

Characterization of Dutch Staphylococcus aureus from bovine mastitis using a Multiple Locus Variable Number Tandem Repeat Analysis

Risma Ikawaty, E.C. Brouwer, M.D. Jansen, E. van Duijkeren, D. Mevius, J.

Verhoef, A.C. Fluit

▶ To cite this version:

Risma Ikawaty, E.C. Brouwer, M.D. Jansen, E. van Duijkeren, D. Mevius, et al.. Characterization of Dutch Staphylococcus aureus from bovine mastitis using a Multiple Locus Variable Number Tandem Repeat Analysis. Veterinary Microbiology, 2009, 136 (3-4), pp.277. 10.1016/j.vetmic.2008.10.034 . hal-00532530

HAL Id: hal-00532530 https://hal.science/hal-00532530

Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Characterization of Dutch Staphylococcus aureus from bovine mastitis using a Multiple Locus Variable Number Tandem Repeat Analysis

Authors: Risma Ikawaty, E.C. Brouwer, M.D. Jansen, E. van Duijkeren, D. Mevius, J. Verhoef, A.C. Fluit

PII:	S0378-1135(08)00507-5
DOI:	doi:10.1016/j.vetmic.2008.10.034
Reference:	VETMIC 4260
To appear in:	VETMIC
Received date:	15-7-2008
Revised date:	24-10-2008
Accepted date:	29-10-2008

Please cite this article as: Ikawaty, R., Brouwer, E.C., Jansen, M.D., van Duijkeren, E., Mevius, D., Verhoef, J., Fluit, A.C., Characterization of Dutch Staphylococcus aureus from bovine mastitis using a Multiple Locus Variable Number Tandem Repeat Analysis, *Veterinary Microbiology* (2008), doi:10.1016/j.vetmic.2008.10.034

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Characterization of Dutch *Staphylococcus aureus* from bovine mastitis using a Multiple Locus Variable Number Tandem Repeat Analysis

Risma Ikawaty¹, E.C. Brouwer¹, M.D. Jansen¹, E. van Duijkeren², D. Mevius^{2,3},

J. Verhoef¹, A.C. Fluit¹

¹Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, The Netherlands

²Faculty of Veterinary Medicine Utrecht University, Utrecht, The Netherlands

³Central Veterinary Institute, Lelystad, The Netherlands

Running title: Typing of Dutch Staphylococcus aureus from bovine mastitis

Keywords: Staphylococcus aureus, bovine, mastitis, MLVA, MLST, PFGE, spa-typing

Address for correspondence:

A.C. Fluit

Department of Medical Microbiology,

University Medical Centre Utrecht, Room G04.614,

PO Box 85500

3584 CX Utrecht, The Netherlands.

Email: <u>A.C.Fluit@umcutrecht.nl</u>

1 Abstract

2 Current typing methods for *Staphylococcus aureus* have important drawbacks. We 3 evaluated a Multiple Locus Variable-number tandem repeat Analysis (MLVA) scheme 4 with 6 loci which lacks most drawbacks on 85 bovine mastitis isolates from The 5 Netherlands. For each locus the number of repeat units (RU) was calculated. Each 6 combination of repeat units was assigned a MLVA-type (MT). We compared the MLVA 7 typing result with Multi Locus Sequence Typing (MLST), spa-typing and Pulsed-Field 8 Gel Electrophoresis (PFGE). MLVA typing resulted in 18 MTs, although 3 loci could not 9 always be amplified. Spa-typing distinguished 10 spa-types including 3 dominant and 2 10 new types. PFGE showed 5 dominant profiles with 15 related profiles and 6 unique 11 profiles. MLST showed 4 dominant STs. Some types appeared to be bovine specific. The 12 Simpson's Indices of diversity for PFGE, MLST, spa-typing and MLVA were 0.887, 13 0.831, 0.69 and 0.781, respectively, indicating that discriminatory power of MLVA was 14 between MLST and *spa*-typing, whereas PFGE displayed the highest discriminatory 15 power. However, MLVA is fast and cheap when compared to the other methods. The 16 Adjusted Rand index and Wallace's coefficient indicated that MLVA was highly 17 predictive for *spa*-type, but not vice versa. 18 Analysis of the region neighboring SIRU05 showed a difference in the genetic element 19 bordering the repeats of SIRU05 that explained the negative SIRU05 PCRs. PFGE, 20 MLST, and MLVA are adequate typing methods for bovine-associated *Staphylococcus* 21 aureus 22 23

24

25 1. Introduction

26

27 Staphylococcus aureus is a major agent of contagious mastitis in diary cattle. The sources 28 of bovine mastitis cases mostly are from bovine origin, but S. aureus originating from the 29 farmer are another important source (Zadoks et al., 2002). In 2005 it was reported that 30 each year at least 25% of all milking cows in The Netherlands suffer from clinical 31 mastitis which is not only due to S. aureus (32%) as a causative agent (Lam, 2005). Many 32 different typing methods have been used. From a "gold standard" Pulsed-Field Gel 33 Electrophoresis (PFGE) to Multi Locus Sequence Typing (MLST) and S. aureus-specific 34 staphylococcal Protein A typing known as *spa*-typing (Enright, et al., 2000; Harmsen et 35 al., 2003; Struelens et al., 1992). However, not all methods can be used in all centers because some methods are still limited to well-equipped laboratories. Furthermore, both 36 37 MLST and *spa*-typing have insufficient discriminatory power to allow accurate 38 delineation of outbreaks and PFGE is a fingerprinting method which makes 39 interlaboratory comparison difficult (van Belkum et al., 1995). 40 A limited number of molecular studies have been published that explored the population 41 structure and genetic relationships of S. aureus causing bovine mastitis (de Sousa et al., 42 2007; Hata et al., 2006; Jørgensen et al., 2005; Katsuda et al, 2005; Reinoso et al., 2008). 43 The results of our recent study demonstrated that a multiple locus variable number of 44 tandem repeats (VNTR) analysis (MLVA) could be used as a fast, inexpensive, highly 45 discriminatory, reproducible, stable and portable typing method for epidemiological 46 tracing of human S. aureus. (Ikawaty et al., 2008). Therefore, we aimed to expand the use 47 of this novel MLVA scheme to S. aureus isolated from clinical cases of bovine mastitis 48 and to get insight in their genetic relationship with the human S. aureus population.

