

Prevalence of Methicillin-resistant Staphylococcus pseudintermedius isolated from clinical samples of companion animals, equidaes

Claudia Ruscher, Antina Lübke-Becker, Claus-G. Wleklinski, Alexandra Şoba, Lothar H. Wieler, Birgit Walther

▶ To cite this version:

Claudia Ruscher, Antina Lübke-Becker, Claus-G. Wleklinski, Alexandra Şoba, Lothar H. Wieler, et al.. Prevalence of Methicillin-resistant Staphylococcus pseudintermedius isolated from clinical samples of companion animals, equidaes. Veterinary Microbiology, 2009, 136 (1-2), pp.197. 10.1016/j.vetmic.2008.10.023. hal-00532527

HAL Id: hal-00532527

https://hal.science/hal-00532527

Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Prevalence of Methicillin-resistant Staphylococcus pseudintermedius isolated from clinical samples of companion animals, equidaes

Authors: Claudia Ruscher, Antina Lübke-Becker, Claus-G. Wleklinski, Alexandra Şoba, Lothar H. Wieler, Birgit Walther

PII: S0378-1135(08)00500-2

DOI: doi:10.1016/j.vetmic.2008.10.023

Reference: VETMIC 4253

To appear in: VETMIC

Received date: 12-8-2008 Revised date: 20-10-2008 Accepted date: 24-10-2008

Please cite this article as: Ruscher, C., Lübke-Becker, A., Wleklinski, C.-G., Şoba, A., Wieler, L.H., Walther, B., Prevalence of Methicillin-resistant Staphylococcus pseudintermedius isolated from clinical samples of companion animals, equidaes, *Veterinary Microbiology* (2008), doi:10.1016/j.vetmic.2008.10.023

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Prevalence of Methicillin-resistant Staphylococcus pseudintermedius isolated from
2	clinical samples of companion animals and equidaes
3	
4	Claudia Ruscher ^{1*} , Antina Lübke-Becker ¹ , Claus-G. Wleklinski ² , Alexandra Şoba ² , Lothar H.
5	Wieler¹, Birgit Walther¹
6	
7	¹ Institute of Microbiology and Epizootics (IMT), Veterinary Faculty, Free University Berlin,
8	Philippstraße 13, 10115 Berlin, Germany
9	
10	² Synlab-vet, Labor Augsburg, Leitershofer Straße 25, 86157 Augsburg, Germany
11	
12	
13	*Corresponding author:
14	Claudia Ruscher
15	Institute for Microbiology and Epizootics (IMT),
16	Veterinary Faculty, Free University Berlin, PO Box 040225, 10061 Berlin, Germany
17	Tel.: +49 30 20936030; fax: +49 30 20936067
18	E-mail address: ruscher.claudia@vetmed.fu-berlin.de
19	
20	
21	
22	
23	
24	
25	
26	

1. Abstract

27

28 In this study the prevalence of Methicillin-resistant Staphylococcus pseudintermedius 29 (MRSP) in clinical samples of different animal species was defined by investigating a total of 30 16,103 clinical samples originating from veterinary facilities of five German federal states in 31 2007. Of all samples examined, 72 were positive for MRSP, giving an overall prevalence of 32 0.45%. In clinical specimens originating from small animals the prevalence was 0.58% (n=67; dogs n=61 and cats n=6), while samples from equidaes revealed a prevalence of 0.10% (n=5; 33 34 horses n=4; donkey n=1). Forty-six representative phenotypically identified MRSP were 35 further differentiated by DNA-based species assignment, PCR detection of mecA, SCCmec-36 typing and MIC-determination. As expected, all 46 isolates were unambiguously proven to be 37 MRSP by sequencing of housekeeping genes pta and cpn60 and being positive for mecA. 38 Furthermore, all isolates harboured the mobile staphylococcal cassette chromosome mec 39 (SCCmec) SCCmecIII. Antibiotic susceptibility testing for 20 different conventional antimicrobial agents disclosed a high rate of multidrug-resistant isolates (45 of 46) displaying 40 41 an identical or at least similar resistance pattern for non-\(\beta\)-lactam antimicrobials. The 42 recognised prevalence of MRSP, which have already been shown to be potential zoonotic 43 agents, reflects the recently emerging development of these serious and often multidrugresistant pathogens in Germany. 44

