implies that u1 = u2. So the map g : Z → X is one-to-one on actions.
Finally, let (α, u1, . . . , un, β) and (α′, u′1, . . . , u

′
n, β

′) be two transitions of Z mapped to the
same transition of X. Then α = α′, β = β′ and ui = u′i for 1 6 i 6 n since g : Z → X
is bijective on states and actions. So g is one-to-one on transitions. Therefore g is an
isomorphism.

8.5. Proposition. Every map of cell(S) belongs to the localizer generated by S, i.e.
cell(S) ⊂ W(S).

Proof. Note that px : C1[x]⊔C1[x]→ ↑x↑ is not a cofibration so we cannot use the fact
that the class of trivial cofibrations is closed under pushout and transfinite compositions.
By Theorem 6.1, the class of maps W(S) is the class of weak equivalences of a model
structure onCTS. It is actually the class of weak equivalences of the Bousfield localization
of the left determined model structure of CTS by S. Since all objects are cofibrant, it is
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left proper. Consider a pushout diagram of the form

C1[x] ⊔ C1[x]
ϕ //

px

��

X

��
↑x↑ // Y.

There are two mutually exclusive cases. The map ϕ takes the two actions of C1[x]⊔C1[x]
to two different actions. Then ϕ is a cofibration and X → Y belongs to W(S) by left
properness. Or ϕ takes the two actions of C1[x]⊔C1[x] to the same action. Then X ∼= Y
(the argument is similar to the one used in the proof of Theorem 7.10). So in the two
cases, the right-hand vertical map belongs to W(S). The proof is complete by [Lur09,
Corollary A.2.6.6] since W(S) is closed under transfinite composition.

Hence the theorem:

8.6. Theorem. One has the equality of localizers WCub =W(S).

Proof. The map Cub(px) is an isomorphism by Proposition 3.7 and Proposition 3.8. So
S ⊂ WCub. Hence the first inclusion W(S) ⊂ WCub. Let f : X → Y be a map of cubical
transition systems such that Cub(f) is a weak equivalence of the left determined model
structure of CTS. Consider the commutative diagram

Cub(X)
Cub(f) //

��

Cub(Y )

��
X

f // Y.

The vertical maps belong toW(S) by Proposition 8.4 and Proposition 8.5. By hypothesis,
the top horizontal map is a weak equivalence of CTS, and therefore belongs to W(S) as
well. Hence by the two-out-of-three property, f : X → Y belongs to W(S). We obtain
the second inclusion WCub ⊂ W(S).

8.7. Corollary. The Bousfield localization of the left determined model structure of
CTS with respect to the functor Cub exists.

The weak factorization system (cof(S), inj(S)) gives rise to a functor LS : CTS →
CTS. It is defined by functorially factoring the map X → 1 as a composite X →
LS(X)→ 1 where the left-hand map belongs to cell(S) and the right-hand map belongs
to inj(S).
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8.8. Remark. The labelling map is one-to-one for every cubical transition system of the
form LS(X).

A remarkable consequence of this fact is that for every map f : X → Y of cubical
transition systems, the map LS(f) : LS(X) → LS(Y ) is a cofibration. So LS(f) is a
cofibrant replacement of f in LS(CTS) by Proposition 8.5 and Theorem 8.6.

8.9. Proposition. Every cubical transition system of inj(S) satisfies CSA1.

Proof. Let (α1, u1, β1) and (α2, u2, β1) be two 1-transitions of a cubical transition system
injective with respect to S with µ(u1) = µ(u2). Then u1 = u2, and this is still true if
α1 = α2 and β1 = β2. Hence CSA1 is satisfied.

The weak equivalences of this Bousfield localization have a nice characterization.

8.10. Theorem. A map of cubical transition systems f : X → Y belongs to W(S) if
and only if LS(f) : LS(X) ∼= LS(Y ) is an isomorphism. In other terms, the functor LS
detects the weak equivalences of this Bousfield localization.

