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Abstract—Wind energy conversion systems (WECS) have be-
come a focal point in the research of renewable energy sources.
In order to make wind turbine reliable and competitive, it is
important to reduce the operational and maintenance costs. The
most efficient way to reduce it relies on condition monitoring and
fault diagnostics. This paper proposes a new fault detector based
on the amplitude demodulation of the three-phase stator current.
Simulations show that this low-complexity method is well suited
for stationary or non-stationary behavior.

Index Terms—Wind turbine, Fault Detection, Bearings, Signal
Processing, Amplitude Modulation

I. INTRODUCTION

Wind energy conversion system is the fastest-growing
source of new electric generation technologies in the world
and it is expected to remain so for some time. In order to be
more reliable and competitive than classical power generation
systems and due to geographical location of WECS, it is
important to prevent failure and to reduce maintenance cost. To
fulfill this task, condition monitoring systems with integrated
fault detection algorithms must be implemented. In this paper,
the detection algorithm is based on the stator current signal.
Many tools have been proposed in the literature to monitor the
condition of an electrical machine from the stator current [1]–
[3]. To detect a failure, stationary signal processing tools, like
the Fast Fourier Transform (FFT) or MUltiple SIgnal Clas-
sification (MUSIC) [4], are commonly used. However, these
tools are inappropriate for wind turbines since these systems
have predominantly transient behavior. Under non-stationary
behavior, recent papers describe algorithms based on time-
frequency representations [5]–[7], or time-scale analysis [8]–
[10]. Nevertheless, theses techniques have drawbacks such
as high complexity, poor resolution and/or may suffer from
artifacts (cross term,aliasing...). Recently, it has been demon-
strated that many failures lead to stator current modulation [5],
[6], [11]–[13]. Therefore, a natural low-complexity approach
to detect a failure relies on the stator current demodulation.
In this study, we focus on mechanical failures that lead to
stator current amplitude modulation (AM). These include air
gap eccentricity and rotor asymmetry faults [6], [12]. To
detect a failure, we propose a new detector based on the
variance of the demodulated current. This paper is organized

as follows. Section II presents the stator current signal model
for healthy and faulty wind turbines. Section III presents two
amplitude demodulation techniques and section IV describes a
new fault detector based on amplitude demodulation. Finally,
the performances of the proposed methods are reported and
compared in section V.

II. SIGNAL MODEL

This work focuses on mechanical failures that lead to
stator current amplitude modulation (AM). For three-phase
generator, the stator currents 𝑖𝑘(𝑛) (𝑘 = 0, 1, 2) can be
described into a discrete form as:

𝑖𝑘(𝑛) = 𝑎𝑘(𝑛).cos (𝜔𝑛− 𝜙𝑘) (1)

where 𝑛 = 0, ⋅ ⋅ ⋅ , 𝑁−1 is the sample index, 𝑁 is the number
of received samples and 𝜙𝑘 = 2𝑘𝜋/3 (𝑘 = 0, 1, 2) is the phase
parameter. In equation (1), frequency 𝜔 is equal to 2𝜋𝑓/𝐹𝑒,
where 𝑓 and 𝐹𝑒 are the supply and sampling frequency,
respectively. Amplitude 𝑎𝑘(𝑛) is related to the fault as follows

∙ for healthy machine, 𝑎𝑘(𝑛) is constant (No AM).
∙ for faulty machine, 𝑎𝑘(𝑛) varies with time (AM).

In most study, a balanced system is assumed. Balanced system
satisfies

∑2
𝑘=0 𝑖𝑘(𝑛) = 0 which also implies that the 𝑎𝑘(𝑛)

are equal i.e 𝑎𝑘(𝑛) = 𝑎(𝑛) ∀ 𝑘 = 0, 1, 2. However, one should
note that practical systems rarely have perfectly balanced load
in all three phases. Furthermore, failure usually does not affect
each of the three phase equally. In this study, the condition
𝑎𝑘(𝑛) = 𝑎(𝑛) is relaxed and unbalanced system are also
considered.