45

46

2. Introduction

47 Coagulase-positive Staphylococci (CPS), especially members of the 48 Staphylococcus intermedius-group (S. intermedius, S. pseudintermedius, S. delphini), are 49 opportunistic pathogens in various animal species, particularly in dogs and cats (Biberstein et 50 al., 1984; Cox et al., 1988). Conventional microbiological diagnostic tests often fail to 51 distinguish between S. pseudintermedius and S. intermedius, leading to the assumption, that S. pseudintermedius were frequently misidentified as S. intermedius or S. aureus (Sasaki et 52

al., 2007b; Van Hoovels et al., 2006). Recently, S. pseudintermedius was found to act as an
important pathogen of skin and soft tissue infections in pet animals, especially as a major
cause of canine pyoderma (Bannoehr et al., 2007). Being known only as a distinct species
since 2005 (Devriese et al., 2005), many studies concerning methicillin-resistance in
coagulase-positive staphylococci did not include the species S. pseudintermedius (Griffeth et
al., 2008; Morris et al., 2006). Consequently, knowledge concerning the prevalence,
particularly of SCCmec-types of methicillin-resistant S. pseudintermedius (MRSP) is scarce.
Since 2002, we routinely screen CPS isolated from clinical samples for mecA by PCR. In
2006, a sudden rise in isolation of Methicillin-resistant SIG (MRSIG) from clinical specimens
of animal origin was recognized. Due to limited data available on the occurrence, prevalence
and antimicrobial resistance pattern of methicillin-resistant S. pseudintermedius (MRSP), in
2007 we conducted a prevalence study, including genotypic species verification, SCCmec-
typing and MIC determination. To increase the epidemiological validity, we collaborated with
a larger diagnostic laboratory, thereby enlarging the sample size

67

68

66

53

54

55

56

57

58

59

60

61

62

63

64

65

3. Materials and Methods

3.1 Sampling

- 70 A total of 16,103 clinical specimens derived from diseased animal patients in different
- veterinary hospitals and smaller facilities were investigated during 2007. All specimens were
- sent in for microbiological diagnostic testing of to the diagnostic section of the Institute of
- 73 Microbiology and Epizootics (IMT Berlin) and Synlab-vet (Labor Augsburg).

74 3.2 Bacterial isolation and MRS confirmation

75 Bacterial isolation

- All diagnostic specimens were routinely streaked onto the following media: Standard nutrient
- agar I (Roth GmbH, Karlsruhe, Germany) charged with 5% defibrinated sheep blood, Chrom
- 78 agar orientation (Mast Diagnostica, Reinfeld, Germany) and Gassner agar (Sifin, Berlin,

