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This paper considers the problem of estimating a periodic function in a continuous time regression model with an additive stationary gaussian noise having unknown correlation function. A general model selection procedure on the basis of arbitrary projective estimates, which does not need the knowledge of the noise correlation function, is proposed. A non-asymptotic upper bound for L 2 -risk (oracle inequality) has been derived under mild conditions on the noise. For the Ornstein-Uhlenbeck noise the risk upper bound is shown to be uniform in the nuisance parameter. In the case of gaussian white noise the constructed procedure has some advantages as compared with the procedure based on the least squares estimates (LSE). The asymptotic minimaxity of the estimates has been proved. The proposed model selection scheme is extended also to the estimation problem based on the discrete data applicably to the situation when high frequency sampling can not be provided.

Introduction

Consider a regression model in continuous time

dy t = S(t)dt + dξ t , (1) 
where S(t) is an unknown 1-periodic function in the space L 2 [0, 1], (ξ t ) t≥0 is a continuous gaussian process with zero mean and such that for each n ≥ 1 the stochastic integral n 0 f (t)dξ t is well-defined for any non-random function f from L 2 [0, n]. The correlation function of noise ξ t is unknown.

This process can be modeled in different ways.

Example 1. ξ t is a scalar non-explosive Ornstein-Uhlenbeck process defined by the equation

dξ t = θξ t dt + dw t , (2) 
where (w t ) t≥0 is a standard brownian motion and θ ≤ 0 is unknown parameter; the initial value ξ 0 ∼ N (0, 1/2|θ|) if θ < 0 and ξ 0 = 0 if θ = 0.

Example 2. ξ t is a stationary autoregressive process of order q ≥ 2 satisfying the stochastic differential equation

ξ (q) t = θ 1 ξ (q-1) t + . . . + θ q ξ t + ẇt . (3) 
Here ( ẇt ) t≥0 is a white gaussian noise and the unknown vector θ = (θ 1 , . . . , θ q ) ′ belongs to stability region of the process

A = {θ ∈ R q : max 1≤i≤q Reλ i (θ) < 0} , (4) 
where (λ i (θ)) 1≤i≤q are eigenvalues of the matrix

A = A(θ) = θ 1 . . . θ q I q-1 0 ; ( 5 
)
I q is the identity matrix of order q.

Models of type [START_REF] Barron | Risk bounds for model selection via penalization[END_REF] and their discrete-time analogues have been studied by a number of authors (see, [START_REF] Efroimovich | Nonparametric curve estimation. Methods, theory and applications[END_REF], Liptser and Shyraev (1974), Konev and Pergamenshchikov (2003), [START_REF] Nemirovskii | Topics in non-parametric statistics[END_REF] and references therein). The estimation problem of periodic signal S(t) in model ( 1)- [START_REF] Baraud | Model selection for regression on a fixed design[END_REF] has been thoroughly studied in the case, when (ξ t ) t≥0 is a white gaussian noise (see, for example, [START_REF] Ibragimov | Statistical Estimation: Asymptotic Theory[END_REF] for details and further references).

A discrete-time counterpart of model ( 1)- [START_REF] Baraud | Model selection for regression on a fixed design[END_REF] was applied in the econometrical problems for modeling the consumption as a function of income Golfeld and Quandt (1972).

As is well known, the problem of nonparametric estimation of S(t) comprises the following three statements: the function estimation at a fixed point t 0 , estimation in the uniform metric and in the integral metric. The first two problems are usually solved by making use of the kernel and local polynomial estimates. This paper focuses on the third setting with the quadratic metric. The estimation in the integral metric is based, as a rule, on the projective estimates which were first proposed in [START_REF] Chenstov | On estimation of unknown density by observations[END_REF] for estimating the distribution density in a scheme of i.i.d. observations. The heart of this method is to approximate the unknown function with a finite Fourier series. Applying the projective estimates to the regression model [START_REF] Barron | Risk bounds for model selection via penalization[END_REF] with a white noise leads to the optimal convergence rate in L 2 (0, 1) provided that the smoothness of S is known (see for example [START_REF] Ibragimov | Statistical Estimation: Asymptotic Theory[END_REF]). Another adaptive approach based on the model selection method (see for example, [START_REF] Barron | Risk bounds for model selection via penalization[END_REF], [START_REF] Baraud | Model selection for regression on a fixed design[END_REF], Birgé and Massart (2001) and [START_REF] Fourdrinier | Improved model selection method for a regression function with dependent noise[END_REF]) enables one to study this problem in the nonasymptotic setting when the smoothness of function S is unknown. It should be noted that this method can be used also for model [START_REF] Barron | Risk bounds for model selection via penalization[END_REF] under the condition that the correlation function Eξ t ξ s is exactly known and besides the unknown function S belongs to the subspace spanned by its eigenfunctions (see, Theorem 1, p. 11 in Birgé and Massart (2001)). In our case, when the noise correlation function is unknown, this method can not be applied. This paper develops a general model selection method for the regression scheme (1) with unknown correlation properties.

Note that the usual nonasymptotic selection model procedure proposed in [START_REF] Barron | Risk bounds for model selection via penalization[END_REF], [START_REF] Baraud | Model selection for regression on a fixed design[END_REF], Birgé and Massart (2001) is based on the least square estimators (LSE) which, as was shown in Goloubev (1982) and [START_REF] Pinsker | Optimal filtration of square integrable signals in gaussian white noise[END_REF], are not efficient in the problem of nonparametric regression. Our approach is close to the general model selection method proposed in [START_REF] Fourdrinier | Improved model selection method for a regression function with dependent noise[END_REF] for discrete time models with spherically symmetric errors which allows one to use any projective estimators in the model selection procedure including the LSE. In Section 2 we propose a general model selection procedure for a regression scheme in continuous time [START_REF] Barron | Risk bounds for model selection via penalization[END_REF] with unknown correlation structure of the gaussian noise. In Theorem 1, under some loose conditions on the noise, we establish a nonasymptotic upper bound for the quadratic risk in which the principal term is minimal over the set of all admissible basic estimates. The inequalities of this type are usually called oracle.

In the case of the Ornstein-Uhlenbeck noise (2), the risk upper bound is shown to be uniform in the nuisance parameter (Corollary 2).

The rest of the paper is organized as follows. In Section 3 we consider case of white gaussian noise ξ t and show that the possibility to choose different projective estimators in the procedure may lead to a sharper upper bound for the mean square estimation accuracy. In Section 4 the upper bound and the lower bounds for the minimax quadratic risk are obtained under the assumption that the smoothness of S is unknown. In Section 6 we consider the estimation problem for the regression model [START_REF] Barron | Risk bounds for model selection via penalization[END_REF] assuming that it is accessible for observations only at discrete times t k = k/p, k = 0, 1, . . .. Such observation scheme is more appropriate in a number of applications, where one can not provide high frequency data sampling. Theorems 5 establishs the nonasymptotic oracle inequalities in this case. Appendix contains some technical results.