49 **2. Methods**

50

51 <i>2.1</i>	. Strain	collection
---------------	----------	------------

Eighty five *Staphylococcus aureus* isolates of clinical or subclinical cases of mastitis 52 53 were included. Thirty five isolates were obtained by the Faculty of Veterinary Medicine 54 Utrecht University, Utrecht, The Netherlands from at least 26 farms near Utrecht. Isolates 55 from farms sampled twice were taken at least one year apart. Another 50 isolates were 56 collected by the Animal Health Service in Deventer, The Netherlands for the Central 57 Veterinary Institute, Lelystad, The Netherlands from farms throughout The Netherlands. 58 The sources were individual teat milk samples from dairy cattle from all over the country 59 from clinical or subclinical cases of mastitis. Each isolate from CVI represents one farm, the location of the farms is unknown but they are distributed all over the Netherlands. All 60 isolates were methicillin-susceptible Staphylococcus aureus (MSSA) and collected 61 62 between 1988 and 2005. 63

- 64 2.2. Genomic DNA preparation
- 65

The isolates were grown on blood agar (Trypticase soy agar II containing 5%
sheep blood) overnight at 37°C prior to DNA isolation. Preparation of bacterial genomic
DNA was performed using the NucleoSpin kit (Macherey-Nagel) following the protocols
from the manufacturer with the exception that bacterial pellet is resuspended in buffer T1.
In our method, T1 buffer was replaced by freshly-made lysis buffer that contained 20mM

71	Tris/HCl, 2mM EDTA, 1% Triton X-100, and supplemented with lysostaphin,
72	achromopeptidase and RNase.
73	
74	2.3. MLVA typing
75	
76	A combination of 6 loci (SIRU01, 05, 07, 13, 15 and 21 (spa)) from a previous study by
77	Hardy et. al. were used for MLVA typing (Hardy et al., 2006). Amplification of SIRUs
78	(Staphylococcal Interspersed Repeat Units) was performed as described before (Ikawaty
79	et al., 2008).
80	
81	2.4. Assignment of MLVA type (MT)
82	
83	The number of repeats for each locus was determined by subtracting the size of the
84	flanking regions from the size of the amplicon followed by division by size of the repeat
85	(Table 1). The repeat number obtained was rounded up or down to the closest integer
86	copy number. A number string resulted from combination of repeat units from SIRU01,
87	05, 07, 13, 15 and 21 was obtained after calculating the number of repat units of all loci.
88	This was considered an allelic profile and used for the assignment of an MLVA type
89	(MT).
90	
91	2.5. Spa-typing
92	

93	Amplification and sequencing of the repeat region of S. aureus Protein A gene (spa) was
94	performed by using a specific primer set as described (Harmsen et al., 2003). The
95	amplicon was sequenced using BigDye terminator version 3.1 on ABI 3100 sequencer
96	(Applied Biosystem). BioNumerics (version 3.5; Applied Maths) was used to analyze the
97	obtained sequences and to assign the spa-types. Novel spa-types were submitted to the
98	Ridom SpaServer database (<u>www.SpaServer.ridom.de</u>).
99	
100	2.6. Pulsed Field Gel Electrophoresis
101	
102	Bacterial isolates were genotyped by PFGE as described previously (Tenover et al.,
103	1995). Digestion of chromosomal DNA was performed overnight using the restriction
104	enzyme SmaI at a temperature 25°C. Fragments were separated on 1% gel. Isolate
105	relatedness was determined using the Tenover criteria (Tenover et al., 1995).
106	
107	2.7. MLST analysis
108	
109	Determination of the sequence type of 85 S. aureus from bovine mastitis were performed
110	as described (Enright, et al., 2000) and data were analyzed using BioNumerics software
111	and the MLST database (<u>www.mlst.net</u>). The outcome of MLST of bovine mastitis S.
112	aureus was compared with the total population of human S. aureus isolates from our
113	database (data not shown) and the MLST.net database.
114	
115	2.8. Comparison of MLVA, spa-typing, MLST and PFGE

