
HAL Id: hal-00532598
https://hal.science/hal-00532598

Preprint submitted on 4 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deduction as Reduction
Dominique Duval

To cite this version:

Dominique Duval. Deduction as Reduction. 2010. �hal-00532598�

https://hal.science/hal-00532598
https://hal.archives-ouvertes.fr

Deduction as Reduction

Dominique Duval

LJK, University of Grenoble

Dominique.Duval@imag.fr

October 30., 2010

Abstract. Deduction systems and graph rewriting systems are compared within a common cate-
gorical framework. This leads to an improved deduction method in diagrammatic logics.

1 Introduction

Deduction systems and graph rewriting systems can be seen as different kinds of reduction systems.
In this article, they are compared within a common categorical framework. This leads to an improved
deduction method in diagrammatic logics.

On the one hand, category theory may be used for describing graph rewriting systems: this is called
the algebraic approach to graph rewriting [Corradini et al. 1997, Ehrig et al. 1997]. On the other hand,
proofs may be modelled by morphisms in a category [Lambek 1968, Lawvere 1969]. However, these are
two disjoint research topics. In this paper, we present a common categorical framework for dealing with
graph rewriting and with logical deduction.

Our deduction systems are defined using diagrammatic logics [Duval 2003, Domı́nguez and Duval 2010],
where a logic is a functor L : S → T satisfying several properties. In this framework, a major role
is played by pleomorphisms (called entailments in previous papers): for a given logic L : S → T, a
pleomorphism is “half-way” between a general morphism and an isomorphism; it is a (generally non-
reversible) morphism in the category S which is mapped by the functor L to a reversible morphism in
the category T. In biology, a pleomorphism is the occurrence of several structural forms during the life
cycle of a plant; in diagrammatic logic, a pleomorphism refers to the occurrence of several presentations
of a given logical theory during a proof: various lemmas are progressively added to the given axioms
until the required theorem is obtained. In this paper, the analogy with graph rewriting systems extends
this approach in such a way that it becomes possible to drop intermediate lemmas.

Section 2 is devoted to graph rewriting systems and section 3 to deduction systems, then the comparison
is done in section 4. Some familiary is assumed from the reader with the notions of categories, functors
and pushouts. It is recalled that a span (resp. a cospan) in a category is simply a pair of morphisms
with the same domain (resp. codomain).

2 Reduction: graph rewriting

Well-known examples of reduction systems (or rewriting systems) are string rewriting systems, term

rewriting systems and graph rewriting systems. Let us focus on the last ones. A graph rewriting system
consists of a binary relation on graphs, i.e., a set of rewrite rules of the form L R. Given a rewrite
rule L R and an occurrence (called a match) of L in a graph G, the rewrite step consists of “replacing”
the occurrence of L in G by an instance of R, which gives rise to a new graph H . This can be applied
to various families of graphs, and the notion of “replacement” may take various meanings.

In the algebraic approach, graph rewriting systems are described in a categorical framework. Such

1

systems include the double pushout (DPO), simple pushout (SPO), sesqui-pushout (SqPO) and het-

erogeneous pushout (HPO) approaches [Ehrig et al. 1997, Corradini et al. 1997, Corradini et al. 2006,
Duval et al. 2009].

In this paper we focus on the double pushout and the sesqui-pushout graph rewriting systems. Given a
category C of graphs, in both approaches a match is a morphism mL : L // G in C and a rewrite rule

L R is a span (l, r) between L and R in C

L
mL

��

G

Kl

rrffffffffff r

,,XXXXXXXXXX

L R

Let us call generalized pushout under a span (l, r) a diagram of the following form, with a commutative
square on the left and a pushout square on the right

Kl

rrffffffffff r

,,YYYYYYYYYY

mK
��L

mL
��

R
mR

��Dl1

rrffffffffff r1

,,YYYYYYYYYY

(=) (PO)

G H

In both graph rewriting systems the rewrite step builds a generalized pushout. First mK and l1 are built
from mL and l so as to get a commutative square, then mR and r1 are built from mK and r so as to get
a pushout. In both approaches there are restrictions on the form of the matches and rules.

• In the double pushout approach, the left square is a pushout, which means that the construction
of mK and l1 from mL and l is a pushout complement.

• In the sesqui-pushout approach, the left square is a pullback, and more precisely the construction
of mK and l1 from mL and l is a final pullback complement.

