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Advanced Signal Processing Techniques for Fault
Detection and Diagnosis in a Wind Turbine

Induction Generator Drive Train: A Comparative
Study

E. Al Ahmar, V. Choqueuse, M.E.H. Benbouzid, Y. Amirat, J. El Assad, R. Karam, and S. Farah

Abstract—This paper deals with the diagnosis of Wind Tur-
bines based on generator current analysis. It provides a com-
parative study between traditional signal processing methods,
such as periodograms, with more sophisticated approaches.
Performances of these techniques are assessed through simulation
experiments and compared for several types of fault, including
air-gap eccentricities, broken rotor bars and bearing damages.

Index Terms—Wind turbines, motor current signature analy-
sis, time-frequency signal processing methods, wavelet analysis,
failure diagnosis.

I. INTRODUCTION

Due to environmental considerations and to the exhaustion
of fossil resources, renewable energy sources are gaining more
and more importance these days. Since 2004, many indicators
of the development of renewable energy have been constantly
rising. For example, since 2004, annual renewable energy
investment has increased fourfold to reach $120 billion in
2008 [1]. Wind power has a major share in this increase since,
from 2004 to 2008, wind power capacity increased by 250%
to attend a value of 121GW (see Fig.1 [1]). Due to different
factors, such as wind speed and acoustic noise, wind parks are
being mainly constructed offshore. Studies shows that offshore
wind power produced 1873MW in Europe. To increase this
production, 11 parks are currently under construction and 26
parks are in project (see table I). Due to the difficulties of
maintenance in offshore environment, teledetection of wind
turbine faults is becoming a crucial issue. Different methods of
fault detection exist. These include monitoring of the acoustic
vibration, internal and external temperature, stator voltages
and/or currents. Although thermal and vibration monitoring
have been utilized for decades, most of the recent research has
been directed toward electrical monitoring, with emphasis on
the generator stator current. In this study, the generator stator
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Fig. 1. Annual wind power in the world between years 1996 and 2008.

TABLE I
WIND POWER PRODUCED OFFSHORE IN EUROPE [1] [4].

Operational Construction Project
Number 28 11 26of parks
Produced 1873 2743 5716Power (MW)

current is analyzed through signal processing tools for fault de-
tection [2], [3]. The performances of several signal processing
tools for the detection of air-gap eccentricity, broken rotor bars
and bearing damages are compared. This paper is organized
as follows. Section II presents the considered faults, section
III describes the employed signal processing techniques and
section IV provides an experimental comparison of these
methods.

II. MAJOR FAULTS STUDIED

Wind turbine is a complex mechanical system. Its major
components are presented in Fig. 2. Faults can occur almost
anywhere in this system; examples of mechanical faults range
from a bent shaft, which results in a rub between the rotor
and stator, to a shorted rotor winding or gearbox failures.
This paper focuses on faults that leads to air-gap eccentricities,
broken rotor bars and bearing damages.

A. Air gap eccentricity

Eccentricity faults in electrical machines are caused by an
unequal air gap between the stator and rotor [5]–[7]. When
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Fig. 2. Wind turbine nacelle cross-section.

this air gap increases the unbalanced magnetic pull or radial
forces can cause the stator and rotor rubbing, which may result
in major damage in both the stator and the rotor. Two types
of eccentricity exist or even tend to coexist with each others.
The first is the static eccentricity where the minimal radial
air gap length is fixed in space. It may be caused by an oval
shape of the stator core or by a misalignment of the stator
and rotor. Dynamic eccentricity, on the other hand, is caused
by a difference between the center of the rotor and the center
of rotation which may be caused by a bent rotor shaft or a
bearing fault, etc. both these eccentricities cause a rub between
the stator and the rotor causing critical damage in both of
them which may lead to a total breakdown of the machine.
In order to detect these eccentricity faults, two methods exist.
The first one consists of monitoring the behavior of the current
at the sidebands of the slot frequencies. The main drawback
of this approach relies on the fact that it requires knowledge
of the intimate details of the machine’s anatomy [8]. The
second method is based on the monitoring of the current at the
fundamental sidebands of the supply frequency. Frequencies
of interest are located at 𝑓𝑒𝑐𝑐 given by the following equation
[8]:

𝑓𝑒𝑐𝑐 = 𝑓𝑠

[
1±𝑚

(
1− 𝑠

𝑝

)]
(1)

where 𝑓𝑠 is the electrical supply frequency, 𝑠 is the per-unit
slip, 𝑝 is the number of poles and 𝑚 ∈ ℕ.