79	Germany). Hemolysis and growth characteristics were evaluated after aerobic incubation at
80	37°C, first after 18h and a second time after 36h. Presumptive SIG were identified based on
81	colony morphology, hemolysis, Gram stain appearance, catalase test, tube coagulase reaction
82	and the ability to produce acid from different carbohydrates according to (Bannermann and
83	Peacock, 1999) or by employing the automated BD Phoenix System (Becton Dickinson,
84	Diagnostic Systems, Sparks, MD, USA) in accordance with manufacturer's instructions.
85	Phenotypic testing for differentiation between isolates within the Staphylococcus intermedius-
86	group was completed by detection of ADH (Arginine Dihydrolase, DIATABS, Rosco
87	Diagnostica, Taastrup, Denmark)- and DNase (DNase-agar, Oxoid, Wesel, Germany) activity.
88	Screening for methicillin-resistance in isolates belonging to the SIG was initially performed
89	by the disk diffusion method using Oxacillin (5 μ g) and Cefoxitin (30 μ g) as recommended by
90	the CLSI, 2004 on Mueller-Hinton agar plates (Roth GmbH, Karlsruhe , Germany). Samples
91	were incubated at 35°C for 24h. For Oxacillin, breakpoints were those recommended for
92	bacterial isolates from animals (CLSI, 2004) and for Cefoxitin, we used breakpoints as
93	recommended for human CPS isolates (CLSI, 2005).
94	MRS confirmation
95	Verification of Methicillin-resistance in SIG and distinct exclusion of S. aureus was
96	performed by PCR according to Merlino et al. (Merlino et al., 2002).
97	S. pseudintermedius species verification
98	DNA-sequence analysis of internal fragments of two conserved housekeeping genes (cpn60,
99	pta) was used for species verification (Bannoehr et al., 2007). Analysis was carried out on a
100	representative selection of 46 <i>S. pseudintermedius</i> isolates, including all isolates of cats (n=6),
101	horses (n=4), the donkey and further 35 randomly chosen isolates from dogs. PCR-products
102	were purified and DNA-sequence-analyzed by Agowa-Sequence-Service (Agowa, Berlin,
103	Germany). Alignment of the sequences was performed with deposited pta and cpn60 -
104	sequences of S. pseudintermedius N940276 and HH4 (GenBank accession numbers

105	EU157608 and EU157503), S. intermedius NCTC 11048 (GenBank accession number
106	EU157414) and S. delphini ATCC 49171 (GenBank accession number EU 157507) at NCBI
107	GenBank (www.ncbi.nlm.nih.gov).
108	3.3 SCCmec-Typing
109	Primer sets and PCR-conditions for SCCmec-Typing, were used as described previously
110	(Boyle-Vavra et al., 2005; Hanssen et al., 2004; Ito et al., 2004). Detection of pT181 was
111	conducted according to Ito et al, 2001. As reference strains for PCR-determination of ccr- and
112	mec-elements, NCTC 10442, N315, WIS, 85/2082 and CECT 231 were used.
113	3.4 Antimicrobial susceptibility testing
114	The broth microdilution method with automated BD Phoenix was used for MIC determination
115	of 20 antimicrobial agents according to CLSI guidelines and clinical breakpoints (Clinical
116	And Laboratory Standards Institute, 2004) for the representative 46 MRSP isolates. The tested
117	panel is listed in table3.
118	3.5 Statistical analysis
119	Significance was tested with chi-square test (χ^2) and by difference in proportion of two
120	independent samples for the MRSP distribution among body sites of infection as well as for
121	the distribution of MRSI in samples from different animal species.
122	
123	4. Results
124	Prevalence
125	Altogether 16,103 clinical specimens were examined in two diagnostic veterinary laboratories
126	in 2007 for the occurrence of MRSP. Of these, a total of 870 isolates belonging to the SIG
127	were identified (see: table 2) and the percentage of SIG within all coagulase-positive
128	staphylococci amounted to 76.2%. The overall prevalence of MRSP within all clinical
129	specimens sent in for diagnostic purposes from dogs, cats and equidaes was 0.45% (n=72).
130	Within all CPS, MRSP represented 6.3% and MRSA 2.5% (for more detailed data: see table