3 Deduction: diagrammatic logic

Deduction systems, in this paper, are defined in the framework of diagrammatic logic [Duval 2003,
Domı́nguez and Duval 2010]. We only need to know that a diagrammatic logic is a pushout-preserving
functor L : S → T between two categories with pushouts. Then T is called the category of theories of the
logic L and S its category of specifications. Each specification Σ presents, or generates, the theory LΣ.

In order to get a full definition one must add that L is the left adjoint in an adjunction induced by
a morphism of limit sketches [Ehresmann 1968] and that it makes T a category of fractions over S

[Gabriel and Zisman 1967]. This full definition, which will not be used in this paper, enlightens the
importance of pleomorphisms (definition 3.1) in diagrammatic logic: in fact, in this situation the pleo-
morphisms determine the functor L [Gabriel and Zisman 1967].

Definition 3.1. With respect to some given diagrammatic logic L : S → T:

• Two specifications Σ, Σ′ in S are pleoequivalent if there is an isomorphism of theories LΣ ∼= LΣ′;
this is denoted Σ _ _ Σ′.

• An instance of Σ1 in Σ2, where Σ1 and Σ2 are specifications, is a morphism σ′ : Σ1
// Σ′

2 in S

where Σ′

2 is pleoequivalent to Σ2; this is denoted Σ1
// Σ′

2 _ _ Σ2.

• A pleomorphism is a morphism of specifications τ : Σ // Σ′ such that Lτ is an isomorphism of
theories; this is denoted τ : Σ //

oo_ _ Σ′.

• A fraction from Σ1 to Σ2 is a cospan (σ : Σ1
// Σ′

2, τ : Σ2
//

oo_ _ Σ′

2) in S where τ is a pleomor-
phism; this is denoted τ\σ : Σ1

// Σ′

2 //__
oo Σ2. The numerator of τ\σ is σ, its denominator is τ

and its vertex is Σ′

2.

2

Remark 3.2. Clearly, when two specifications are related by a zig-zag of pleomorphisms, they are pleoe-
quivalent: the equivalence relation generated by the pleomorphisms is included in the pleoequivalence
relation.

The next result states some straightforward properties of pleomorphisms.

Proposition 3.3. Pleomorphisms satisfy the following properties:

• every isomorphism in S is a pleomorphism,

• if h = g ◦ f in S and if two among f, g, h are pleomorphisms, then so is the third,

• pleomorphisms are stable under pushouts.

Definition 3.4. Given a diagrammatic logic L : S → T

• A deduction rule (or inference rule) is a fraction h\c : C // P //__
oo H from C toH . The hypothesis

of h\c is H , its conclusion is C.

• The deduction step with respect to a deduction rule h\c : C // P //__
oo H maps each instance

σH : H // ΣH _ _ Σ of H in some specification Σ to the instance σC : C // ΣC _ _ Σ of C
in the same Σ defined as follows (where h1 is a pleomorphism because so is h and pleomorphisms
are stable under pushouts)

H h

,,YYYYYYYYYYY

σH
��

C

σCpp

c

rreeeeeeeeeee

P

σP

��

llY Y Y
Y Y Y

ΣH h1

,,XXXXXXXXXX

ΣP

llX
X

X
X

X

(PO) (=)

(=)

Σ

�

� eeeeeeeeeee

e
eee

ee

Remark 3.5. A deduction rule h\c has numerator c and denominator h, in contrast with the usual
notation H

C
. Indeed, it is the morphism h, and not c, which becomes an isomorphism of theories.

Remark 3.6. This construction is essentially the composition of fractions in their bicategory.

Example 3.7. Let Leq be the equational logic. One of its rule is the transitivity rule

x ≡ y y ≡ z

x ≡ z

which corresponds to the fraction

H

x ≡ y

y ≡ z ,,YYYYY
llY Y

Y

P

x ≡ y

y ≡ z

x ≡ z

rreeeee

C

x ≡ z

Let Σnat be the equational specification “of naturals” made of a sort N , a constant 0 : N , two operations
s : N → N , + : N2 → N and two equations 0 + y ≡ y, s(x) + y ≡ s(x+ y). Let us analyze the last step
in the proof of 1 + 1 ≡ s(1) (where 1 stands for s(0)), once it has been proved that 1 + 1 ≡ s(0 + 1) and
that s(0 + 1) ≡ s(1), so that it remains to use the transitivity rule in order to conclude. Then Σnat,H is
Σnat together with the terms 1 + 1, s(0 + 1), s(1) and the equations 1 + 1 ≡ s(0 + 1), s(0 + 1) ≡ s(1).
The deduction step yields Σnat,P , made of Σnat,H together with the equation 1+ 1 ≡ s(1), and σC maps
x ≡ z to 1 + 1 ≡ s(1), as required.