B. Broken rotor Bars

Though several types of rotor cages exist, most wind
turbines have cast rotors. In this case, damage of a rotor bar
is fatal since it cannot be repaired. Broken rotor bars can be
caused by thermal, magnetic, environmental or mechanical
stresses [9]. When a rotor bar breaks in the rotor cage, it
induces magnetic anomalies which produce harmonic frequen-
cies in the current spectrum at frequencies 𝑓𝑏𝑟𝑏 [9]:

𝑓𝑏𝑟𝑏 = 𝑓𝑠

[
𝑘

(
1− 𝑠

𝑝

)
± 𝑠

]
(2)

where 𝑘/𝑝 = 1, 3, 5, 7, 11, 13.

Fig. 3. Mechanical representation of bearings.

C. Bearing Damage

Most of rotating mechanical systems contains one or many
bearings to insure smooth rotation with minimal losses. Bear-
ings consist of an inner ring and external one, between which
rotates a number of balls (see Fig.3). Bearing may be dam-
aged by sudden load variations or rotor-stator misalignments.
Bearing faults are the most common fault in wind turbines
(40-50%). Vibrations associated with bearing faults reflect
themselves in the current spectrum at frequencies [9]:

𝑓𝑏𝑛𝑔 = ∣𝑓𝑠 ±𝑚𝑓𝑣∣ (3)

where 𝑚 ∈ ℕ and 𝑓𝑣 depends on bearing fault. Bearing faults
include

∙ Faults caused by an outer bearing race defect where:

𝑓𝑣 =
𝛼𝑓𝑟
2

[
1− 𝑏𝑑

𝑝𝑑
cos(𝛽)

]
(4)

∙ Faults caused by an inner bearing race defect where:

𝑓𝑣 =
𝛼𝑓𝑟
2

[
1 +

𝑏𝑑
𝑝𝑑

cos(𝛽)

]
(5)

∙ Faults caused by a ball defect where:

𝑓𝑣 =
𝑝𝑑𝑓𝑟
2𝑏𝑑

[
1 +

(
𝑏𝑑
𝑝𝑑

cos(𝛽)

)2
]

(6)

∙ Faults caused by a train defect where frequencies of
interest are given by:

𝑓𝑣 =
𝑓𝑟
2

[
1− 𝑏𝑑

𝑝𝑑
cos(𝛽)

]
(7)

where 𝑓𝑟 is the rotational frequency , 𝛼 is the number of balls,
𝑏𝑑 and 𝑑𝑝 are respectively the ball diameter and the bearing
pitch diameter (see Fig.2) and 𝛽 is the contact angle of the
ball.

III. ADVANCED SIGNAL PROCESSING TECHNIQUES

This section presents different signal processing technique
which can be employed to extract the frequency content of a
discrete signal. In this following, the current will be denoted
by the discrete signal 𝑥[𝑛], which is obtained by sampling the
continuous time current every 𝑇𝑠 = 1/𝐹𝑠 seconds.
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A. Periodogram

The periodogram, 𝑃𝑥(𝑓), estimates the Power Spectral
Density (PSD) of a signal 𝑥[𝑛]. It is given by [10]:

𝑃𝑥(𝑓) =
∣𝑋(𝑓)∣2

𝑁
(8)

where 𝑋(𝑓) is the Discrete Fourier Transform of 𝑥[𝑛] i.e.

𝑋(𝑓) =

𝑁−1∑
𝑛=0

𝑥[𝑛]𝑒−2𝑗𝜋𝑓𝑛/𝐹𝑠 (9)

where 𝐹𝑠 is the sampling frequency. In practice, (9) is evalu-
ated through a Fast Fourier Transform (FFT) [10], which re-
duces the number of computations to 𝒪(𝑁 log(𝑁)) operations.
One should note The periodogram is not a consistent estimator
of the PSD since it has a non-zero biais and its variance does
not tend to zero as the data length 𝑁 tends to infinity. Despite
of this drawback, the periodogram has been used extensively
for failure detection in the literature [8].

B. Welch Periodogram

As compared to the classical periodogram, Welch peri-
odogram is an improved estimator of the PSD that reduces
both the variance and the biais. The Welch method divides
𝑥[𝑛] into segments, computes a modified periodogram of each
segment and then averages the result. The Welch periodogram,
𝑃𝑤(𝑓), can be expressed into a mathematical form as [10]:

𝑃𝑤(𝑓) =
1

𝐿

𝑘=𝐿∑
𝑘=1

𝑃 (𝑘)
𝑥𝑤 (𝑓) (10)

where:

𝑃 (𝑘)
𝑥𝑤 (𝑓) =

∣𝑋(𝑘)
𝑥𝑤 (𝑓)∣2
𝑁𝑈

(11)

and where 𝑈 is a normalization factor. Furthermore, 𝑋(𝑘)
𝑤 (𝑓)

corresponds to the DFT of the windowed signal 𝑥[𝑛]𝑤[𝑛−𝜏𝑘],
where 𝑤[.] is a time-window (hanning, hamming, kaiser) and
where 𝜏𝑘 is a time lag.