III. AMPLITUDE DEMODULATION TECHNIQUES

A. Concordia Transform (CT)

The Concordia Transform (CT) converts the 3 phase current
to Park’s space vector components 𝑖𝛼(𝑛) and 𝑖𝛽(𝑛). The Park
components are given by:

[
𝑖𝛼(𝑛)
𝑖𝛽(𝑛)

]
=

[ 2
3 − 1

3 − 1
3

0 1√
3

− 1√
3

]⎡⎣ 𝑖0(𝑛)
𝑖1(𝑛)
𝑖2(𝑛)

⎤
⎦ (2)
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Several fault detectors based on CT have been proposed in
literature [14]–[19]. Recently, it has been shown that CT can
be viewed as a demodulation technique for balanced system
[19]. Indeed, under the assumption that the system is balanced,
the Park components can be expressed as:

𝑖𝛼(𝑛) = 𝑎(𝑛).cos(𝜔𝑛)

𝑖𝛽(𝑛) = 𝑎(𝑛).sin(𝜔𝑛)

Then, the amplitude can be estimated by:

∣𝑎(𝑛)∣ =
√
𝑖2𝛼(𝑛) + 𝑖2𝛽(𝑛) (3)

Therefore, if the system is balanced, CT can be considered
as a low-complexity demodulating technique. However, if the
system is unbalanced, equation (3) is no longer valid and
∣𝑎(𝑛)∣ depends on the three modulating signals 𝑎0(𝑛), 𝑎1(𝑛)
and 𝑎2(𝑛).

B. Hilbert Transform (HT)

A standard approach to extract the envelope 𝑎𝑘(𝑛) from
𝑖𝑘(𝑛) is based on the Hilbert transform. Let us consider
a discrete sequence 𝑖𝑘(𝑛). The Discrete Hilbert Transform
(DHT) of 𝑖𝑘(𝑛) is given by [20]:

ℋ[𝑖𝑘(𝑛)] = ℱ−1 {ℱ{𝑖𝑘(𝑛)}.𝑢(𝑛)} (4)

where ℱ{.} and ℱ−1{.} correspond to the Fast Fourier
Transform (FFT) and Inverse FFT (IFFT), respectively, and
where 𝑢(𝑛) is defined as:

𝑢(𝑛) =

⎧⎨
⎩

1, 𝑛 = 0, 𝑁2
2, 𝑛 = 1, 2, . . . , 𝑁2 − 1
0, 𝑛 = 𝑁

2 − 1, ⋅ ⋅ ⋅ , 𝑁 − 1
(5)

Let us define the analytic signal of 𝑖𝑘(𝑡), denoted 𝑧𝑘(𝑛), as:

𝑧𝑘(𝑛) = 𝑖𝑘(𝑛) + 𝑗ℋ[𝑖𝑘(𝑛)] (6)

Using signal model (1), the amplitude envelope can be esti-
mated by [20]:

∣𝑎𝑘(𝑛)∣ ≈ ∣𝑧𝑘(𝑛)∣ (7)

In comparison to CT, HT can be used for amplitude demod-
ulation even if the system is unbalanced since it is computed
from one-phase only. However, the major drawback of HT
lies on the associated computation cost since this method is
more complex than CT. Moreover, HT can lead to edge effects
problem at the beginning and end of ∣𝑎𝑘(𝑛)∣ whereas CT is
free from this artifact.

IV. FAULT DETECTOR

Several fault detectors based on amplitude demodulation
have been proposed in literature. These includes Hidden
Markov Model (HMM) [21], Neural Networks (ANN) [14],
Fuzzy Logic [18]. However, most of these approaches employs
unnecessary complicated classifier. Furthermore these methods
assume that a training database is available, which can be
difficult to obtain in some scenario. In this section, we propose
a low complexity detector which does not require any training
set. The detector is based on the variance of ∣𝑎(𝑛)∣ or ∣𝑎𝑘(𝑛)∣.

A. Fault Detector After CT Demodulation

After applying CT, envelope ∣𝑎(𝑛)∣ is extracted with (3).
Then, we propose to compute the variance of ∣𝑎(𝑛)∣ to detect
a fault. This statistic criterion, denoted 𝜎2

𝐶 , is given by:

𝜎2
𝐶 =

1

𝑁

𝑁−1∑
𝑛=0

(∣𝑎(𝑛)∣ − 𝜇)
2 (8)

where 𝜇 is the average of ∣𝑎(𝑛)∣ i.e.