Proof. If LS(f) is an isomorphism, f belongs to W(S) by Proposition 8.5 and by the
two-out-of-three property. Conversely, suppose that f ∈ W(S). By Proposition 8.9 and
Corollary 7.5, one has LS(X)V = LS(X) and LS(Y )V = LS(Y ). The maps of S are
onto on states and actions. So by Proposition 7.7, LS(X) and LS(Y ) are fibrant in the
Bousfield localization since if they are orthogonal to the maps of S. By the two-out-
of-three property, LS(f) is therefore a weak equivalence between two cofibrant-fibrant
objects in the Bousfield localization LS(CTS) of the left determined model structure of
CTS by the maps of S. By [Hir03, Theorem 3.2.13], the map LS(f) is then a weak
equivalence of the left determined model structure of CTS. Since LS(X) and LS(Y )
satisfy CSA1 by Proposition 8.9, the map LS(f) is an isomorphism by Theorem 7.10.

So in the Bousfield localization LS(CTS), two cubical transition systems are weakly
equivalent if they have the same cubes after simplification of the labelling. It is actually
possible to prove better:

8.11. Theorem. We have:

1. The functor LS : CTS → CTS induces a functor from CTS to the full reflective
subcategory S⊥ of cubical transition systems consisting of S-orthogonal objects.

2. For every S-orthogonal cubical transition system Y , there is a natural isomorphism
Y ∼= LS(Y ).

3. The functor LS is left adjoint to the inclusion functor S⊥ ⊂ CTS.

4. Every map between S-orthogonal cubical transition systems is a cofibration of cubical
transition systems. Every S-orthogonal cubical transition system is cofibrant and
fibrant in LS(CTS).

5. The homotopy category of LS(CTS) is equivalent to S⊥.
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Proof. (1) comes from the definition of LS and from the fact that S-injective is equivalent
to S-orthogonal since every map of S is an epimorphism. One has a natural isomorphism
LS(Y ) ∼= Y for every S⊥-orthogonal cubical transition system Y since every pushout
Y → Z of a map of the form px : C1[x]⊔C1[x]→ ↑x↑ for x ∈ Σ is an isomorphism, hence
(2). For every S⊥-orthogonal cubical transition system Y , the canonical map Y → 1
satisfies the RLP with respect to every map of cell(S), in particular with respect to every
map X → LS(X) for every cubical transition system X. Moreover, every map of cell(S)
is bijective on states and onto on actions; so every map of cell(S) is an epimorphism. So
cell(S)-injective is equivalent to cell(S)-orthogonal. This means that every map X → Y
from a cubical transition system X to an S-orthogonal cubical transition system Y factors
uniquely as a composite X → LS(X) → Y , hence (3). (4) is explained in the proof
of Theorem 8.10. The functor LS : CTS → CTS factors uniquely as a composite
CTS→ LS(CTS)→ S⊥ by Theorem 8.10 and by the universal property of the categorical
localization. There is a natural isomorphism X → LS(X) in LS(CTS) by Proposition 8.5
for every object of CTS. And there is a natural isomorphism Y ∼= LS(Y ) for every S-
orthogonal object since S-injective is equivalent to S-orthogonal. Hence (5).

9. Weak equivalence and bisimulation

This last section sketches the link between these homotopical constructions and bisimu-
lation. Let us introduce bisimulations with open maps as in [JNW96]. The link between
bisimulation and homotopy will be the subject of future works. Indeed, the definition of
open maps taken here is very restrictive since a good definition requires a more general
notion of paths (cf. [Fah05] for further explanations). The purpose of this section is only
to have an idea of what it is possible to do with these homotopical constructions.

Let P be a subset of the set of cubes {Cn[x1, . . . , xn] | n > 0, x1, . . . , xn ∈ Σ}. The
elements of P are called calculation paths.

9.1. Definition. A map f : X → Y is P-open if every commutative square of solid
arrows

{0n} //

��

X

��
P //

k

>>|
|

|
|

|
|

|
|

|
Y

as a lift k for every P ∈ P, i.e. f satisfies the RLP with respect to the inclusion {0n} ⊂ P .

9.2. Definition. Two cubical transition systems X and Y are P-bisimilar if there exists

a cubical transition system A and a zig-zag of maps X
f←− A

g−→ Y such that f and g
are P-open.

That X and Y are P-bisimilar means that every calculation path P of P of X is
simulated by a calculation path of Y and vice versa.
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Figure 5: Bisimulation as an equivalence relation

Bisimilarity is an equivalence relation: it is clearly symmetric, it is reflexible with
X = A = Y and it is transitive since a pullback of a map satisfying the RLP with
respect to a given map still satisfies the RLP and because of the diagram cartesian in C
of Figure 5.