117	BioNumerics software was used as a tool for clustering the observed MLVA types (MTs)
118	and MLST types (STs). The discriminatory power of the typing methods was calculated
119	by using EpiCompare version 1.0 (Ridom GmbH, Wurzburg, Germany) as well as for the
120	determination of Adjusted Rand index and Wallace's coefficients.
121	
122	2.9. Analysis of SIRU05 locus
123	
124	Further analysis of the SIRU05 locus was performed by PCR and sequencing using
125	specific primer sets (lysR- For: 5'-GGA AGC AGA TTT AGG TTA TG-3' and fosB-lys-
126	Rev: 5'-CCA GTC AAT AGC AAT TTT CC-3' for amplification fragment A; lysR-For:
127	5'-TTT GTT CAT CTT GGC TTA GG-3' and ISRX-lys-Rev: 5'-GGA AGT TAC AAT
128	CAT TTG CG-3' for fragment B) based on reference strain of bovine S. aureus RF122
129	(Figure 1). DNA sequencing was performed as described for <i>spa</i> -typing.
130	
131	
132	3. Results
133	
134	3.1. MLVA
135	
136	Among 6 SIRUs used in this typing method, no amplifications were detected for SIRU13,
137	07 and 05 in 47.6%, 91.8% and 100% of the cases, respectively (Table 1). Variations in
138	the number of repeat units ranged from 0 to 12 repeat units (Table 1). Absence of PCR

139	amplification was considered as giving a null allele and is assigned 999 for the repeat		
140	number (Table 2). The MLVA typing of 85 isolates produced 18 different allelic profiles		
141	or MLVA types . MT102 was most common with 35 isolates, followed by MT112		
142	(n=17), and MT118 (n=8).		
143			
144	3.2. Spa-typing		
145			
146	Ten spa-types were obtained from 85 isolates, including 2 new spa-types (t2112 and		
147	t2248). Seventy three isolates belonged to three dominant <i>spa</i> -types, t529 (n=39), t543		
148	(n=22) and t524 (n=17) (Table 2). The number of repeats obtained by <i>spa</i> -typing for all		
149	isolates tested were corresponding with the number of repeats determined by MLVA for		
150	SIRU21.		
151			
152	3.3. Pulsed-Field Gel Electrophoresis		

153

154 DNA of 85 isolates was digested with *Sma*I and showed 26 PFGE profiles, 5 groups of

155 closely related PFGE profiles (5 dominant profiles with 15 related to dominant profiles)

156 and 6 unique PFGE profiles (Figure 2).

157

158 *3.4. MLST*

160	Sequencing of the seven housekeeping genes of all isolates identified 4 dominant MLST
161	types (STs), ST 504 (n=24), ST 479 (n=21), ST71 (n=11), ST 151 (n=11), and 11 STs
162	that have not been described previously in the database at <u>http://saureus.mlst.net</u> (Table
163	2). A minimum spanning tree of the ST of the 85 isolates compared to the whole
164	population of S. aureus showed 3 distinct clusters with bovine mastitis S. aureus isolates
165	although some isolates clustered with known human sequence types (Figure 3).
166	
167	3.5. Comparison of MLVA, spa-typing, PFGE and MLST
168	
169	Discriminatory power of the four typing methods, PFGE, MLST, spa-typing and MLVA
170	was determined by calculating Simpson's index of diversity with 95% Confidence
171	Interval (CI) of the isolates typed by these methods. PFGE showed higher discriminatory
172	power compared to MLST, spa-typing, and MLVA (0.887, 0.831, 0.69 and 0.781,
173	respectively) (Table 3), but the 95% CI of MLVA overlapped with those of <i>spa</i> -typing
174	and MLST. It is remarkable that all 3 major <i>spa</i> -types contained multiple ST (Table 2).
175	
176	3.6. Analysis of the neighboring region of SIRU05
177	
178	SIRU05 could not be amplified for any of the isolates. Therefore, the presence of
179	sequences bordering SIRU05 was investigated. In human-derived SIRU05-positive
180	strains SIRU05 is flanked by a LysR regulatory protein family gene at one side and a
181	fosfomycin resistance encoding gene (fosB) followed by the hutG gene which putatively
182	encodes a formimidoylglutamase. In the sequenced bovine strain RF122 the fosfomycin

183	resistance gene is replaced by insertion sequence ISRX. One primer set was used to
184	amplify the <i>lysR</i> region (fragment A) and a second set was used to amplify the region
185	between the <i>lysR</i> gene and <i>hutG</i> (Figure 1). All isolates were positive for amplification of
186	fragment A and B. Sequencing of fragment A and B of 10 isolates showed a single
187	nucleotide mutation in the $lysR$ gene resulting a premature stop-codon and the absence of
188	ISRX. A new primer designed in the $hutG$ gene which was combined with the original
189	primer of SIRU05 in the <i>lysR</i> gene did not show differences in the number of repeat units
190	for this locus.
191	
192	3.7. The congruence between PFGE, MLST, spa-typing and MLVA
193	
194	Adjusted Rand's and Wallace's coefficients were calculated to explore the concordance
195	between typing methods (Table 4 and 5). The Adjusted Rand's coefficient for the
196	comparison of the clustering by MLVA and PFGE, MLVA and MLST, and MLVA and
197	spa-typing was 0.385, 0.442 and 0.758, respectively. Considering MLVA as the test

198 typing method for comparison, the value of Wallace's coefficients showed that MLVA

199 could only poorly predict the PFGE and MLST type. The probability of two strains

200 having the same MLVA type and sharing the same *spa*-type was 99% (Wallace's

201 coefficient 0.991), whereas the reverse was reasonably predictive (Wallace's coefficient

202 0.699). This finding reflects that MLVA was less discriminatory than MLST and PFGE.