Nonasymptotic estimation

In this section we consider the estimation problem for the model (1) in nonasymptotic setting, i.e. assuming that the estimator of S is based on the observations (y t ) 0≤t≤n with a fixed duration n. For this we apply the general model selection approach proposed in [START_REF] Fourdrinier | Improved model selection method for a regression function with dependent noise[END_REF] for the discrete-time regression model.

First we introduce some notations. Let X be the Hilbert space of square integrable 1-periodic functions on R with the usual scalar product (x, y) = 1 0 x(t) y(t) dt and (φ j ) j≥1 be a system of orthonormal functions in X , i.e. (φ i , φ j ) = 0, if i = j and φ i 2 = (φ i , φ i ) = 1. Then we impose the following additional conditions on the noise (ξ t ) t≥0 in [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]. Assume that

C 1 ) For each n ≥ 1 and k ≥ 1 the vector ζ(n) = (ζ 1 (n), . . . , ζ k (n)) ′ with components ζ j (n) = 1 √ n n 0 φ j (t) dξ t ( 6 
)
is gaussian with non-degenerate covariance matrix

B k,n = E ζ(n)ζ ′ (n). C 2 )
The maximal eigenvalues of matrices B k,n satisfy the following inequality sup

k≥1 sup n≥1 λ max (B k,n ) ≤ λ * ,
where λ * is some known positive constant. Processes (2) and ( 3) in Examples 1-2, as is shown in Lemmas 2-3, satisfy condition C 1 ). Condition C 2 ) is satisfied for process (2) with λ * = 2. Condition C 2 ) holds also for process [START_REF] Birge | Gaussian model selection[END_REF] provided that the value of vector θ belongs to the following compact set

K δ = θ ∈ A : max 1≤i≤q Re λ i (θ) ≤ -δ , |A(θ)| ≤ δ -1 , (7) 
where 0 < δ < 1 is a known constant; | • | stands for the euclidean norm of matrix. Under this assumption process (3) satisfies condition C 2 ) with

λ * = λ * (δ) = 2 δ 2 F * (δ) J * (δ) , (8) 
where

F * (δ) = q 2δ + 2q δ 3 q-1 j=1 (2j)! (j!) 2 δ 4j and J * (δ) = 1 δ + 2 δ 2 q-1 j=1 2 j δ 2j .
Let N be the set of positive integer numbers, i.e. N = {1, 2, . . .}. Denote by M some finite set of finite subsets of N and by (D m ) m∈M a family of linear subspaces of X such that

D m = {x ∈ X : x = j∈m λ j φ j , λ j ∈ R} .
Let d m = dim D m be the number of elements in a subset m. Denote by S m the projection of S on D m , i.e.

S m = j∈m α j φ j , α j = (S, φ j ) . (9) 
To estimate the function S in (1) we will apply a general model selection approach. It requires first to choose some class of projective estimators S m of S m , which may be any measurable functions of observations (y t ) 0≤t≤n taking on values in D m . For example, one can take the LSE S m of S, which is the minimizer, with respect to x ∈ D m , of the quantity

γ n (x) = x 2 -2 1 n n 0
x(t) dy t [START_REF] Golfed | Nonlinear methods in econometrics[END_REF] and has the form

S m = j∈m α j φ j , α j = 1 n n 0 φ j (t) dy t . (11) 
Let (l m ) m∈M be a sequence of prior weights such that l m ≥ 1 for all m ∈ M. We set

l * = m∈M e -l m d m . ( 12 
)
Further one needs a penalty term on the set M. We take it in the form suggested in Birgé and Massart (2001). We define the penalty term as 

P n (m) = ρ l m d m n with ρ = 4λ * z 2 * z * -1 , (13) 
Our first result is the following.

Theorem 1. Assume that the conditions C 1 )-C 2 ) are fulfilled for the noise in [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]. Then for any class of projective estimators ( S m ) m∈M the general model selection procedure S m satisfies the following oracle inequality

E S S m -S 2 ≤ inf m∈M a m (S) + λ * τ 0 n , (16) 
where E S denotes the expectation with respect to the distribution of (1) given S ,

a m (S) = 3E S S m -S 2 + 16λ * z * d m l m n and τ 0 = 16l * z * z * -1 .
The proof of Theorem 1 is given in the Appendix.

Remark 1. It will be noted that the choice of the coefficient ρ in the penalty term (13), as will be shown in the proof of the theorem, provides the minimal value of the principal term a m (S). Now we will find the upper bound [START_REF] Nemirovskii | Topics in non-parametric statistics[END_REF] for the LSE model selection procedure S m defined by [START_REF] Gill | Applications of the van Trees inequality: a Bayesian Cramér-Rao bound[END_REF] and [START_REF] Liptser | Statistics of Random Processes.I. General theory[END_REF]. To this end we have to calculate the accuracy of S m for any m ∈ M. We have

E S S m -S 2 = S m -S 2 + E S S m -S m 2 = S m -S 2 + j∈m E S ( α j -α j ) 2 ,
where S m is given in [START_REF] Golubev | Minimax filtering of functions[END_REF]. Moreover, the condition C 2 ) yields

E S ( α j -α j ) 2 = 1 n 2 E S n 0 φ j (t) dξ t 2 ≤ λ * n . Therefore E S S m -S 2 ≤ S m -S 2 + λ * d m n .
Thus, we obtain the following result.

Corollary 1. Under the conditions C 1 ) and C 2 ) the LSE model selection procedure S m , defined by ( 11) and ( 15), satisfies the inequality

E S S m -S 2 ≤ inf m∈M a m (S) + λ * τ 0 n , (17) 
where

a m (S) = 3 S m -S 2 + τ 1 λ * d m l m n , τ 1 = 3 + 16z * .
Consider the upper bound in [START_REF] Pinsker | Optimal filtration of square integrable signals in gaussian white noise[END_REF] in more detail for the model ( 1)-( 2).