𝜇 =
1

𝑁

𝑁−1∑
𝑛=0

∣𝑎(𝑛)∣ (9)

The variance 𝜎2
𝐶 measures the deviation of the amplitude

around its mean 𝜇. This criterion can be used to detect
amplitude modulation for balanced system. Indeed, if no fault
is present, ∣𝑎(𝑛)∣ is constant and so ∣𝑎(𝑛)∣ = 𝜇. Using (8), it
follows that 𝜎2

𝐶 = 0. On the contrary, for healthy machine
∣𝑎(𝑛)∣ is not constant, which also implies 𝜎2

𝐶 > 0. Therefore,
we can propose a simple hypothesis test for failure detection
under balanced assumption:

∙ If 𝜎2
𝐶 < 𝛾𝐶 , the generator is healthy.

∙ If 𝜎2
𝐶 > 𝛾𝐶 , the generator is faulty.

where 𝛾𝐶 is a threshold which can be set subjectively. For
unbalanced system, one should note that this simple hypothesis
test is no longer valid since 𝜎2

𝐶 is not necessary equal to 0 for
healthy machine.

B. Fault Detector Based on HT Demodulation

After applying HT independently on the three currents, we
propose to exploit the information given by the three extracted
envelopes. To avoid the edge effect problem of HT, each
envelope is truncated by removing 𝛼 samples at the beginning
and at the end of ∣𝑎𝑘(𝑛)∣. The proposed criterion, 𝜎2

𝐻 , is then
equal to:

𝜎2
𝐻 =

1

3(𝑁 − 2𝛼)

(
2∑

𝑘=0

𝑁−𝛼−1∑
𝑛=𝛼

(∣𝑎𝑘(𝑛)∣ − 𝜇𝑘)
2

)
(10)

where 𝜇𝑘 is the average of ∣𝑎𝑘(𝑛)∣, i.e.

𝜇𝑘 =
1

(𝑁 − 2𝛼)

𝑁−𝛼−1∑
𝑛=𝛼

∣𝑎𝑘(𝑛)∣ (11)

In (10), the average is used to make the criteria 𝜎2
𝐻 and

𝜎2
𝐶 equivalent for balanced system. Indeed if 𝑎𝑘(𝑛) = 𝑎(𝑛)

for all 𝑘 = {0, 1, 3} and if the edge effects problems are
neglected, then it can be shown that 𝜎2

𝐻 = 𝜎2
𝐶 with 𝛼 = 0.

This property no longer holds for unbalanced system. For
healthy unbalanced system, envelopes 𝑎𝑘(𝑛) are different
but they are all constant. It follows that ∣𝑎0(𝑛)∣ = 𝜇0,
∣𝑎1(𝑛)∣ = 𝜇1 and ∣𝑎2(𝑛)∣ = 𝜇2 and so 𝜎2

𝐻 = 0. Therefore,
we propose a simple hypothesis test to detect a fault under
unbalanced condition:
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Fig. 1. Time representation of the stator current 𝑖0(𝑛) for a faulty machine
(𝛽 = 0.2).

∙ If 𝜎2
𝐻 < 𝛾𝐻 , the generator is healthy.

∙ If 𝜎2
𝐻 > 𝛾𝐻 , the generator is faulty.

where 𝛾𝐻 is a threshold which can be set subjectively. One
should remark that this second hypothesis test is more pow-
erful since it can be employed for balanced and unbalanced
systems.

V. EXPERIMENTAL RESULTS

In this section, the result of several simulations is presented
to compare the performance of the proposed fault detectors.
For each simulation, the amplitude envelope is estimated
through CT or HT. Then, depending of the demodulation
technique, criteria 𝜎2

𝐶 or 𝜎2
𝐻 are computed to detect a failure.

The simulation have been performed for healthy and faulty
machines.

A. Synthetic Signals

In this subsection, several simulations have been performed
with AM synthetic signals, which are given by [6]:

𝑖𝑘(𝑛) = (1 + 𝛽sin (𝜔2𝑛+ 𝜓𝑘))︸ ︷︷ ︸
𝑎𝑘(𝑛)

.cos (𝜔𝑛+ 𝜙𝑘) (12)

where 𝛽 is a fault index which is equal to 0 for healthy
machines and > 0 for faulty ones. The parameters 𝜓𝑘 and
𝛾𝑘 are calibrated according to the balanced assumption. If
the system is balanced, 𝜓𝑘 = 𝜓 (𝑘 = 0, 1, 2) whereas 𝜓𝑘

depends on 𝑘 for unbalanced system. Simulations have been
run with a sampling frequency 𝐹𝑒 = 10kHz during 1 second
with 𝜔 = 0.1534rad/s (supply frequency 𝑓 = 50Hz) and
𝜔2 = 0.0307rad/s (𝑓2 = 10Hz). The fault index has been
set to 𝛽 = 0.2 to simulate faulty machine (see figure 1 for
time representation of 𝑖0(𝑛)). After HT demodulation, 𝛼 = 10
samples have been removed at the beginning and at the end of
∣𝑎𝑘(𝑛)∣ to avoid edge effect problems. One should note that a
larger 𝛼 can make the criterion 𝜎𝐻 more sensible to noise or
other sources of disturbance.
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Fig. 2. Balanced system- Faulty machine. Time representation of the
envelopes after CT and HT demodulation (𝛽 = 0.2).