204	We observed variation of <i>spa</i> -type and MT within the same MLST type as shown by ST
205	97 and 479 isolates, although an identical spa-type isolates also showed variation of STs
206	that were closely related (single locus variants or SLVs) to possibly related (3 loci
207	different).
208	Identical t524 isolates had new STs: ST1119, 1125, 1126, 1127, and 1129 that were
209	SLVs and ST1128 that was a double locus variant (DLV) of ST71.
210	
211	
212	4. Discussion
213	
214	MLVA has shown great potential for fast and reliable typing of pathogenic bacteria. Our
215	previous study demonstrated that a newly developed MLVA scheme for human S. aureus
216	had higher discriminatory power compared to PFGE, MLST and spa-typing (Ikawaty et
217	al., 2008). A major advantage of the proposed MLVA scheme is that it requires only
218	simple laboratory equipment and is fast and relatively cheap to perform. This scheme
219	provides better and more timely access to typing of bovine mastitis. This allows more
220	adequate surveillance of mastitis and the identification of particular virulent or epidemic
221	strains. Early recognition of these strains may help to initiate more timely therapy and
222	other interventions to prevent further spread. In this study, we extended the use of the
223	MLVA typing scheme for human S. aureus to bovine S. aureus from clinical mastitis.
224	Eighty five isolates represented regional (n=35) and national (n=50) S. aureus isolates.
225	The isolates were not considered to belong to local outbreaks as 90% of the isolates were
226	obtained on different farms whereas the remaining isolates were obtained at least one

227 year apart when sampled on the same farm. The scheme showed good typeability 228 although 3 loci (SIRU05, 7 and 13) were not always amplified. SIRU21 had the most 229 variance in the number of repeat units, which is important in typing by MLVA. 230 We observed no particular difference between regionally and nationally obtained S. 231 aureus bovine mastitis strains in terms of PFGE profile, MLST and spa-types, except for 232 one MLVA type (MT 118) that was only present among regionally obtained isolates, but 233 due to the limited number of isolates further analysis using more samples is needed. 234 The number of repeat units obtained by amplification of SIRU21, having the smallest 235 repeat unit, agreed completely with the number of repeats obtained by DNA sequencing 236 for *spa*-typing indicating the reliability of the determination of the number of repeat units. 237 SIRU05 was analyzed more in depth, since it could not be amplified in any of the bovine 238 isolates including 4 isolates with ST97 that were already known as possibly human 239 derived (Smith et al., 2005a; Sung et al., 2008). PCR of the region neighboring SIRU05 240 demonstrated that all isolates were fragment A and B positive. Sequencing of the 241 fragments of 10 isolates showed that ISRX and the fosfomycin resistance element were 242 lacking. The difference in the genetic element bordering the repeats of SIRU05 explains 243 the negative result of SIRU05 PCR, since the primer chosen in the fosfomycin resistance 244 element could not anneal to the ISRX element or the hutG gene. Amplification of SIRU05 245 with a primer chosen in *hutG* showed no variation in the number of repeat units. SIRU05 246 does not contribute to the discrimination of the isolates tested and can be omitted from 247 the scheme for bovine mastitis isolates. It should be noted that the primer sets used in this 248 MLVA scheme were developed based on human S. aureus.

LysR is a member of the largest family of bacterial activator/regulator proteins (Henikoff

13

250 et al., 1988; Zaim and Kierzek. 2003). The LysR protein contains a substrate recognition 251 site and a helix-turn-helix DNA-binding motif crucial for protein-DNA interaction (Zaim 252 and Kierzek. 2003). In bovine S. aureus a stop-codon is present, which prevents 253 transcription of the substrate domain. This should inactivate LysR leading to different 254 expression patterns in bovine strains compared to human strains. 255 256 A minimum spanning tree based on MLST showed that clustering of bovine S. aureus 257 was different than for isolates from the human population. The difference between human 258 and bovine derived isolates has been suggested to be caused by tissue specificity by some 259 authors (Gilbert et al., 2006; Smith et al., 2005a) while most authors assumed host specificity among S. aureus clones (de Sousa et al., 2007; Kapur et al., 1995). Two of the 260 261 three dominant MLST types (ST151 and 504) were clustered together while ST479 was 262 distantly related to ST151 and ST504. They were not related to human-derived S. aureus. 263 Eleven isolates from both regional and national origin were ST71 which is known to be a 264 bovine-associated strain from The Netherlands (Smith et al., 2005a). Interestingly, the 11 265 new STs isolates fell into a cluster which was not related to the known bovine STs. Little 266 sharing of strains between the bovine and human population has been reported (Kapur et 267 al., 1995). A similar finding was made by Rabello et al for Brazilian isolates (Rabello et

268 al., 2007).

269

249

270 The ST or clonal complexes (CC) of bovine mastitis isolates from The Netherlands

differed from those described elsewhere with the exception of 4 isolates (S0337, S0426,