The following theorem explains the connexion with more usual (1-dimensional) notions
of bisimulations [WN95].

9.3. Proposition. Take P = {C1[x] | x ∈ Σ}. Let X = (SX , µ : LX → Σ, TX) and
Y = (SY , µ : LY → Σ, TY ) be two cubical transition systems. Then X and Y are P-
bisimilar if and only if there exists a binary relation R ⊂ SX×SY satisfying the following
property:

1. for every pair (α, β) ∈ R and every map c : C1[x]→ X with c(01) = α, there exists
a map d : C1[x]→ Y with d(01) = β and (c(11), d(11)) ∈ R

2. for every pair (α, β) ∈ R and every map d : C1[x]→ Y with d(01) = β, there exists
a map c : C1[x]→ X with c(01) = α and (c(11), d(11)) ∈ R.

Proof. If X
f←− A

g−→ Y is a map as above, then R = {(f(α), g(α)) | α state of A}
satisfies the two properties of the statement of the theorem. Conversely, suppose that
such a binary relation R exists. Let X ×R Y be the weak HDTS with set of states R,
with set of actions the one of X×Y and such that a transition (α, u1, . . . , un, β) of X×Y
is a transition of X ×R Y if and only if α and β belong to R. Then consider the image A
of X ×R Y by the right adjoint to the inclusion functor CTS ⊂WHDTS:

A = lim−→
f = Cn[x1, . . . , xn]→ X ×R Y

or f = ↑x↑ → X ×R Y

dom(f)

Then the composite maps A→ X×RY → X×Y → X and A→ X×RY → X×Y → Y
satisfy the RLP with respect to any map of the form {01} ⊂ C1[x] for x ∈ Σ.
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9.4. Theorem. The class of P-open maps is accessible and finitely accessibly embedded
in the category of maps of cubical transition systems.

Note that the following proof does not use the fact that a path is a cube. It only needs
the fact that we consider a set of paths. So our very restrictive choice for the definition
of a path does not matter.

Proof. That it is finitely accessibly embedded (i.e. the inclusion functor in the category
of maps preserves finitely filtered colimits) comes from the finiteness of the set of states and
of the set of actions of a cube. This class of maps is accessible by [Ros09, Proposition 3.3].

Note that the arity of all relation symbols of the theory axiomatizing the class of P-
open maps is finite. This provides another proof of the fact that the category of P-open
maps is finitely accessibly-embedded (e.g, cf. the proof of [AR94, Theorem 5.9]).

9.5. Theorem. The Bousfield localization of LS(CTS) with respect to the proper class
of P-open maps exists and is a combinatorial left proper model category.

Proof. The argument is standard. By [Dug01, Proposition 7.3], there exists a regular
cardinal λ1 such that λ1-filtered colimits of weak equivalences of LS(CTS) are again
weak equivalences. Let λ2 be a regular cardinal such that the category of P-open maps
is λ2-accessible. Let λ be a regular cardinal sharply bigger than λ1 and λ2. Consider
the Bousfield localization Lλ LS(CTS) of LS(CTS) by a set Aλ of representatives of the
class of λ-presentable P-open maps. Then the localization functor Lλ(−) is λ-accessible.
Any P-open map f is a λ-filtered colimits of maps of Aλ, f = lim−→i

fi by Theorem 9.4. So
Lλ(f) = lim−→i

Lλ(fi). But for every i, the map Lλ(fi) is a weak equivalence of LS(CTS).
Therefore Lλ(f) is a weak equivalence of LS(CTS) as well. Hence every P-open map is a
weak equivalence of Lλ LS(CTS), and therefore the latter model category is the Bousfield
localization.

Note that all maps of S are actually P-open. In this new Bousfield localization, two
bisimilar cubical transition systems are weakly equivalent. This new model category will
be the subject of future works.

Let us conclude this section by mentioning [BCMR11]. The class of P-open maps is
axiomatized by a set of formulas such that all quantifiers are bounded. So the latter paper
provides another argument for the existence of the Bousfield localization.