Σnat,H

Σnat with
1 + 1 ≡ s(0 + 1)
s(0 + 1) ≡ s(1)

,,YYYYY
llY

Y Y

Σnat,P

Σnat with
1 + 1 ≡ s(0 + 1)
s(0 + 1) ≡ s(1)
1 + 1 ≡ s(1)

3

4 Deduction as Reduction

It is clear from the previous sections that deduction is a form of reduction, as well as graph rewriting.

• In a graph rewriting system (section 2), given a rewrite rule L R and a match of L in G, the
rewrite step consists of “replacing” the occurrence of L in a graph G by an instance of R, which
gives rise to a new graph H .

• In a deduction system (section 3), given a deduction rule H
C

and an instance of H in Σ with
vertex ΣH , the deduction step consists of “replacing” the occurrence of H in Σ by an instance of
C, which gives rise to an instance of C in Σ with a new vertex ΣC .

But a graph rewrite rule is a span while a deduction rule is a cospan, so that the descriptions of the
rewrite steps are quite different. However, in this section, under the assumption that a deduction rule
can also be defined from a span, we exhibit similarities between both reduction systems and we propose
improvements in the construction of the deduction steps.

Assumption 4.1. It is now assumed that each deduction rule h\c : C // P //__
oo H is obtained from

a pushout

Kl
ssgggggggg r

--[[[[[[[[[[[[[[[[[[

H

h --[[[[[[[[[[[[[[[[[[C
cssgggggggg

P

mm[[[[[[[[[

(PO)

Remark 4.2. Usually a deduction rule is given as H
C
, neither P nor K are mentioned. Then K can be

defined as the family of features which have the same name in H and in C, and P can be obtained from
a pushout as in assumption 4.1.

In section 2 we have seen double pushouts and sesqui-pushouts as instances of generalized pushouts.
Now we define a third family of generalized pushouts.

Definition 4.3. Given a span (l, r), a pleopushout under (l, r) is a diagram of the following form, with
a commutative square on the left, a pushout square on the right, where l1 is a pleomorphism

Kl
ssfffffffff r

--[[[[[[[[[[[[[[[[[

σK
��H

σH

��

C

σC

��
ΣK

l1
ssgggggggg

r1 --ZZZZZZZZZZZZZZZZ

(=) (PO)

ΣH

33g
g

g
g

ΣC

Theorem 4.5 below builds a deduction step from a pleopushout. In its proof we use the properties of
pleomorphisms stated in proposition 3.3 and well-known properties of pushouts stated now in proposi-
tion 4.4.

Proposition 4.4. Given two consecutive commutative squares (1), (2) and the composed commutative

squares (3), if (1) is a pushout then (2) is a pushout if and only if (3) is a pushout.

• //

��

• //

��

•

��

=

• //

��

• // •

��
• // • //

(1) (2)

• • // • //

(3)

•

Theorem 4.5. Let h\c be a deduction rule satisfying assumption 4.1

Kl
ssgggggggg r

--[[[[[[[[[[[[[[[[[[

H

h --[[[[[[[[[[[[[[[[[[C
cssgggggggg

P

mm[[[[[[[[[

(PO)top

4

Let σH be an instance of H in Σ, and let us assume that there is a pleopushout under (l, r)

Kl
ssfffffffff r

--[[[[[[[[[[[[[[[[[

σK
��H

σH

��

C

σC

��
ΣK

l1
ssgggggggg

r1 --ZZZZZZZZZZZZZZZZ

(=) (PO)back

ΣH

33g
g

g
g

ΣC

Let us consider the pushout

ΣK
l1

ssgggggggg
r1

--[[[[[[[[[[[[[[[[[[[

ΣH

33g
g

g
g

h1
--[[[[[[[[[[[[[[[[[[[ΣC

c1ssgggggggg

ΣP

(PO)bottom

Then there is a unique morphism σP : P // ΣP such that we get a commutative cube

Kl
ssfffffffff

r

--[[[[[[[[[[[[[[[[[[[[

σK

��

H
σH

��

h --[[[[[[[[[[[[[[[[[[[[C
σC

��

cssfffffffff

P
σP

��

ΣKl1
ss

r1

--ΣH

h1 --[[[[[[[[[[[[[[[[[[[ΣC

c1ssgggggggg

ΣP

Then in this cube:

• the top, bottom, back right and front left faces are pushouts,

• the morphism h and the four morphisms of the bottom face are pleomorphisms.