272	S0431 and S0436) that belonged to CC97. CC97 isolates have previously been reported
273	to be obtained from humans (Feil et al., 2003). In Brazil CC97 and CC127 were
274	predominant (Rabello et al., 2007). CC97 was also present in isolates from the UK, the
275	USA and Chile (Smith et al., 2005a; Smith et al., 2005b). A different set of STs was
276	obtained from milk in Norway where ST130 (CC3), ST133 and ST132 (CC1) were
277	predominant (Jørgensen et al., 2005).
278	
279	The highest discriminatory power was obtained by PFGE followed by MLST, MLVA
280	and spa-typing. Because SIRU05 yielded no usable data a lower discriminatory power of
281	MLVA compared to the spa-typing was expected. But the results demonstrated that
282	MLVA had a higher Simpson's index of diversity than <i>spa</i> -typing.
283	We observed variations in related STs within the same <i>spa</i> -type as shown in Table 2. The
284	limited number of spa-types might suggest selective pressure on the spa gene and it may
285	explain their maintenance in the population of bovine-derived S. aureus. This finding
286	suggests that <i>spa</i> -typing is not a useful method to compare bovine mastitis isolates.
287	Transfer of antibiotic resistance from human to animal isolates or the other way around
288	has been a major concern (Pesavento et al., 2007; Zadoks et al., 2002). Host specificity of
289	clones may reduce the chance that human-derived antibiotic-resistant S. aureus isolates
290	are transmitted to cattle, although bovine mastitis may occasionally be caused by human-
291	derived isolates. Typing of S. aureus from bovine mastitis will be required to monitor
292	potentially changing population dynamics. Based on our data PFGE, MLST, and MLVA
293	are adequate typing methods for international studies and local studies of bovine S.

- 294 *aureus* isolates involved in mastitis. However, PFGE and MLST are more time-
- consuming and/or expensive than MLVA.

> <

References

Boerlin, P., Kuhnert, P., Hussy, D., Schaellibaum, M. 2003. Methods for identification of *Staphylococcus aureus* isolates in cases of bovine mastitis. J. Clin. Microbiol. 41, 767-771.

de Sousa, A. M., Parente, C. E., Vieira-da-Motta, O., Bonna, I. C., Silva, D. A., de Lencastre, H. 2007. Characterization of *Staphylococcus aureus* isolates from buffalo, bovine, ovine, and caprine milk samples collected in Rio de Janeiro State, Brazil. Appl. Environ. Microbiol. 73, 3845-3849.

Enright, M. C., Day, N. P., Davies, C. E., Peacock, S. J., Spratt, B. G. 2000. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of *Staphylococcus aureus*. J. Clin. Microbiol. 38, 1008-1015.

Feil, E. J., Cooper, J. E., Grundmann, H., Robinson, D. A., Enright, M. C., Peacock, S. J., Smith, J. M., Murphy, M., Spratt, B. G., Moore, C. E., Day, N. P. 2003. How clonal is *Staphylococcus aureus*? J. Bacteriol. 185, 3307-3316.

Gilbert, F. B., Fromageau, A., Gelineau, L., Poutrel, B. 2006. Differentiation of bovine *Staphylococcus aureus* isolates by use of polymorphic tandem repeat typing. Vet. Microbiol. 117, 297-303.

Gill, R., Howard, H., Leslie, K. E., Lissemore, K. 1990. Economic of mastitis control. J. Diary Sci. 73, 3340-3348.

Hardy, K. J., Oppenheim, B. A., Gossain, S., Gao, F., Hawkey, P. M. 2006. Use of variations in staphylococcal interspersed repeat units for molecular typing of methicillin-resistant *Staphylococcus aureus* strains. J. Clin. Microbiol. 44, 271-273.

Harmsen, D., Claus, H., Witte, W., Rothganger, J., Claus, H., Turnwald, D., Vogel, U. 2003. Typing of methicillin-resistant *Staphylococcus aureus* in a university hospital setting by using novel software for *spa* repeat determination and database management. J. Clin. Microbiol. 41, 5442-5448.

Hata, E., Katsuda, K., Kobayashi, H., Ogawa, T., Endô, T., Eguchi, M. 2006. Characteristics and epidemiologic genotyping of *Staphylococcus aureus* isolates from bovine mastitic milk in Hokkaido, Japan. J. Vet. Med. Sci. 68, 165-170.

Henikoff, S., Haughn, G. W., Calvo, J. M., Wallace, J. C. 1988. A large family of bacterial activator proteins. Proc. Natl. Acad. Sci. U.S.A. 85, 6602-6606.

Ikawaty, R., Willems, R. J. L., Box, A. T. A., Verhoef, J., Fluit, A. C. 2008. A novel multiple locus variable number tandem repeat (VNTR) analysis for rapid molecular typing of human *Staphylococcus aureus*. J. Clin. Microbiol.46, 3147-3151.

Jørgensen, H. J., Mørk, T., Caugant, D. A., Kearns, A., Røvik, L. M. 2005. Genetic variation among *Staphylococcus aureus* strains from Norwegian bulk milk. Appl. Environ. Microbiol. 71, 8352-8361.

Kapur, V., Sischo, W. M., Greer, R. S., Whittam, T. S., Musser, J. M. 1995. Molecular population genetic analysis of *Staphylococcus aureus* recovered from cows. J. Clin. Microbiol. 33, 376-380.

Katsuda, K., Hata, E., Kobayashi, H., Kohmoto, M., Kawashima, K., Tsunemitsu, H., Eguchi, M. 2005. Molecular typing of *Staphylococcus aureus* isolated from bovine mastitic milk on the basis of toxin genes and coagulase gene polymorphisms. Vet. Microbiol. 105, 301-305.

Lam, T. 2005. Five year project to reduce mastitis in The Netherlands. Mastitis Newsletter 26, 33.

Melchior, M. B., Fink-Gremmels, J., Gaastra, W. 2007. Extend antimicrobial susceptibility assay for *Staphylococcus aureus* isolates from bovine mastitis growing in biofilms. Vet. Microbiol. 125, 141-149.