Corollary 2. For the model (1)-( 2) the LSE model selection procedure S m , defined by [START_REF] Gill | Applications of the van Trees inequality: a Bayesian Cramér-Rao bound[END_REF] and (15) with λ * = 2 satisfies, for any θ ≤ 0, the inequality

E S S m -S 2 ≤ inf m∈M b m (S) + 2τ 0 n , (18) 
where τ 0 is given in [START_REF] Nemirovskii | Topics in non-parametric statistics[END_REF],

b m (S) = 3 S m -S 2 + 2τ 1 d m l m n .
Remark 2. It will be noted that for the model (1)-( 2) the LSE model selection procedure satisfies the oracle inequality uniformly in the nuisance parameter θ including the boundary of the stationarity region of the Ornstein-Uhlenbeck process, i.e. θ = 0.

3 The improvement of LSE.

In this section we consider a special case of the model ( 1)-( 2) when θ = 0, i.e. dy t = S(t) dt + dw t .

By applying the improvement method proposed in Fourdrinier and Pergamenshchikov (2007) we will show that the upper bound in the oracle inequality can be lessened by a proper choice of the projective estimators. Let us introduce a class of estimators of the form

S * m (t) = S m (t) + Ψ m ( S m )(t) . ( 20 
)
Here Ψ m is a function from R d into D m , i.e. Ψ m (x)(t) = j∈m v j (x) φ j (t) , x ∈ R d (21) and (v j (•)) j∈m are R d → R functions such that E S v 2 j ( α) < ∞
, where α = ( α j ) j∈m is the vector with the components α j defined in [START_REF] Gill | Applications of the van Trees inequality: a Bayesian Cramér-Rao bound[END_REF]. The functions v(x) = (v j (x)) j∈m will be specified below. Let

∆ m (S) = E S S * m -S m 2 -E S S m -S m 2 . (22) 
It is easy to check that

∆ m (S) = 2 E S (Ψ m , S m -S m ) + E S Ψ m 2 . ( 23 
)
This function can be found explicitly for the model (19).

Lemma 1. Let S * m be defined by (20)-( 21) with continuously differentiable functions v j such that

E S v 2 j ( α) < ∞. Then ∆ m (S) = E S L( α), where L(x) = 2 n div v(x) + v(x) 2 . ( 24 
)
Proof. From ( 11), (20), one has

α j = 1 n n 0 φ j (t) dy t = α j + 1 n n 0 φ j (t) dw t ,
where α j = 1 0 φ j (t)S(t) dt. Therefore the vector α = ( α j ) j∈m has a normal distribution N (α, n -1 I d ), where α = (α j ) j∈m and I d is the unit matrix of order d. This enables one to find the explicit expression for the first term in the right-hand side of (23). Indeed,

J = E S (Ψ m , S m -S m ) = E S j∈m v j ( α) ( α j -α j ) = E S (v( α) , α -α) = R d (v(u) , u -α) g( u -α 2 ) du , where g(a) = n 2π d/2 e -na/2 . ( 25 
)
Making the spherical changes of the variables yields

J = ∞ 0 S r,d (v(u) , u -α) ν r,d (du) g(r 2 ) dr = ∞ 0 S r,d (v(u) , e(u)) ν r,d (du) r g(r 2 ) dr , where S r,d = {u ∈ R d : u -α = r}, ν r,d (•)
is the superficial measure on the sphere S r,d and e(u) = (uα)/ uα is a normal vector to this sphere. By applying the Ostrogradsky-Stokes divergence theorem we obtain that

J = ∞ 0 B r,d div v(u) du r g(r 2 ) dr with B r,d = {u ∈ R d : u -α ≤ r}.
By the Fubini theorem and the definition of g in (25) one gets

J = 1 2 R d ∞ u-α 2 g(a) da div v(u) du = 1 n R d g( u -α 2 ) div v(u) du = 1 n E S div v( α) .
This leads to the assertion of Lemma 1.

In particular for d m > 2, if one takes

v(u) = - (d m -2)u n u 2 , then L(u) = - (d m -2) 2 n 2 u 2 ,
and hence, ∆ m (S) < 0, that is, the estimate (20) outperforms the least squares esimate [START_REF] Gill | Applications of the van Trees inequality: a Bayesian Cramér-Rao bound[END_REF] 

E S S * m * -S 2 ≤ inf m∈M u * m (S) + 2τ 0 n , (26) 
where τ 0 is given in [START_REF] Nemirovskii | Topics in non-parametric statistics[END_REF],

u * m (S) = 3 E S S * m -S 2 + 32 z * d m l m n .
4 Asymptotic estimation

The risk upper bound

In this section we consider the asymptotic estimation problem for the model [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]. To this end, we additionally assume that all functions in the orthonormal system (φ j ) j≥1 are 1-periodic and the unknown function S(•) in the model (1) belongs to the following functional class

Θ β,r = {S ∈ C(R) ∩ X : max n≥1 n 2β ς n (S) ≤ r 2 } . (27) 
Here C(R) denotes the set of all continuous R → R functions and

ς n (S) = ∞ j=n s 2 j , (28) 
where (s j ) j≥1 are the Fourier coefficients for the basis (φ j ) j≥1 , i.e.

s j = (S, φ j ) = 1 0 S(t) φ j (t) dt ;
β > 0 and r > 0 are unknown constants.

Similarly to [START_REF] Galtchouk | Asymptotically efficient estimates for nonparametric regression models[END_REF] we define now the risk for an estimator S n (a measurable function of the observation (y t ) 0≤t≤n in ( 6)) as follows

R n ( S n , β) = sup S∈Θ β,r sup Q∈P κ E S,Q ω n ( S n -S) 2 , ( 29 
)
where

ω n = ω n (β) = n β 2β+1
. Here P κ is some class of distributions Q (in the space C[0, +∞)) of the noise process (ξ t ) t≥0 satisfying conditions C 1 ) and C 2 ) with λ * = λ * (Q) ≤ κ < ∞ for some known fixed parameter κ. In addition, this class is assumed to include the Wiener distribution Q 0 . The second index in E S,Q denotes that the expectation is taken with respect to the distribution of the process (1) corresponding to the noise distribution Q.

Note that for the model ( 1)-( 2) P κ is the class of distributions of the processes (2) with θ ≤ 0. In this case κ = 2. For the model ( 1)-( 3)

P κ = Q δ ∪ {Q 0 } ,
where Q δ is the family of distributions of the processes (3) of order q ≥ 2 with the parameters belonging to the set (7) for some 0 < δ < 1. In this case κ = max(2, λ * (δ)), where λ * (δ)) is given in [START_REF] Galtchouk | Asymptotically efficient estimates for nonparametric regression models[END_REF].