If σH is an instance of H in some Σ then σC is an instance of C in Σ.

Proof. It is easily checked that the following square is commutative

Kl
ssgggggggg r

--[[[[[[[[[[[[[[[[[[[

H
h1◦σH

--[[[[[[[[[[[[[[[[[[C
c1◦σC

ssgggggggg

ΣP

(=)

So, the pushout (PO)top gives rise to a unique morphism σP : P // ΣP such that the two front faces
in the cube are commutative. Since the other faces are yet known to be commutative, the cube is
commutative.

It is yet known that the top (PO)top, bottom (PO)bottom and back right (PO)back faces are pushouts.
Let us prove that the front left face is also a pushout. According to proposition 4.4, composing (PO)back
and (PO)bottom gives rise to the “diagonal” pushout (PO)diag

Kl1◦σK

ssgggggggg r

--[[[[[[[[[[[[[[[[[[[

ΣH

h1
--[[[[[[[[[[[[[[[[[[C

c1◦σC
sshhhhhhhh

ΣP

(PO)diag

Thanks to the commutativity of the cube, the pushout (PO)diag can also be written as

KσH◦l

ssgggggggg r

--[[[[[[[[[[[[[[[[[[[

ΣH

h1
--[[[[[[[[[[[[[[[[[[C

σP ◦csshhhhhhhh

ΣP

(PO)diag

Now, since (PO)top and (PO)diag are pushouts, proposition 4.4 implies that the front left face of the
cube is also a pushout (PO)front.

5

It is yet known that h and l1 are pleomorphisms. Let us check that the three other morphisms of the
bottom face are pleomorphisms, using proposition 3.3. Since pleomorphisms are stable under pushouts,
it follows from (PO)bottom that c1 is a pleomorphism and from (PO)front that h1 is a pleomorphism.
Since three among the four morphisms in the bottom commutative square are pleomorphisms, so is the
fourth: hence r1 is also a pleomorphism.

It follows that ΣH and ΣC are pleoequivalent, which proves the last assertion of the theorem.

Remark 4.6. According to definition 3.4, the deduction step with respect to h\c is defined from the
following diagram

H h

,,YYYYYYYYYYY

σH
��

C

σCpp

c

rreeeeeeeeeee

P

σP

��

llY Y
Y Y Y

Y

ΣH h1

,,XXXXXXXXXX

ΣP

llX
X

X
X

X

(PO)step1 (=)

If h\c satisfies assumption 4.1, then by proposition 4.4 the composition of (PO)top and (PO)step1 yields
a pushout (PO)step2, which obviously forms the right part of a pleopushout under (l, r)

Kl
ssfffffffff r

--[[[[[[[[[[[[[[[[[

σH◦l
��H

σH

��

C

σC

��
ΣH

id
ssgggggggg

h1

--ZZZZZZZZZZZZZZZZ

(=) (PO)step2

ΣH

33g
g

g
g

ΣP

mmZ Z Z Z Z Z Z Z

So, a pleopushout under (l, r) as assumed in theorem 4.5 is obtained from the deduction step (defini-
tion 3.4). This proves that indeed a deduction step can be seen as a reduction step. Moreover, theorem 4.5
states that whenever we are able to find a “better” pleopushout than this obvious one, then we may
get an instance of C in Σ “better” than σC : C // ΣP in definition 3.4. Such a situation occurs in
example 4.7.