Peles, F., Wagner, M., Varga, L., Hein, I., Rieck, P., Gutser, K., Keresztúri, P., Kardos, G., Turcsányi, I., Béri, B., Szabó, A. 2007. Characterization of *Staphylococcus aureus* strains isolated from bovine milk in Hungary. Int. J. Food Microbiol. 118,186-193.

Pesavento, G., Ducci, B., Comodo, N., Lo Nostro, A. 2007. Antimicrobial resistance profile of *Staphylococcus aureus* isolated from raw meat: A research for methicillin resistant *Staphylococcus aureus* (MRSA). Food Control 18, 196-200.

Rabello, R. F., Moreira, B. M., Lopes, R. M. M., Teixeira, L. M., Riley, L. W., Castro, A. C. D. 2007. Multilocus sequence typing of *Staphylococcus aureus* isolates recovered from cows with mastitis in Brazilian dairy herds. J. Med. Microbiol. 56, 1505-1511.

Reinoso, A.B. El-Sayed, A., Lämmler, C., Bogni, C., Zschöck, M. 2008. Genotyping of *Staphylococcus aureus* isolated from humans, bovine subclinical mastitis and food samples in Argentina. Microbiol. Res. 163, 314-322.

Smith, E. M., Green, L. E., Medley, G. F., Bird, H. E., Fox, L. K., Schukken, Y. H., Kruze, J. V., Bradley, A. J., Zadoks, R. N., Dowson, C. G. 2005a. Multilocus sequence typing of intercontinental bovine *Staphylococcus aureus* isolates. J. Clin. Microbiol. 43, 4737-4743

Smith, E. M., Green, L. E., Medley, G. F., Bird, H. E., Dowson, C. G. 2005b. Multilocus sequence typing of *Staphylococcus aureus* isolated from high-somatic-cell-count cows

and the environment of an organic dairy farm in the United Kingdom. J. Clin. Microbiol. 43, 4731-4736.

Sommerhäuser, J., Kloppert, B., Wolter, W., Zschöck, M., Sobiraj, A., Failing, K. 2003. The epidemiology of *Staphylococcus aureus* infections from subclinical mastitis in dairy cows during a control programme. Vet. Microbiol. 96, 91-102.

Struelens, M. J., Deplano, A., Godard, C., Maes, N., Serruys, E. 1992. Epidemiologic typing and delineation of genetic relatedness of methicillin resistant *Staphylococcus aureus* by macrorestriction analysis of genomic DNA by using pulsed-field gel electrophoresis. J. Clin. Microbiol. 30, 2599-2605.

Sung, J. M. -L., Lloyd, D. H., Lindsay, J. A. 2008. *Staphylococcus aureus* host specificity: comparative genomics of human versus animal isolates by multi-strain microarray. Microbiology. 154, 1949-1959.

Tenover, F. C., Arbeit, R. D., Goering, R. V., Mickelsen, P. A., Murray, B. E., Persing, D. H., Swaminathan, B. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 33, 2233-2239.

van Belkum, A., Kluytmans, J. A., van Leeuwen, W., Bax, R., Quint, W., Peters, E., Fluit, A. C., Vandenbroucke-Grauls, C. M., van den Brule, A., Koeleman, H., Melchers, W., Meis, J., Elaichouni, A., Vaneechoutte, M., Moonens, F., Maes, N., Struelens, M. J., Tenover, F. C., Verbrugh, H. 1995. Multicenter evaluation of arbitrarily primed PCR for typing of *Staphylococcus aureus* strains. J. Clin. Microbiol. 33, 1537-1547.

Zadoks, R. N., van Leeuwen, W. B., Kreft, D., Fox, L. K., Barkema, H. W., Schukken, Y. H., van Belkum, A. 2002. Comparison of *Staphylococcus aureus* isolates from bovine and human skin, milking equipment, and bovine milk by phage typing, pulsed-field gel electrophoresis, and binary typing. J. Clin. Microbiol. 40, 3894-3902.

Zaim, J. and Kierzek, A. M. 2003. The structure of full-length LysR-type transcriptional regulators. Modeling of the full-length OxyR transcriptional factor dimer. Nucleic Acids Res. 31: DOI: 10.1093/nar/gkg234.

Table 1. Size of the MLVA loci, formula for calculating the number of repeat units (RU) per locus, typeability of MLVA and variation in repeat units observed.

Locus (size in bp)	Formula	Number (%) PCR negative	No. of repeats (RU) [*]
SIRU01 (55)	(n-157-30)/55	0 (0.0)	1-6
SIRU05 (60)	(n-76-78)/60	85 (100)	-
SIRU07 (56)	(n-27-160)/56	78 (91.8)	2 - 3
SIRU13 (64)	(n-76-78)/64	49 (47.6)	1 - 5
SIRU15 (131)	(n-48-174)/131	0 (0.0)	0 - 3
SIRU21 (24)	(n-12-81)-16)/24	0 (0.0)	2 - 12
n: Size of fragment in bp			

*: values are in repeat unit (RU)