C. Spectrogram

To obtain the evolution of the frequency content over
time, Fourier transforms can be computed for different time
segments and then arranged one next to the other over the
time axis. This method is known as the Short Time Fourier
Transform (STFT). For discrete signals, the STFT is given by
[11]

𝑆𝑇𝐹𝑇 [𝑓, 𝜏 ] =

𝑁−1∑
𝑛=0

𝑥[𝑛]𝑤[𝑛− 𝜏 ]𝑒−2𝑗𝜋𝑓𝑛/𝐹𝑒 (12)

where 𝑤[.] is a time window. The spectrogram is defined as
the square modulus of the STFT i.e. ∣𝑆𝑇𝐹𝑇 [𝑓, 𝜏 ]∣2. The time
and frequency resolution is limited by the Heisenberg-Gabor
inequality [11]. In the case of the spectrogram, this resolution
is the same for all time-frequency bins. One should note that
the spectrogram have been used previously in [12], [13] for
diagnosis purpose in time-varying condition.
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Fig. 4. Simulation of the current of a healthy machine in blue and of a
machine with an eccentricity problem between 1.024s and 2.024s.

D. Scalogram

Wavelet Transform (WT) provides a time-scale (or time-
frequency) representation of a signal. While STFT gives
constant time-frequency resolution, WT is a multi-resolution
technique which analyses frequencies with different resolu-
tions. The WT gives a good time resolution and poor frequency
resolution at high frequencies, and provides good frequency
resolution and poor time resolution at low frequencies [14].
The Wavelet Transform at frequency scale 𝑙 is given by:

𝑊 (𝑎𝑙, 𝜏) =

𝑁−1∑
𝑛=0

𝑥[𝑛]𝜓∗
𝑙 [𝑛− 𝜏 ] (13)

where

𝜓𝑙[𝑛] =
1√
𝑎𝑙
𝜓
( 𝑛
𝑎𝑙

)
(14)

and where 𝜓(.) is the mother wavelet which satisfies a number
of conditions. The scalogram is defined as the square modulus
of the WT i.e. ∣𝑊 (𝑎𝑙, 𝜏)∣2. One should note that the Wavelet
Transform have been used previously in [15]–[17] for failure
detection.

IV. SIMULATION RESULTS

The focus of this section is to find which signal processing
method is the most suitable for the detection of each mechan-
ical fault. In this section, the simulated signal 𝑥[𝑛] is given
by:

𝑥[𝑛] = sin(2𝜋𝑓𝑠𝑛/𝐹𝑠) + 𝑒[𝑛] + 𝑏[𝑛] (15)

where 𝐹𝑠 = 1000 Hz, 𝑒[𝑛] depends on the fault and 𝑏[𝑛]
is a gaussian noise with zero mean and a variance equals
to 𝜎2 = 10−4 i.e. 𝑏[𝑛] ∼ 𝒩 (0, 10−4). For all simulations,
an hamming window 𝑤[𝑛] have been used for the Welch
periodogram and the spectrogram. For the Welch periodogram,
eight sections of equal length, each with 50% overlap, have
been extracted before averaging. Finally, the length of the
spectrogram window, 𝑤[.], have been fixed to 256 samples
and the mother wavelet of the scalogram was a Mexican hat.
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Fig. 5. Periodogram of the monitored current in the case of an eccentricity
fault between 1.024s and 2.024s.
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Fig. 6. Welch periodogram of the monitored current in the case of an
eccentricity fault between 1.024s s and 2.024s.

A. Air-gap eccentricity

In this subsection, air gap eccentricity faults are simu-
lated by generating an additive signal 𝑒[𝑛], whose spectral
components are given by (1). The parameters are fixed to
𝑠 = 0.033, 𝑝 = 2, 𝑚 = [1, ⋅ ⋅ ⋅ , 5] and the eccentricity fault
is simulated between 1.024s and 2.024s (see Fig. 4). The
first signal processing method applied to these signals is the
periodogram (see Fig. 5). The five harmonics (𝑚 = [1, ⋅ ⋅ ⋅ , 5]),
corresponding to the fault are theoretically equal to 89.01Hz,
118.02Hz, 147.03Hz, 176.04Hz and 205.5Hz. Using the clas-
sical periodogram technique, these frequencies are estimated at
89.43Hz, 118.7Hz, 148Hz, 177.3Hz and 206.6Hz respectively.
The same results are obtained with the Welch periodogram
(see Fig. 6). Figures 7 and 8 display the spectrogram and
the scalogram respectively. On can observe that these meth-
ods bring new information that could not be extracted with
the previous periodograms. Furthermore, one can note that
the scalogram has advantages over the spectrogram since it
provides a multiresolution analysis of the signal.