A. Small weak factorization system and coreflectivity

We want to prove in this section that the restriction of a small weak factorization system
to a coreflective locally presentable subcategory is still small (Theorem A.5) with some
additional hypotheses on the subcategory.
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A.1. Lemma. Let A be a coreflective subcategory of a cocomplete category K. Let I be a
set of maps of K. One has the equality injK(I) ∩Mor(A) = injA(I) and the inclusions

cellA(I) ⊂ cellK(I) ∩Mor(A) ⊂ cofK(I) ∩Mor(A) ⊂ cofA(I).

Moreover if I is a set of maps of A ⊂ K, then cellA(I) = cellK(I) ∩Mor(A).
Proof. obvious.

A.2. Lemma. (Compare with [Bek00, Lemma 1.8]) Let A be a coreflective subcategory of
a locally presentable category K. Let I be a set of maps of K. Let J be a solution set for I,
i.e. a set of maps of A such that every map i→ w of Mor(K) from i ∈ I to w ∈ Mor(A)
factors as a composite i → j → w with j ∈ J . Then every map f : X → Y of A can be

factored as a composite X
g−→ P

h−→ Y with g ∈ cellA(J) and h ∈ injA(I).

Proof. We want to build by transfinite induction on the ordinal λ > 0 a diagram

X =: P0 −→ P1 −→ . . . −→ Pα −→ Pα+1 −→ . . . −→ Pλ
hλ−→ Y

such that the diagram P0 → · · · → Pλ is a transfinite composition of maps belonging to
cellA(J). Since Pλ belongs to A and since the category A is a full coreflective subcategory
of K, the map hλ : Pλ → Y is a map of A as well.

Let P0 = X and h0 = f . For a limit ordinal λ, let Pλ = lim−→α<λ
Pα. Since the inclusion

functor A ⊂ K is colimit-preserving, Pλ is an object of A. Let λ > 0 be an ordinal and
let us suppose Pα constructed for α 6 λ. We want now to build Pλ+1. Let us consider
the set Sλ of all commutative squares

A //

i
��

Pλ

hλ
��

B // Y

with i ∈ I. The “density hypothesis” on J means the existence of a commutative diagram

A //

i

��

As
ts //

js
��

Pλ

hλ
��

B // Bs
// Y

with js ∈ J (so As and Bs both belong to A), for each square s ∈ Sλ. Let Pλ+1 be the
pushout diagram (in A or in K)

⊔
As

⊔
js

��

⊔
{ts|s∈Sλ} ts // Pλ

hλ+1

��⊔
Bs

// Pλ+1
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The universal property of the pushout yields a map hλ+1 : Pλ+1 → Y .
Let now κ be a regular cardinal exceeding the rank of presentability of all the objects

that occur as domains of maps in I. The required factorization is X → Pκ → Y . Indeed,
consider a commutative square of solid arrows of the form

A
a //

i
��

Pκ

��
B //

k
>>}

}
}

}
Y

with i ∈ I. Since κ is regular, the diagram X = P0 → · · · → Pκ is κ-filtered and
since K(A,−) commutes with κ-filtered colimits by hypothesis, the map a factors as a
composite A→ Pλ → Pκ for some λ < κ. Let s ∈ Sλ be the commutative square

A //

i

��

Pλ

��
Pκ

hκ
��

B // Y.

Then the lift k is the bottom composite

A //

i

��

As //

js

��

⊔
As⊔

js
��

// Pλ

hλ
��

B // Bs
//
⊔
Bs

// Pλ+1
// Pκ.

A.3. Lemma. Let A be a coreflective subcategory of a locally presentable category K. Let
I be a set of maps of K. Let J be a solution set for I which satisfies J ⊂ cofK(I). Then
there is the equality cofA(J) = cofK(I) ∩Mor(A).

Proof. One has cellA(J) ⊂ cofK(I) since J ⊂ cofK(I) and since A is coreflective.
Since J is a set, every map of cofA(J) is a retract of a map of cellA(J), therefore
cofA(J) ⊂ cofK(I) ∩Mor(A). Conversely, let f ∈ cofK(I) ∩Mor(A). By Lemma A.2, f
factors as a composite

•

f

��

g // •

h

��
•

k

??�
�

�
�

�
�

�
�

•
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with g ∈ cellA(J) and h ∈ injA(I). The lift k exists since f ∈ cofK(I). The commutative
diagram

•

f

��

•

g

��

•

f

��
• k //______ • h // •

proves that f is a retract of g ∈ cellA(J). Therefore f ∈ cofA(J). Hence the inclusion
cofK(I) ∩Mor(A) ⊂ cofA(J).