We will apply the ordered variable model selection procedure (see, Barron et al. (1999), p. 315), for which M = {m 1 , . . . , m n } with m i = {1, . . . , i}, therefore

d m i = i. Then D m = {x ∈ X n : x = i j=1 α j φ j , α j ∈ R} .
For the ordered variable model selection procedure one can take l m = 1 for all m ≥ 1 and find

l * = n i=1 e -d m i ≤ 1 e -1 .
In the sequel we denote by S κ m the LSE model selection procedure [START_REF] Gill | Applications of the van Trees inequality: a Bayesian Cramér-Rao bound[END_REF], (15) replacing λ * by κ. Now we will show that the risk (29) for this procedure is finite.

Theorem 3. The estimator S κ m satisfies the following asymptotic inequality

lim sup n→∞ sup β>0 R n ( S κ m , β) < ∞ . (30) 
Proof. Taking into account (17) one gets, for any

Q ∈ P κ , E S,Q S κ m -S 2 ≤ inf m∈Mn 3 S m -S 2 + τ 1 κ d m n + κτ 0 n ≤ inf 1≤i≤n 3 S m i -S 2 + τ 1 κ i n + κτ 0 n .
Further, for any function S from Θ β,r , one has

S m i -S 2 = ∞ j=i+1 s 2 j ≤ r 2 i -2β . Therefore for each 1 ≤ i ≤ n sup Q∈P κ E S,Q S κ m -S 2 ≤ 3 r 2 i -2β + τ 1 κ i n + τ 0 κ n . Substituting i = i n = [n 1 2β+1
] + 1 leads to (30).

The risk lower bound

Now we study the lower bound for the risk (29). We assume that the orthogonal system (φ j ) j≥1 in ( 27) is trigonometric, i.e.

φ 1 (x) ≡ 1 , and for j ≥ 2 φ j (x) = √ 2 Tr j (2π[j/2]x) , (31) 
where Tr j (x) = cos x for even j ≥ 1 and Tr j (x) = sin x for odd j ≥ 1; [a] is the integer part of a.

Theorem 4. The lower bound of the risk (29) over all estimates is strictly positive, i.e. for any β ≥ 1

lim n→∞ inf Sn R n ( S n , β) > 0 . ( 32 
)
Proof. In order to show (32) it suffices to check this inequality for the model (19), i.e. that for any β ≥ 1

lim n→∞ inf Sn sup S∈Θ β,r E S,Q 0 ω n ( S n -S) 2 > 0 . (33) 
To this end we apply the method proposed in Fourdrinier and Pergamenshchikov (2007) to our case. First, we construct an auxiliary parametric class of functions in the set Θ β,r . Let

β = k + α with k = [β] and 0 ≤ α < 1. Let V (•) be k + 1 times continuously differentiable function such that V (u) = 0
for |u| ≥ 1 and

1 -1 V 2 (u) du = 1. Let m = [n 1 2β+1
] and Γ δ be a cube in R m of the form

Γ δ = {z = (z 1 , . . . , z m ) ′ ∈ R m : |z i | ≤ δ , 1 ≤ j ≤ m} ,
where δ = ν/ω n , ν > 0. Now, viewing the function V (•) as a kernel, one introduces a parametric class of 1-periodic functions (S z ) z∈Γ δ where

S z (t) = m j=1 z j ψ j (t) , 0 ≤ t ≤ 1;
(34) (ψ j (t)) 1≤j≤m are 1-periodic functions defined on the interval [0, 1] as

ψ j (t) = V t-a j h
with h = 1/2m and a j = (2j -1)/2m. It will be observed that, for 0

≤ i ≤ k -1 and z ∈ Γ δ , sup 0≤t≤1 |S (i) z (t)| ≤ 2 i sup |a|≤1 |V (i) (a)| ν n (β-i)/(2β+1) → 0 as n → ∞ .
In order to check the second condition in (62), we estimate the increment of kth derivative of S z (•). For any 0 ≤ s , t ≤ 1 and z ∈ Γ δ , one has

|S (k) z (t) -S (k) z (s)| ≤ ν ω n h k ∆ m , (35) 
where

∆ m = m j=1 V (k) t -a j h -V (k) s -a j h .
If s and t belong to the same interval, that is,

a j 0 -h ≤ s ≤ t ≤ a j 0 + h, then putting V * = sup |a|≤1 |V (k+1) (a)| one obtains ∆ m = V (k) t -a j 0 h -V (k) s -a j 0 h ≤ 2 V * |t -s| 2h ≤ 2 1-α V * |t -s| α h α (36) 
for each 0 ≤ α ≤ 1. If s and t belong to different intervals, that is,

a j 0 -h ≤ s ≤ a j 0 + h ≤ a j 1 -h ≤ t ≤ a j 1 + h , j 0 < j 1 ,
then setting s * = a j 0 + h and t * = a j 1h, similarly to (36), one gets

∆ m = V (k) t -a j 1 h -V (k) t * -a j 1 h + V (k) s -a j 0 h -V (k) s * -a j 0 h ≤ 2 1-α V * 1 h α (|t -t * | α + |s -s * | α ) ≤ 2 2-α 1 h α V * |t -s| α .
From here and (35)-(36) we come to the estimate

|S (k) z (t) -S (k) z (s)| ≤ 2 2+k ν V * m β ω n |t -s| α .
Therefore (see Lemma 5 in Appendix 6.4) there exist ν > 0 and n 0 ≥ 1 such that S z ∈ Θ β,r for all z ∈ Γ δ and n ≥ n 0 . Further, we introduce the prior distribution on Γ δ with the density

π(z) = π(z 1 , . . . , z m ) = m l=1 π l (z l ) , π l (u) = 1 δ G u δ .
The function

G(u) = G * e -1 1-u 2 for |u| ≤ 1 and G(u) = 0 for |u| ≥ 1, where G * is a positive constant such that 1 -1 G(u) du = 1.
Let S n (•) be an estimate of S(•) based on observations (y t ) 0≤t≤n in (1). Then for any n ≥ n 0 we can estimate with below the supremum in (33) as sup

S∈Θ β,r E S,Q 0 S n -S 2 > Γ δ E S z ,Q 0 S n -S z 2 π(z) dz .
Moreover, by the definition of S z , we obtain

S n -S z 2 ≥ m l=1 ( z l -z l ) 2 1 0 ψ 2 l (t) dt = h m l=1 ( z l -z l ) 2 ,
where

z l = 1 0 S n (x) ψ l (x) dx/ ψ l 2 . Therefore, sup S∈Θ β,r E S,Q 0 S n -S 2 ≥ h m l=1 Λ l , (37) 
where Λ l = Γ δ E S z ( z lz l ) 2 π(z)dz. To apply now lemma 6 we note that in this case

ζ l (z) = n 0 ψ l (t) dy t - n 0 S z (t) ψ l (t)dt
and, therefore,

A l = E S z ,Q 0 ζ 2 l (z) = n 0 ψ 2 l (t) dt = nh. Moreover, in this case B l = δ -δ ( πl (u)) 2 π l (u) du = δ -2 I G ; I G = 8 1 0 u 2 (1 -u 2 ) -4 G(u) du .
Thus, by the inequality (66), one obtains that sup

S∈Θ β,r E S,Q 0 S n -S 2 ≥ 1 2m m l=1 1 nh + ω 2 n ν -2 I G = 1 2nh + 2ω 2 n ν -2 I G .
This immediately implies (33). Hence Theorem 4.