No.	Isolate	Date of	Source	PFGE	MLST	Spa-	MLVA			SI	RU ^a		
		isolation		profile	type	type	type	01	05	07	13	15	21
1	S0416	04/2004	FVM	E	504	t529	102	1	999	999	999	0	2
2	S0409	05/2005	FVM	Е	151	t529	102	1	999	999	999	0	2
3	S0333	30/09/2005	CVI	D	504	t529	102	1	999	999	999	0	2
4	S0334	17/10/2005	CVI	D	504	t529	102	1	999	999	999	0	2
5	S0335	17/10/2005	CVI	Е	151	t529	102	1	999	999	999	0	2
6	S0338	03/10/2005	CVI	Е	151	t529	102	1	999	999	999	0	2
7	S0341	28/09/2005	CVI	D1	504	t529	102	1	999	999	999	0	2
8	S0343	28/09/2005	CVI	Е	151	t529	102	1	999	999	999	0	2
9	S0347	10/10/2005	CVI	D	504	t529	102	1	999	999	999	0	2
10	S0350	03/10/2005	CVI	D2	151	t529	102	1	999	999	999	0	2
11	S0351	17/10/2005	CVI	D1	151	t529	102	1	999	999	999	0	2
12	S0352	14/10/2005	CVI	D2	151	t529	102	1	999	999	999	0	2
13	S0353	13/10/2005	CVI	D1	151	t529	102	1	999	999	999	0	2
14	S0357	03/10/2005	CVI	Е	504	t529	102	1	999	999	999	0	2
15	S0358	28/09/2005	CVI	Е	151	t529	102	1	999	999	999	0	2
16	S0364	30/09/2005	CVI	Е	504	t529	102	1	999	999	999	0	2
17	S0365	30/09/2005	CVI	D1	504	t529	102	1	999	999	999	0	2
18	S0367	03/10/2005	CVI	D2	1122 ^b	t529	102	1	999	999	999	0	2
19	S0368	03/10/2005	CVI	Е	504	t529	102	1	999	999	999	0	2
20	S0370	28/09/2005	CVI	D1	1123 ^b	t529	102	1	999	999	999	0	2
21	S0371	17/10/2005	CVI	D	504	t529	102	1	999	999	999	0	2
22	S0374	17/10/2005	CVI	D2	151	t529	102	1	999	999	999	0	2
23	S0375	17/10/2005	CVI	D3	504	t529	102	1	999	999	999	0	2
24	S0376	25/10/2005	CVI	Е	504	t529	102	1	999	999	999	0	2
25	S0377	25/10/2005	CVI	D1	504	t529	102	1	999	999	999	0	2
26	S0378	25/10/2005	CVI	D	504	t529	102	1	999	999	999	0	2
27	S0379	25/10/2005	CVI	D	504	t529	102	1	999	999	999	0	2
28	S0381	25/10/2005	CVI	D	1124 ^b	t529	102	1	999	999	999	0	2
29	S0389	03/1995	FVM	D	504	t529	102	1	999	999	999	0	2
30	S0390	03/1997	FVM	D	1120 ^{<i>b</i>}	t529	102	1	999	999	999	0	2
31	S0396	03/2002	FVM	D1	504	t529	102	1	999	999	999	0	2
32	S0417	04/2004	FVM	D2	504	t529	102	1	999	999	999	0	2
33	S0424	01/2006	FVM	D	504	t529	102	1	999	999	999	0	2
34	S0425	01/2006	FVM	Е	504	t529	102	1	999	999	999	0	2
35	S0435	1988	FVM	D	504	t529	102	1	999	999	999	0	2
36	S0340	03/10/2005	CVI	А	479	t543	112	2	999	999	2	0	3
37	S0342	28/09/2005	CVI	А	479	t543	112	2	999	999	2	0	3
38	S0344	28/09/2005	CVI	А	479	t543	112	2	999	999	2	0	3
39	S0345	10/10/2005	CVI	А	479	t543	112	2	999	999	2	0	3
40	S0346	10/10/2005	CVI	А	479	t543	112	2	999	999	2	0	3
41	S0348	10/10/2005	CVI	А	479	t543	112	2	999	999	2	0	3
42	S0349	10/10/2005	CVI	А	479	t543	112	2	999	999	2	0	3

Table 2. Comparison of PFGE, MLST, spa-typing and MLVA results.