Example 4.7. As in example 3.7, let Leq be the equational logic. The transitivity rule:

x ≡ y y ≡ z

x ≡ z

can be obtained by a pushout from a span H oo K // C:

H

x ≡ y

y ≡ z

rreeeee

K

x

z ,,YYYYY

C

x ≡ z

As in example 3.7, let Σnat be the equational specification “of naturals” and let us analyze the last step
in the proof of 1 + 1 ≡ s(1): it has yet been proved that 1 + 1 ≡ s(0 + 1) and s(0 + 1) ≡ s(1), and it
remains to use the transitivity rule. As in example 3.7, Σnat,H is Σnat together with the terms 1 + 1,
s(0 + 1), s(1) and the equations 1 + 1 ≡ s(0 + 1), s(0 + 1) ≡ s(1). Let us define Σnat,K as Σnat with the
terms 1 + 1 and s(1) (with no additional equations), with σnat,K which maps x to 1 + 1 and z to s(1)
and with l1 the inclusion. Then by pushout Σnat,C is made of Σnat with the equation 1 + 1 ≡ s(1). It
is smaller than Σnat,P from example 3.7: the lemmas 1 + 1 ≡ s(0 + 1) and s(0 + 1) ≡ s(1), which have
been used during the proof, are kept in Σnat,P while they are dropped from Σnat,C .

Σnat,H

Σnat with
1 + 1 ≡ s(0 + 1)
s(0 + 1) ≡ s(1)

**TT
T
jjT

T

Σnat,P

Σnat with
1 + 1 ≡ s(0 + 1)
s(0 + 1) ≡ s(1)
1 + 1 ≡ s(1)

ttjjj 44j
j

Σnat,C

Σnat with
1 + 1 ≡ s(1)

6

5 Conclusion

Deduction systems as well as graph rewriting systems can be seen as reduction systems. This pa-
per lays the foudations for such comparisons. Further developments might involve adhesive categories
[Lack and Sobocinski 2005]. This should provide a new point of view about the role of pullbacks in graph
rewriting, as well as new methods for deduction in diagrammatic logics.

References

[Corradini et al. 1997] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko
Heckel, Michael Lwe. Algebraic Approaches to Graph Transformation - Part I: Basic Concepts and
Double Pushout Approach. Handbook of Graph Grammars and Computing by Graph Transformation,

Vol. 1: Foundations, World Scientific, p. 163–246 (1997).

[Corradini et al. 2006] Andrea Corradini, Tobias Heindel, Frank Hermann, Barbara Knig. Sesqui-
Pushout Rewriting. ICGT’06. Lecture Notes in Computer Science 4178, Springer, p. 30–45 (2006).

[Domı́nguez and Duval 2010] César Domı́nguez, Dominique Duval. Diagrammatic logic applied to a pa-
rameterization process. Mathematical Structures in Computer Science 20(04) p. 639–654 (2010).

[Dumas et al. 2010] Jean-Guillaume Dumas, Dominique Duval, Jean-Claude Reynaud. Cartesian effect
categories are Freyd-categories. Journal of Symbolic Computation (2010).

[Duval 2003] Dominique Duval Diagrammatic specifications. Mathematical Structures in Computer Sci-

ence 13 p. 857–890 (2003).

[Duval et al. 2009] Dominique Duval, Rachid Echahed, Frédéric Prost. A Heterogeneous Pushout Ap-
proach to Term-Graph Transformation. RTA’09. Lecture Notes in Computer Science 5595, Springer,
p. 194–208 (2009).

[Ehresmann 1968] Charles Ehresmann. Esquisses et types de structures algébriques. Bull. Instit. Polit.
Iaşi XIV (1968).

[Ehrig et al. 1997] Hartmut Ehrig, Reiko Heckel, Martin Korff, Michael Lwe, Leila Ribeiro, Annika
Wagner, Andrea Corradini. Algebraic Approaches to Graph Transformation - Part II: Single Pushout
Approach and Comparison with Double Pushout Approach. Handbook of Graph Grammars and Com-

puting by Graph Transformation, Vol. 1: Foundations, World Scientific, p. 247–312 (1997).

[Gabriel and Zisman 1967] Peter Gabriel and Michel Zisman. Calculus of Fractions and Homotopy The-

ory, Springer (1967).

[Lack and Sobocinski 2005] Stephen Lack, Pawel Sobocinski. Adhesive and quasiadhesive categories. In-
formatique Théorique et Applications 39(3) p. 511–545 (2005).

[Lambek 1968] Joachim Lambek. Deductive systems and categories I.Mathematical Systems Theory 2(4)
p. 287–318 (1968).

[Lawvere 1969] F. W. Lawvere. Adjointness in foundations. Dialectica 23 p. 281–296 (1969).

7