5 Estimation based on discrete data.

The model selection procedure developed in Section 2 is intended for continuous time observations. However, in a number of applied problems high frequency sampling can not be provided. In this section, we consider the estimation problem for model (1) on the basis of observations (y t j ) 0≤j≤np of the process (y t ) t≥0 at discrete times t j = j/p, where p is a given odd number. To solve this problem, we will modify the model selection procedure of Section 2. Let X p be the set of all 1-periodic functions x : R → R with the scalar product

(x, z) p = 1 p p j=1 x(t j ) z(t j ) , x, z ∈ X p . (38) 
Let (φ j ) 1≤j≤p be an orthonormal basis in X p , i.e. (φ i , φ j ) p = 0, if i = j and φ i 2 p = 1. One can use, for example, the trigonometric basis (31). Assume that the noise (ξ t ) t≥0 in (1) is such that

C * 1 ) The vector ζ * (n) = (ζ * 1 (n), . . . , ζ * p (n)) ′ with components ζ * l (n) = 1 √ n n j=1 φ l (t j ) ∆ξ t j , ∆ξ t j = ξ t j -ξ t j-1 , (39) 
is gaussian with non-degenerate covariance matrix

B * n,p = E ζ * (n)(ζ * (n)) ′ ; C * 2 )
The maximal eigenvalues of matrices B * n,p are uniformly bounded :

sup n≥1 sup p≥1 λ max (B * n,p ) ≤ λ * ,
where λ * is some known positive constant. Conditions C * 1 ), C * 2 ) are satisfied for processes (2), (3) (cf. Lemmas 2-50). Now we denote by M p some set of subsets of {1, . . . , p} and by (D m,p ) m∈M p a family of linear subspaces of X p such that

D m,p = {x ∈ X p : x = j∈m λ j φ j , λ j ∈ R} .
Let S m,p denote the projection of S on D m,p in X p and S m,p denote an estimator of S m,p , i.e. a measurable function of the observations (y t j ) 0≤j≤np taking on values in D m,p . One can use, for example, the LSE S m,p for S m,p , which is defined as the minimizer with respect to x ∈ D m,p of the distance

1 np np k=1 ∆y t k ∆t k -x(t k ) 2
that is , the quantity

γ n,p (x) = x 2 p -2 1 n np k=1 x(t k ) ∆y t k (40) 
and has the form

S m,p = j∈m α j,p φ j , α j,p = 1 n np k=1 φ j (t k ) ∆y t k . (41) 
Let the penalty term P n (m) be defined, as before, by [START_REF] Kabanov | Two-Scale Stochastic Systems[END_REF]. Then the model selection procedure, corresponding to a family of projective estimators ( S m,p ) m∈M p , is defined as S m p ,p where

m p = argmin m∈M p {γ n,p ( S m,p ) + P n (m)} . ( 42 
)
In the case of the LSE family ( S m,p ) m∈M p , it will be S m p ,p . As a measure of accuracy of the approximation of a 1-periodic function S of continuous argument t by its values on the (t j ) 1≤j≤p , we will use the function

H p (S) = 1 p p l=1 h 2 l (S) , h l (S) = 1 ∆t l t l t l-1 (S(t) -S(t l )) dt . ( 43 
)
The following theorem gives the oracle inequality for a general model selection procedure S m p ,p based on the discrete time observations. Theorem 5. Assume that the conditions C * 1 )-C * 2 ) hold. Then the estimator S m p ,p satisfies the oracle inequality

E S S m p ,p -S 2 p ≤ inf m∈M p a m,p (S) + 8H p (S) + 2τ 0 λ * n , (44) 
where

a m,p (S) = 7E S S m,p -S 2 p + 32λ * z * l m d m n .
Now we obtain the oracle inequality (44) for the least square model selection procedure S m p ,p . To this end, we have to calculate the estimation accuracy of S m,p for S m,p , which is the projection of S on D m,p , i.e.

S m,p = j∈m α j,p φ j , α j,p = (S, φ j ) p = 1 p p k=1 S(t k ) φ j (t k ) .
First of all, we note that in this case

α j,p -α j,p = 1 p p k=1 φ j (t k ) h k (S) + 1 n n 0 φ j,p (t) dξ t ,
where φ j,p = np k=1 φ j (t k ) 1 (t k-1 ,t k ] (t). In view of the condition C * 2 ), this implies that

E S ( α j,p -α j,p ) 2 = 1 p 2 p k=1 φ j (t k ) h k (S) 2 + 1 n 2 E S n 0 φ j,p (t) dξ t 2 ≤ H p (S) + λ * n .
Corollary 3. Under the conditions C * 1 )-C * 2 ) the LSE procedure S m p ,p satisfies the inequality

E S S m p ,p -S 2 p ≤ inf m∈M p b m,p (S) + 8H p (S) + 2τ 0 λ * n , ( 45 
)
where b m,p (S) = 7 S m,p -S 2 p + 7d m H p (S) + λ * (7 + 32z * l m ) d m n .
Now we consider the estimation problem for the model ( 1)-( 2) on the basis of discrete data in the asymptotic setting. First, for any β ≥ 1, we set

R n,p ( S n , β) = sup S∈Θ β,r sup Q∈P κ E S,Q ω n ( S n -S) 2 p , (46) 
where the set Θ β,r is defined by ( 27) with the use of the trigonometric basis (31),

ω n = ω n (β) = n β 2β+1
and the set P κ is defined in (29). As in Section 4, in order to minimize this risk, we apply the least square model selection procedure S m p ,p , constructed on the basis of the trigonometric system (31) with the ordered selection, that is, M p = {m 1 , . . . , m p } with m j = {1, . . . , j}. In this case d m j = j and l m j = 1 for 1 ≤ j ≤ p.

It is shown in Appendix 6.7, that if p ≥ n 1/2 , then for any ε > 0

lim n→∞ sup β≥1+ε R n,p ( S m p ,p , β) < ∞ (47)
and if p ≥ n 1/2 , then for any β ≥ 1

lim n→∞ inf Sn R n,p ( S n , β) > 0 . ( 48 
)
It means that the adaptive estimator S m p ,p with the p ≥ n 1/2 ( in particular, one can take p = 2[n 1/2 ] + 1 ) is optimal in the sense of the risk (46).