43	S0354	03/10/2005	CVI	А	479	t543	112	2	999	999	2	0	3
44	S0355	03/10/2005	CVI	А	479	t543	112	2	999	999	2	0	3
45	S0356	03/10/2005	CVI	А	479	t543	112	2	999	999	2	0	3
46	S0360	28/09/2005	CVI	А	479	t543	112	2	999	999	2	0	3
47	S0361	28/09/2005	CVI	А	479	t543	112	2	999	999	2	0	3
48	S0369	03/10/2005	CVI	А	1118 ^b	t543	112	2	999	999	2	0	3
49	S0372	17/10/2005	CVI	А	479	t543	112	2	999	999	2	0	3
50	S0373	17/10/2005	CVI	А	1118 ^b	t543	112	2	999	999	2	0	3
51	S0414	09/2003	FVM	А	479	t543	112	2	999	999	2	0	3
52	S0422	01/2005	FVM	А	479	t543	112	2	999	999	2	0	3
53	S0398	10/1998	FVM	А	479	t543	114	2	999	999	1	0	3
54	S0332	12/10/2005	CVI	A1	479	t543	114	2	999	999	1	0	3
55	S0339	03/10/2005	CVI	А	479	t543	114	2	999	999	1	0	3
56	S0391	04/2002	FVM	А	479	t543	114	2	999	999	1	0	3
57	S0388	1994	FVM	F3	1119 ^b	t524	118	4	999	999	3	1	2
58	S0401	01/1999	FVM	В3	1125 ^b	t524	118	4	999	999	3	1	2
59	S0427	1990	FVM	В	1129 ^b	t524	-118	4	999	999	3	1	2
60	S0428	1989	FVM	F	71	t524	118	4	999	999	3	1	2
61	S0429	1989	FVM	G	71	t524	118	4	999	999	3	1	2
62	S0430	1989	FVM	F1	71	t524	118	4	999	999	3	1	2
63	S0432	1989	FVM	В	71	t524	118	4	999	999	3	1	2
64	S0412	06/2003	FVM	В	71	t524	118	4	999	999	3	1	2
65	S0362	30/09/2005	CVI	B6	71	t524	125	5	999	999	3	1	2
66	S0433	1989	FVM	B1	71	t524	125	5	999	999	3	1	2
67	S0434	1989	FVM	В	71	t524	125	5	999	999	3	1	2
68	S0411	06/2003	FVM	B2	1127 ^b	t524	125	5	999	999	3	1	2
69	S0413	07/2003	FVM	В5	1128 ^b	t524	125	5	999	999	3	1	2
70	S0420	10/2004	FVM	D1	504	t529	125	5	999	999	3	1	2
71	S0418	08/2005	FVM	E1	504	t529	104	1	999	999	3	1	2
72	S0410	05/2003	FVM	B4	1126 ^{<i>b</i>}	t524	104	1	999	999	3	1	2
73	S0419	11/2004	FVM	С	71	t524	79	6	999	999	3	1	2
74	S0421	11/2004	FVM	D1	151	t529	79	6	999	999	3	1	2
75	S0363	30/09/2005	CVI	F4	71	t524	76	5	999	999	3	0	2
76	S0436	1990	FVM	Н	97	t2174	82	6	999	2	5	2	6
77	S0387	1994	FVM	D1	504	t529	106	1	999	3	999	0	2
78	S0426	1990	FVM	B2	97	t1236	108	1	999	2	5	3	10
79	S0366	03/10/2005	CVI	Ι	1121 ^b	t127	110	1	999	3	2	2	7
80	S0392	04/2002	FVM	Ā	479	t2248	116	2	999	999	1	0	6
81	S0337	13/10/2005	CVI	B2	97	t2112	120	4	999	2	5	2	11
82	S0431	1989	FVM	F2	97	t521	121	4	999	3	3	2	12
83	S0336	17/10/2005	CVI	J	71	t524	123	4	999	999	2	1	2
84	S0423	11/2005	FVM	A	479	t543	127	5	999	999	3	1	3
								-	~ ~ ~		-	-	-

CCEPTI CR 2 ł.

999 85 S0393 08/2001 FVM K 124 t224 129 5 3 5 8 1

CVI: Central Veterinary Institute, Lelystad, The Netherlands.

5

FVM: Faculty of Veterinary Medicine Utrecht University, Utrecht, The Netherlands. *a*: values are in repeat units (RU); *b*: new MLST type;
999: no amplification of SIRU.

Table 3. Simpson's index of diversity and 95% confidence interval.

Typing Method	Number of	Discriminatory	95% confidence interval		
	different types	index			
PFGE	26	0.887	0.847 - 0.926		
MLST	18	0.831	0.787 - 0.875		
Spa-typing	10	0.69	0.627 - 0.752		
MLVA	18	0.781	0.71 - 0.852		

Total of 85 isolates tested.

Typing method	PFGE	MLST	Spa-typing	MLVA
PFGE	-			
MLST	0.479	-		
Spa-typing	0.405	0.583	-	
MLVA	0.385	0.442	0.758	-

Table 4. Adjusted Rand's coefficients for the methods used to characterize the 85 bovine mastitis *Staphylococcus aureus* isolates.

Typing method	PFGE	MLST	Spa-typing	MLVA
PFGE	-	0.684	0.941	0.699
MLST	0.459	-	0.957	0.63
Spa-typing	0.344	0.521	-	0.699
MLVA	0.362	0.486	0.991	-

Table 5. Wallace's coefficients for the methods used to characterize 85 bovine mastitis *Staphylococcus aureus* isolates.

Legend

Figure 1. Strategy for analyzing the region bordering the SIRU5 locus. The bovine *S. aureus* (BSA) RF122 reference strain showed a different genetic structure compared to human *S. aureus* reference strains. The genetic element at the right of the repeat region consists of a fosfomycin resistance gene in human *S. aureus* and was replaced by insertion site region X (IS*RX*) in RF122. A single nucleotide mutation in *lysR* gene region was present in RF122. The primers were designed to detect the presence/absence of a single nucleotide mutation (fragment A) by DNA sequencing and the presence of fosfomycin resistance gene or IS*RX* structure (fragment B).

Figure 2. Dendrogram containing PFGE patterns of 85 MSSA strains collected from bovine. At the 50% similarity level, seven branches are distinguished. ID: isolate ID; ST: MLST type.

Figure 3. Minimum spanning tree of *S. aureus* based on MLST. Five major clonal complexes are present within the *S. aureus* population: CC5, CC8, CC22, CC30 and CC45. Each circle represents a different MLST type. Single locus variant STs are connected by a thick line, double locus variant STs by a thin line, triple locus variant STs by a dark grey dashed line, and STs with more than 3 loci variant are connected by a light grey dashed line. Red circles indicate *S. aureus* isolated from bovine mastitis. Arrows indicated new MLST types observed in this study: 1: ST 1118; 2: ST 1119; 3: ST 1121; 4: ST 1122; 5: ST 1123; 6: ST 1124; 7: ST 1125; 8: ST 1126; 9: ST 1127; 10: ST 1128; 11: ST 1129.