1) Balanced system (𝜓 = 0): For balanced system, the
amplitude envelopes are the same for the three currents.
Figure 2 displays ∣𝑎(𝑛)∣ and ∣𝑎0(𝑛)∣ extracted with HT and
CT, respectively, for a faulty machine. One can notice that
the two demodulation techniques lead to the same envelope.
Table I shows the values of the fault detector criteria 𝜎2

𝐶 and
𝜎2
𝐻 for faulty and healthy machine. The two criteria lead to

similar results, indeed 𝜎2
𝐶 = 𝜎2

𝐻 = 0 for healthy machine and
𝜎2
𝐶 = 𝜎2

𝐻 = 0.020 for faulty ones. Therefore, a fault can be
easily detected in this context by setting the threshold of the
fault detector to 𝛾𝐶 = 𝛾𝐻 = 0.010. From a practical point of
view, one should note that CT demodulation must be preferred
for balanced system since it has a lower complexity than HT
and does not suffer from edge effects problems.

TABLE I
FAULT DETECTOR FOR HEALTHY AND FAULTY GENERATORS.

System Demodulation
Fault detector

Healthy case Faulty case
Balanced & CT 𝜎2

𝐶 = 0.000 𝜎2
𝐶 = 0.020

Stationary HT 𝜎2
𝐻 = 0.000 𝜎2

𝐻 = 0.020
Unbalanced & CT 𝜎2

𝐶 = 0.000 𝜎2
𝐶 = 0.005

Stationary HT 𝜎2
𝐻 = 0.000 𝜎2

𝐻 = 0.020
Unbalanced & CT 𝜎2

𝐶 = 0.000 𝜎2
𝐶 = 0.005

Non-stationary HT 𝜎2
𝐻 = 0.000 𝜎2

𝐻 = 0.020

2) Unbalanced system (𝜓0 = 0,𝜓1 = 2𝜋/3,𝜓2 = −2𝜋/3):
Let us simulate a system which is balanced under healthy
condition and unbalanced under faulty condition. Figure 3
displays ∣𝑎(𝑛)∣ and the envelope ∣𝑎0(𝑛)∣ extracted with CT
and HT, respectively, for a faulty generator. As expected,
CT is not able to demodulate the signals. Table I presents
the values of the fault detector criterion 𝜎2

𝐶 and 𝜎2
𝐻 under

healthy and faulty conditions. In our simulations, criterion
𝜎2
𝐻 leads to the same values for balanced and unbalanced

system whereas the value of 𝜎2
𝐻 decreases under unbalanced

condition. One can notice that the difference between healthy
and faulty case is larger for 𝜎2

𝐻 . For fault detection, an
hypothesis-test threshold equal to 𝛾𝐶 = 0.0025 for 𝜎2

𝐶 and
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Fig. 3. Non-balanced system - Faulty machine. Time representation of the
envelopes after CT and HT demodulation (𝛽 = 0.2).
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Fig. 4. Non-balanced system under non-stationary condition- Faulty machine.
Time representation of the envelopes after CT and HT demodulation (𝛽 =
0.2).

𝛾𝐻 = 0.010 for 𝜎2
𝐻 lead to correct results in this context.

3) Unbalanced system (𝜓0 = 0,𝜓1 = 2𝜋/3,𝜓2 = −2𝜋/3)
under nonstationary supply frequency: To simulate non-
stationary environment, supply frequency 𝑓 is assumed to vary
linearly between 10Hz and 50Hz i.e.