Appendix

Properties of processes (2)-(3)

We start with the result for process (2) which shows that both conditions C 1 )-C 2 ) and C * 1 )-C * 2 ) are satisfied. Lemma 2. Let (ξ t ) be defined by (2) with θ ≤ 0, f = (f j ) j≥1 be a family of linearly independent cadlag 1-periodic functions on R,

I t (f ) = t 0 f (u)dξ u . Then the matrix V k,n (f ) = (v i,j (f )) 1≤i,j≤k (49) 
with elements v i,j (f ) = E I n (f i )I n (f j ) is positive definite for each k ≥ 1, n ≥ 1 and θ ≤ 0. Moreover, if (f j ) j≥1 is orthonormal, then for any θ ≤ 0 sup k≥1 sup n≥1 sup |z|=1 1 n z ′ V k,n (f )z ≤ 2 . (50) 
Proof. Assume that for some n ≥ 1, k ≥ 1 and z

= (z 1 , . . . , z k ) ′ ∈ R k z ′ V k,n (f )z = 0. Since z ′ V k,n (f )z = E I 2 n (g)
, where g(t) = k j=1 z j f j (t), one gets I n (g) = t 0 g(t)dξ t = 0 a.s. Taking into account that the distribution of I n (g) for model ( 2) is equivalent to that of the random variable n 0 g(t)dw t this implies that g(t) = 0 for all t ∈ [0, n]. Thus z 1 = . . . = z k = 0 and to we come the first assertion. Let us check (50). By applying Ito's formula one obtains

E I 2 n (g) = 2θ n 0 g(t) EI t (g) ξ t dt + n 0 g 2 (t)dt ,
where

EI t (g) ξ t = 1 2 t 0 g(u)e θ(t-u) du .
Therefore,

EI 2 n (g) = θ n 0 e θv n v g(t)g(t -v)dt dv + n 0 g 2 (t)dt . (51) 
From here, it follows that for any θ ≤ 0

z ′ V k,n (f )z ≤ n 0 g 2 (t)dt 1 + θ ∞ 0 e θv dv ≤ 2n 1 0 g 2 (t)dt = 2n k j=1 z 2 j = 2n .
This completes the proof of Lemma 2.

Lemma 3. Let (ξ t ) be defined by (3) with θ ∈ A, f = (f j ) j≥1 be a family of linearly independent cadlag 1-periodic functions on R. Then the matrix (49)

is positive definite for each k ≥ 1, n ≥ 1 and θ ∈ A. Moreover, if (f j ) 1≤j≤k is orthonormal, then for any 0 < δ < 1 and θ ∈ K δ sup k≥1 sup n≥1 sup |z|=1 1 n z ′ V k,n (f )z ≤ λ * (δ) , (52) 
where λ * (δ) is defined in [START_REF] Galtchouk | Asymptotically efficient estimates for nonparametric regression models[END_REF].

Proof. Let η t be process (3) with zero initial values, i.e. dη (q-1)

t =   q j=1 θ j η (q-j) t   dt + dw t
and η 0 = . . . = η (q-1) 0 = 0. Then ξ t can be written as

ξ t =< e At Y > q +η t , (53) 
where < X > i denotes the ith component of a vector X; A is the matrix defined in [START_REF] Efroimovich | Nonparametric curve estimation. Methods, theory and applications[END_REF] and Y is a gaussian vector in R q independent of (η t ) t≥0 with zero mean and covariance matrix

F = ∞ 0 e Au D q e A ′ u du , (54) 
where D q is q × q matrix in which all elements exept of the (1, 1) element are equal to zero ant the (1, 1) element is equal to 1. In view of (53), one has

I n (g) = ζ + n 0 g(t)dη t , (55) 
where ζ =< n 0 g(t)Ae At dtY > q . Integration by parts yields

n 0 g(t)dη t = n 0 G q-1 (t)dη (q-1) t ,
where G 0 (t) = g(t) and G j (t) = n t G j-1 (u)du for 1 ≤ j ≤ q -1. Now assume that for some n ≥ 1, k ≥ 1 and z

= (z 1 , . . . , z k ) ′ ∈ R k z ′ V k,n (f )z = 0. Since z ′ V k,n (f )z = E I 2 n (g) = E ζ 2 + E n 0 g(t)dη t 2 , this implies that E n 0 g(t)dη t 2 = E n 0 G q-1 (t)dη (q-1) t 2 = 0 .
Taking into account that the distribution of the process (η

(q-1) t ) 0≤t≤n in C[0, n] is equivalent to Wiener measure we have n 0 G q-1 (t)dw t = 0 a.s.
and therefore G q-1 (t) = 0 for all 0 ≤ t ≤ n and hence g(•) = 0 and we obtain z 1 = . . . = z k = 0. This leads to the first assertion.

Let us show (52). By direct calculations we find

E I 2 n (g) = 2 n 0 < Ae Au F A ′ > q,q
n-u 0 g(u + s) g(s)ds du .

where < A > i,j denotes the (i, j)-th element of matrix A. By applying the Bunyakovskii-Caushy-Schwartz inequality one gets

EI 2 n (g) ≤ 2 n 0 g 2 (s)ds n 0 | < Ae Au F A ′ > q,q |du . Since n 0 g 2 (s)ds = n 1 0 g 2 (s)ds = n k j=1 z 2 j 1 0 f 2 j (s)ds = n ,
we obtain the estimate

1 n z ′ V k,n (f )z ≤ 2 ∞ 0 | < Ae Au F A ′ > q,q |du ≤ 2|A| 2 |F |J(A) ,
where

J(A) = ∞ 0 |e Au |du.
In order to come to (52) it remains to use the following inequality for matrix exponents of order q ≥ 2 (see, for example, in [START_REF] Kabanov | Two-Scale Stochastic Systems[END_REF] on p. 228)

|e tB | ≤ e tΛ   1 + 2|B| q-1 j=1 1 j! (2t|B|) j   ,
where Λ = max 1≤j≤q Re λ j , λ j are eigenvalues of the matrix B. Indeed, from (54) for any A ∈ K δ we find that

|F | ≤ F * (δ) and J(A) ≤ J * (δ) ,
where the functions F * (δ) and J * (δ) are defined in [START_REF] Galtchouk | Asymptotically efficient estimates for nonparametric regression models[END_REF]. Hence Lemma 3. Let α and ξ be two positive random variables. Let β be a positive real number and {Γ x , x ≥ 0} be a family of events such that, for any x,