We want now conclude the section by giving a sufficient condition for a small weak
factorization system to restrict to a small one on a full coreflective subcategory. First we
recall a definition:

A.4. Definition. [AR94, Definition 4.14] Let K be a locally presentable category. An
object K is injective with respect to a cone of maps (A→ Ai)i∈I if the map K → 1 belongs
to

∪
i∈I inj(A→ Ai). A small cone-injectivity class is the full subcategory of K of objects

injective with respect to a given set of cones.

Hence the conclusion of the section:

A.5. Theorem. Let I be a set of maps of a locally presentable category K. Let A be a
coreflective small cone-injectivity class of K such that each map of each cone is an element
of cofK(I). Then there exists a set of maps J of A such that cofK(I)∩Mor(A) = cofA(J).

Proof. By Lemma A.3, it suffices to prove that there exists a set of maps J of A which
is a solution set for I with J ⊂ cofK(I). We mimic the proof of [Bek00, Lemma 1.9].
Since A is a small cone-injectivity class, it is accessible (and accessibly embedded) by
[AR94, Proposition 4.16]. Therefore A is locally presentable by Proposition 3.7. The
inclusion functor Mor(A) ⊂ Mor(K) is colimit-preserving between two locally presentable
categories (by [AR94, Theorem 2.43]). Therefore it is accessible. So it satisfies the solution
set condition by [AR94, Corollary 2.45]. This means that there exists for each i ∈ I a
solution set Wi ⊂ Mor(A), i.e. every map i → w of Mor(K) from i ∈ I to w ∈ Mor(A)
factors as a composite i → wi → w for some wi ∈ Wi. Consider the set of commutative
squares i→ wi for i running over the set I and wi running over the set Wi:

•

i

��

// X

wi

��
• // Y,



338 PHILIPPE GAUCHER

Form the pushout diagram
•

i

��

// X

i′

��
wi

��

• // P

c
AA

A

  A
AA

Y

and factor c as P
p→ Q

q→ Y with p ∈ cellK(I) and q ∈ injK(I). As in [Bek00, Lemma 1.9],
let J be the set of maps j = pi′. By hypothesis, X and Y are cone-injective. Consider a
map A −→ Q where A is the top of a cone characterizing A as a small cone-injectivity
class. Let us consider the composition

A −→ Q
q−→ Y.

Since Y is cone-injective, there exists a map A → B of the cone with top A and a
commutative square of solid arrows of the form

A //

g

��

Q

q

��
B

k //

ℓ

??�
�

�
�

�
�

�
�

Y

Since g ∈ cofK(I) by hypothesis, and since q ∈ injK(I), the lift ℓ exists. This means that
Q is cone-injective as well, i.e. Q ∈ A. Since A is a full subcategory of K, we deduce that
j is a map of A. Therefore, J ⊂ cellK(I)∩Mor(A). Finally, every map i→ w of Mor(K)
from i ∈ I to w ∈ Mor(A) factors as a composite i→ j → w with j ∈ J by:

•

i

��

// X

j(=pi′)

��

X //

wi

��

•

w

��
• // Q

q // Y // •
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[Ros09] J. Rosický. On combinatorial model categories. Appl. Categ. Structures,
17(3):303–316, 2009.
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Clemens Berger, Université de Nice-Sophia Antipolis, cberger@math.unice.fr
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Aurelio Carboni, Università dell Insubria: aurelio.carboni@uninsubria.it
Valeria de Paiva: valeria.depaiva@gmail.com
Ezra Getzler, Northwestern University: getzler(at)northwestern(dot)edu
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk
P. T. Johnstone, University of Cambridge: ptj@dpmms.cam.ac.uk
Anders Kock, University of Aarhus: kock@imf.au.dk
Stephen Lack, Macquarie University: steve.lack@mq.edu.au
F. William Lawvere, State University of New York at Buffalo: wlawvere@buffalo.edu
Tom Leinster, University of Glasgow, Tom.Leinster@glasgow.ac.uk
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