𝜔(𝑛) =
2𝜋

𝐹𝑒

(
40

2𝑁
𝑛+ 10

)
(13)

Figure 4 displays ∣𝑎(𝑛)∣ and the envelope ∣𝑎0(𝑛)∣ extracted
with CT and HT, respectively, for a faulty machine under
non-stationary supply frequency. As edge effect problem
occurs for HT (see Fig.4), 𝛼 = 500 samples have been
removed at the beginning and at the end of ∣𝑎𝑘(𝑛)∣. Table I
presents the values of the fault detector criterion 𝜎2

𝐶 and 𝜎2
𝐻 .

One should note that the values 𝜎2
𝐶 and 𝜎2

𝐻 do not depend
on the stationary assumption in our context. Therefore,
fault detectors based on amplitude demodulation seem to
be well-suited for non-stationary scenario. In particular,

Fig. 5. Experimental setup.

these detectors do not need to employ complicated time-
frequency representations, such as spectrogram, Wigner-Ville
representation, that suffer from artifact or poor resolution.

B. Experimental signals

In this section, the result of our approach is presented
with experimental signals. Fig.5 describes the experimental
setup which is composed of a tacho-generator, a three-phase
induction motor and an alternator. The experimental setup is
operated in the motor configuration for experimental easiness.
The alternator is a three-phase synchronous machine with a
regulator and a rectifier circuit that stabilize the output voltage
at 12VDC. The advantage of using a car alternator instead of
DC generator is obtaining constant output voltage at various
speeds. The induction motor could be identically loaded at
different speeds. Moreover, if the induction motor is supplied
from the network, motor current will have time harmonic
components as well as bearing fault harmonics. This makes
it harder to determine the bearing failure effect on the stator
current and therefore complicates the fault detection process.
For these reasons, the induction motor is fed by an alternator.
By this way, supply harmonics effects are eliminated and only
bearing failure effects could be observed on the stator current.
The tested induction motor has the following rated parameters:
0.75 kW, 220/380V, 1.95/3.4A, 2780rpm, 50Hz, 2 poles, Y-
connected. It has two 6204.2ZR type bearings. From the
bearing data sheet the following parameters are obtained: The
outside diameter is 47 mm and inside one is 20 mm. Assuming
that the inner and the outer races have the same thickness gives
the pitch diameter 𝐷𝑃 = 31.85mm. The bearing has eight
balls (N=8) with an approximate diameter of 𝐷𝐵 = 12 mm
and a contact angle 𝜃 = 0𝑜. The faulty system is corrupted by
a ball deterioration. Statistics of 𝑖𝑘(𝑛) reveal that the currents
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Fig. 6. Faulty machine generator: Time representation of the envelopes after
CT and HT demodulation.

TABLE II
NON-BALANCED SYSTEM: FAULT DETECTOR FOR HEALTHY AND FAULTY

GENERATORS.

Fault detector
Demodulation Healthy case Faulty case

CT 𝜎2
𝐶 = 0.059 𝜎2

𝐶 = 0.095
HT 𝜎2

𝐻 = 0.039 𝜎2
𝐻 = 0.093

are not perfectly balanced even for the healthy system. Indeed,
the HT-based criterion is expected to give better results than
the CT-based one. Figure 6 displays the envelopes ∣𝑎(𝑛)∣ and
∣𝑎0(𝑛)∣ for a faulty machine after CT and HT demodulation,
respectively. Table II shows the values of 𝜎2

𝐶 and 𝜎2
𝐻 for the

faulty and healthy machine. As the system is not perfectly
balanced, 𝜎2

𝐶 and 𝜎2
𝐻 are not equal to 0 for healthy machine.

However, it can be notice that 𝜎2
𝐶 is bigger than 𝜎2

𝐻 under
healthy condition. Under faulty condition, 𝜎2

𝐶 is multiplied by
1.61 as compared to the healthy case, whereas 𝜎2

𝐻 is multiplied
by 2.38. Therefore, our experimental simulation corroborates
the fact that it is easier to detect a fault with 𝜎2

𝐻 than with
𝜎2
𝐶 under unbalanced condition.

VI. CONCLUSION

An amplitude demodulation approach has been proposed for
fault detection. First, the received currents are demodulated
using Concordia Transform (CT) or Hilbert Transform (HT).
Then, an hypothesis test based on the statistical variance of the
demodulated envelope is performed to discriminate between
healthy and faulty generators. The result of several simulations
have shown that the proposed method performs well in sta-
tionary and non-stationary scenario. Furthermore results have
shown that, even if CT is computationally attractive compared
to HT, this low complexity demodulation technique can be
inappropriate for the diagnosis of unbalanced systems.
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