Mean forecast inequality

P(ξ > α + βx , Γ x ) = 0.
Moreover, let functions φ i 1 , . . . , φ i N be the subset of (φ j ) j≥1 which is a basis in D ι + D m . It should be noted that N ≤ d ι + d m . Then one can write a normalized vector z = z/ z for z = 0 as

z = N j=1 a j φ i j with N j=1 a 2 j = 1 . Therefore U x,ι (z, µ) = 2 n -1/2 z z 2 + ̺ 2 n,ι (x, µ) N j=1 a j ζ i j with ζ j = 1 √ n n 0 φ j dξ t .
By applying the Bunyakovskii-Cauchy-Schvartz inequality one gets

|U x,ι (z, µ)| ≤ 1 √ n ̺ n,ι (x, µ) η ι , (59) 
where η ι = N j=1 ζ 2 i j . Now note that by the condition C 1 ) the vector (ζ i 1 , . . . , ζ i N ) is gaussian with zero mean and a non-generate covariance matrix B ι . Therefore

E e µ N j=1 ζ 2 i j = 1 (2π) N/2 det B ι R N e -1 2 x ′ T -1 ι x dx ,
where T ι = (B -1 ι -2µI N ) -1 and I N is the identity matrix of order N . One can easily verify that

E e µ N j=1 ζ 2 i j = det T ι det B ι = 1 det(I N -2µ B ι ) .
Thus, in view of the inequality

det(I N -2µB ι ) ≥ (1 -2µ λ max (B ι )) N
and the condition C 2 ), we obtain

E e µ N j=1 ζ 2 i j ≤ (1 -2µλ * ) -N/2 = e c(µ)N ,
where c(µ) is defined in (58). Now, by the Chebyshev inequality, for any b > 0 and 0 < µ < 1/2λ * , we obtain that

P( η ι > b ) ≤ e c(µ)N -µb 2 . ( 60 
)
Choosing in this inequality

b = b * (x, ι) = 1 4 √ n ̺ n,ι (x, µ) = c(µ) N + d ι l ι + x µ yields P(η ι > b * (x, ι)) ≤ e -x-d ι l ι . Now let Γ x = {sup ι∈M η ι /b * (x, ι) ≤ 1}.
It is easy to see that

P(Γ c (x)) ≤ ι∈M P(η ι > b * (x, ι)) ≤ ι∈M e -x-d ι l ι = l * e -x .
Thus, we obtain the following upper bound on the set Γ x sup ι∈M sup

z∈D ι +D m |U x,ι (z, µ)| ≤ 1/4 , which implies 2 F n ( z) = U x, m ( z, µ)( z 2 + ̺ 2 n, m (x)) ≤ 1 2 S m -S 2 + 1 2 S m -S 2 + 4 nµ (c(µ)d m l m + (c(µ) + 1) d m l m ) + 4 nµ x .
By making use of this inequality in (57) we obtain, on the set Γ x , that

S m -S 2 ≤ 1 2 S m -S 2 + 3 2 S m -S 2 + ̟ n (m, m) + 4 nµ (c(µ)d m l m + (c(µ) + 1) d m l m ) + 4 nµ x = 1 2 S m -S 2 + 3 2 S m -S 2 + Ω(ρ, µ) + 4 nµ x , i.e. S m -S 2 ≤ 3 S m -S 2 + 2Ω(ρ, µ) + 8 nµ x ,
where

Ω(ρ, µ) = ρ + 4c(µ) µ d m l m n + 4c(µ) + 4 µ -ρ d m l m n .
It is clear that to obtain a nonrandom minimal upper bound for this term we have to resolve the following optimazation problem

ρ + 4c(µ) µ → min subject to 4c(µ) + 4 µ -ρ ≤ 0 . (61) 
One can check directly that the solution of this problem is µ = (z * -1)/2λ * z * and the optimal value for ρ is given in [START_REF] Kabanov | Two-Scale Stochastic Systems[END_REF]. Thus, by choosing these parameters we have on the set Γ

x S m -S 2 ≤ 3 S m -S 2 + 16λ * z * l m d m n + 16z * λ * n(z * -1)
x .

Applying now Lemma 4 with ξ

= S m -S 2 , α = 3 S m -S 2 + 16λ * z * l m d m /n , β = 16z * λ * n(z * -1)
and M (x) = l * e -x we obtain the inequality [START_REF] Nemirovskii | Topics in non-parametric statistics[END_REF]. Hence Theorem 1.

Some properties of the Fourier coefficients

Lemma 5. Let S be a function in C k [0, 1] such that S (j) (0) = S (j) (1) for all 0 ≤ j ≤ k and, such that, for some contants L 0 > 0, L > 0 and 0

≤ α < 1 max 0≤j≤k-1 max 0≤x≤1 |S (j) (x)| ≤ L 0 and |S (k) (x) -S (k) (y)| ≤ L |x -y| α (62)
for all x , y ∈ [0, 1]. Then the Fourier coefficients (a k ) k≥0 and (b k ) k≥1 of the function S, defined as

S(x) = a 0 2 + ∞ k=1 (a k cos(2π kx) + b k sin(2π kx)) ,
satisfy the following inequality

sup n≥0 (n + 1) β   ∞ j=n (a 2 j + b 2 j )   1/2 ≤ c * (L + L 0 ) , (63) 
where β = k + α (k being an integer and 0 ≤ α < 1) and

c * = 1 + 2 β + π 4 9 β ∞ 0 u α-3 sin 4 (π u) du 8 1/2 0 u -4 sin 4 (π u) du .
Proof of this Lemma is given in Fourdrinier and pergamenshchikov (2007) Appendix A4.

Lower bound for the parametric model

We consider in this section the following model

dy t = S(t, z)dt + dw t , (64) 
where (w t ) t≥0 is a standard brownian motion; z ∈ R m is unknown vector parameter. Let now π be a prior distribution density on R m of the form

π(x) = m l=1 π l (x l ) ,
where π l is a positive density on the interval [-δ l , δ l ] for some δ l > 0. This means that the density π has the following support

Γ = [-δ 1 , δ 1 ] × . . . × [-δ m , δ m ] . We set ζ l (z) = n 0 ∂ ∂z l S(t, z)(dy t -S(t, z)dt) . (65) 
Now we give some version of the van Trees inequality [START_REF] Gill | Applications of the van Trees inequality: a Bayesian Cramér-Rao bound[END_REF] for process (64).