B. Broken rotor bars

The second fault studied is a broken rotor bar fault. Its
signature is given by equation (2). Figures 9 and 10 show the
classical and Welch periodogram of the current in the case of
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Fig. 7. Spectrogram of the monitored current in the case of an eccentricity
fault between 1.024s and 2.024s.

Fig. 8. Scalogram of the monitored current in the case of an eccentricity
fault between 1.024s and 2.024s.

TABLE II
HARMONICS DETECTED IN THE CASE OF A BROKEN ROTOR BAR.

harmonics 𝑓𝑠(1− 2𝑠)
s 1 2 3 4

𝑓𝑏𝑟𝑏 55.98 Hz 171.9 Hz 287.9 Hz 404.2 Hz
Per./Welch 56.04 Hz 172.08 Hz 288.12 Hz 404.16 Hz

Error 0.107% 0.104% 0.076% 0.01%

harmonics 𝑓𝑠(1 + 2𝑠)
s 1 2 3 4

𝑓𝑏𝑟𝑏 60 Hz 176.04 Hz 292.08 Hz 408.12 Hz
Per./Welch 59.98 Hz 176.3 Hz 292.2 Hz 408.2 Hz

Error 0.033% 0.147% 0.041% 0.019%

a damaged rotor. Table II shows the frequency location of the
harmonics associated with the broken bar. The harmonics are
detected at the same frequencies for the classical and Welch
periodogram. However, as one can observe from Fig. 10, the
Welch periodogram presents a better signal to noise ratio.
Figures 11 and 12 show the spectrogram and the scalogram,
respectively. Despite the fact that this method brings no
real amelioration in the spectral resolution, it brings great
information on the time occurrence of the fault, which can
be exploited for fault discrimination.
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Fig. 9. Periodogram of the monitored current in the case of broken rotor
bars between 1.024s and 2.024s.
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Fig. 10. Welch periodogram of the monitored current in the case of broken
rotor bars between 1.024s s and 2.024s.
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Fig. 11. Spectrogram of the monitored current in the case of broken rotor
bars between 1.024s and 2.024s.

C. Bearing damage

In wind turbine, bearings faults are the most common
fault. In this case, the damage can be caused by different
sources such as the outer or the inner rings, the balls or
the race. In the following, all these causes are combined
together to simulate the worst scenario. The four bearing fault
signatures in (4), (5), (6) and (7) are included in the faulty
signal. The other simulation parameters are fixed as follows:
𝑚 = {1, 2}, s=0.033, fr=29.01Hz, bd=0.01m, pd=0.1m, N=12

Fig. 12. Scalogram of the monitored current in the case of broken rotor bars
between 1.024s and 2.024s.
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Fig. 13. Periodogram of the monitored current in the case of bearing damages
between 1.024s and 2.024s.
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Fig. 14. Welch periodogram of the monitored current in the case of bearing
damages between 1.024s s and 2.024s.

and 𝛽 = 25𝑜. The periodogram and the Welch periodogram
are shown in Fig.13 and 14, respectively. As previously
observed, the Welch periodogram leads to a better frequency
representation than the classical periodogram in terms of signal
to noise ratio. Figures 15 and 16 display the spectrogram
and the scalogram of the signal. As previously discussed,
the scalogram provides a more natural representation since
low-frequency components have high-frequency resolution and
high-frequency components have high-time resolution.
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Fig. 15. Spectrogram of the monitored current in the case of bearing damages
between 1.024s and 2.024s.

Fig. 16. Scalogram of the monitored current in the case of bearing damages
between 1.024s and 2.024s.

V. CONCLUSION

This work presented a comparison between four signal
processing methods for fault detection in the case of wind
turbines. Experimental simulations have shown that the clas-
sical and Welch Periodogram have very close performances.
However for noisy data, the Welch periodogram exhibits a
better signal to noise ratio. As compared to Periodogram and
Welch Periodogram, the spectrogram and the scalogram, which
are time-frequency representations, bring up major information
concerning the time occurrence of the fault. Future works

will focus on the evaluation of the presented techniques with
experimental signals.
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