Lemma 6. For each l ≥ 1, any estimator z l based on observations (y t ) 0≤t≤n satisfies the following inequality

Γ E S z ( z l -z l ) 2 π(dz) ≥ 1 A l + B l , (66) 
where E S z denotes the expectation with respect to the distribution of process (64),

A l = Γ E S z ζ 2 l (z) π(z)dz and B l = δ l -δ l ( πl (u)) 2 π l (u) du .
Proof. It will be noted that the density of the distribution of process (64) with respect to the Wiener measure µ w on Y = C[0, n] is defined as

f (y, z) = e n 0 Sz(t) dyt -1 2 n 0 S 2 z (t) dt .
Therefore, by applying the method from Gill and Levit (1995) we obtain the lower bound (66). Hence Lemma 6.

Proof of Theorem 5

To prove this theorem we adapt the proof of Theorem By minimzing the last term with respect to ν (i.e. maximazing ν(1 -4ν)) we find that ν = 1/8. Thus the last inequality implies the upper bound (44). Hence, Theorem 5.

Proof of (47)

Consider first the principal term in (45). Let (s j ) j≥1 be the Fourier coefficients for S in L 2 [0, 1] used in Θ β,r . By setting ∆ j (t) = S -j i=1 s i φ i (t) , one can estimate S m j ,p -S 2 p as S m j ,p -S 2 p = inf Notice now that for the trigonometric basis (31) and for the functions S from Θ β,r with β > 1 we obtain that for any j ≥ 0 ] + 1 implies immediately inequality (47).

∆j 2 = ∞ i=j+1 s 2 i φi 2 ≤ π 2 ∞ i=j+1 s 2 i i 2 ≤ π 2 (j + 1

Proof of (48)

Notice now that for any estimator S n by putting T p ( S n )(t) = p j=1 S n (t j )1 (t j-1 ,t j ] we can represent the accuracy of this estimator as 

S
T n R n (T n , β) -(ǫ -1 -1) rπ 2 n -1 2β+1 ,
where the risk R n (T n , β) is defined by (29) for some estimator T n . Now Theorem 4 directly implies (48).

  where z * is the maximal root of the equation ln z = z -2 which is approximately equal to z * ≈ 3, 1462.Minimizing the penalized empirical contrast γ n ( S m )+P n (m) with respect to m ∈ M one finds m = argmin m∈M {γ n ( S m ) + P n (m)} (14)and obtains the model selection procedure S m corresponding to a specific class of projective estimators ( S m ) m∈M . For the LSE family ( S m ) m∈M , this yields S m with m = argmin m∈M {γ n ( S m ) + P n (m)} .

Lemma 4 .

 4 [START_REF] Galtchouk | Efficient adaptive nonparametric estimation in heteroscedastic regression model[END_REF] 

a 1 ,a j φ i 2 p ≤ ∆ j 2 p. 1 (

 1221 By the definition of ς j (S) in (28) we obtain that ∆ ∆ j (t k ) -∆ j (t))

) 2 ς 1 ..

 21 j+1 (S) + 2π 2 i>j (i + 1) ς i+1 (S) ≤ r 2 π 2 (j + 1) -2(β-1) β βinto account that H p (S) ≤ p -2 Ṡ 2 , through (69) with j = 0 we get that for p ≥ n 1/2 sup S∈Θ β,r H p (S) ≤ βπ 2 r 2 p 2 (β -1) ≤ βπ 2 r 2 n(β -1) .Thus (45) implies that for any ε > 0 there exists some constant C * = C * (r, ǫ) > 0 such that for any β ≥ 1 + ǫ, p ≥ n 1/2 and for 1≤ j ≤ p R n,p ( S m p ,p , β) ≤ C * jThis bound with j = j * = [n 1 2β+1

  in the approximation of S m . This allows to improve the model selection procedure by making use of the estimates (20) instead of the least squares { S m }. As a direct consequence of Theorem 1, one obtains the following result for the improved model selection procedure S * m * .

	Theorem 2. For the model (19) the improvement model selection procedure
	S * m

* defined by

[START_REF] Konev | Sequential estimation of the parameters in a trigonometric regression model with the gaussian coloured noise[END_REF] 

with S m = S * m and λ * = 2 satisfies the inequality

  1 for this case. In this case equality (56) becomesz -S 2 p = γ n,p (z) + 2 F n,p (z) + 2 G p (z, S) + S 2 ) h k (S) ,where the sequence h k (S) is defined in (44). Similarly to the proof of Theorem 1, one can show thatE S S m p ,p -S 2 p ≤ 3E S S m,p -S 2 p + 16λ * z * d m l m n + 4E S |G p ( z p , S)| + λ * τ 0 n ,(67)where z p = S m p ,p -S m,p . Now we note that for any ν > 02G p ( z, S) ≤ ν z 2 p + ν -1 H p (S) ≤ 2ν S m p ,p -S 2 p + 2ν S m,p -S 2 p + ν -1 H p (S) .Therefore, taking into account the last inequality in (67), we obtain the following upper bound E S S m p ,p -S 2 p ≤

					p ,
	with				
	F n,p (z) =	1 n	np k=1	z(t k ) ∆ξ t k , G p (z, S) = z(t k 3 + 4ν p 1 p k=1 1 -4ν S m,p -S 2 16λ * z * p + 1 -4ν + λ * τ 0 (1 -4ν)n + 2 ν(1 -4ν) H	d m l m n

p (S) .

  n -S 2 p = (T p ( S n )(t) -S(t k )) 2 dt .Therefore, for any 0 < ǫ < 1 we can estimate with below this accuracy asS n -S 2 p ≥ (1ǫ) T p ( S n ) -S 2 -(ǫ -1 -1)

		p	t j
		j=1	t j-1
			p	t j
			j=1	t j-1
	Moreover, similarly to (68)-(70) we obtain that
	p	t j
	j=1	t j-1

(S(t) -S(t j )) 2 dt .

(S(t) -S(t j )) 2 dt ≤ p -2 Ṡ 2 ≤ rπ 2 n -1 . Therefore R n,p ( S n , β) ≥ (1ǫ) inf

Assume also that there exists some positive integrable on R + function M (x) dominating P(Γ c

x ). Then

Proof. We set η = (ξα) + . Thus Eξ ≤ Eα + Eη. Moreover,

Proof of Theorem 1

By making use of ( 1) and ( 10) we obtain

where

Further, from the definition ( 14), it follows that for each m ∈ M γ n ( S m ) ≤ γ n ( S m ) + P n (m) -P n ( m) .

where z = S m -S m and ̟ n (m, m) = P n (m) -P n ( m). Now for each x > 0, 0 < µ < 1/2λ * and set ι ∈ M we introduce the following gaussian function on

where

and N = dim(D ι + D m ).