131	2). The prevalence of MRSP in specimens from small animal origin was amounted to 0.58%,
132	i.e. in dogs 0.8% (61 out of 7,490) and 0.1% in cats (6 out of 3,903). A total of five MRSP
133	were isolated from specimens of equid origin (horses n=4; donkey n=1), thus the prevalence
134	of MRSP in specimens obtained from horses and donkeys was 0.1% (5 out of 4710).
135	Comparing prevalence rates among the different animal species, MRSP prevalence in
136	specimens from dogs was significantly higher than in cats and equidaes (p <0.001). Regarding
137	specimens from all animal species investigated, most MRSP (40.3%; n=29) were isolated
138	from wound infections followed by specimens from the auditory channel (33.3%; n=24).
139	Specimens from skin and mucosa and the urinary tract amounted to 8.3% (n=6). Additional
140	details regarding the distribution of isolated MRSP among single animal species and body
141	sites of specimen origin are given in table 1.
142	Species verification and SCCmec-typing
143	Out of 72 MRSP identified, 46 representative MRSP isolates were further characterized by
144	molecular typing. Genes pta and cpn60 of all strains were a hundred percent identical to the
145	deposited sequences of the S. pseudintermedius strains N940276 and HH4, respectively.
146	DNA-sequence similarity with S. intermedius strain NCTC11048 and S. delphini ATCC
147	49171 for pta and cpn60 varied between 92% and 97%. Furthermore, all 46 MRSP harboured
148	SCCmecIII, by distinct detection of ccrA3, ccrB3, mecI, mecRA, mecRB and pT181.
149	Antimicrobial susceptibility testing
150	Out of 46 representative isolates, 45 (97.8%) showed multiple resistances in non-ß-lactam
151	antimicrobials including erythromycin, clindamycin, gentamicin, tobramycin, ciprofloxacin,
152	levofloxacin, and trimethoprim/sulfamethoxazol. While MIC results for some β-lactam
153	antimicrobials showed variable results, all 46 MRSP showed unambiguous resistance to
154	Oxacillin (table 3).
155	

6

156

5. Discussion

Although MRSP were earlier known to be an infective causative agent for animals (Bannoehr
et al., 2007), only little is known about their particular importance in veterinary medicine in
general. In this study, MRSP were identified in diagnostic material derived from clinically
diseased dogs, cats, horses and one donkey. The reported rate of 6.3% MRSP within all CPS
in contrast to 2.5% for MRSA substantiates the clinical relevance of MRSP for veterinarians
as well as for veterinary microbiological laboratories. Nevertheless, we have to consider some
limitations regarding prevalence rates due to the inability to discriminate infection from
colonization or contamination in each case, which is inevitable to some degree. Similar to
former results, no MRSI positive isolates were found during this study, leading to the
assumption that earlier studies concerning MRSI should probably apply to MRSP (Hanselman
et al., 2008; Sasaki et al., 2007b).
In this study, the rate of MRSP isolated from specimens of wounds was significantly higher
than those from all other infection sites (p $<$ 0.001). Thus, MRSP have turned out to be an
important pathogen of wound infections in small animals, particularly in dogs, and are
occasionally even associated with wound infections in horses
The discriminating power of DNA-sequence analysis of internal fragments of cpn60 and pta
for differentiation of SIG has only recently been shown (Bannoehr et al., 2007; Sasaki et al.,
2007b). In this study, genotypic species verification by DNA-sequence analysis of these two
highly conserved housekeeping genes showed 100% accordance with phenotypic typing
results including DNase and argininedihydrolase-testing and allowed verification of 46
representative isolates as S. pseudintermedius. This finding has led us to recommend a
combination of testing for enzymatic activity of argininedihydrolase and DNase as a useful
diagnostic tool to differentiate staphylococci of the intermedius -group.
Interestingly, SCCmec-typing results in this study only revealed one SCCmec-type, namely
SCCmecIII, among the 46 MRSP further investigated. While SCCmecV, several non-typeable

183	SCCmec-types and new SCCmec have been reported in strains from the USA, Japan and
184	Switzerland, SCCmecIII seems to be more frequently associated with MRSP in Germany
185	(Descloux et al., 2008; Moodley et al., 2008; Sasaki et al., 2007a). So far, the origin of
186	SCCmec in MRSP is unknown, but horizontal gene transfer of SCCmec between different
187	species of staphylococci has already been previously assumed (Hanssen et al., 2004). Animals
188	colonized with mecA-positive coagulase-negative staphylococci (Vengust et al., 2006) or
189	MRSA (Walther et al., 2008) could thereby serve as a potential source for SCCmec in SIG.
190	Even transmission of SCCmec between MRSP and hitherto Methicillin susceptible
191	staphylococci, for example S.aureus, must be considered. Nevertheless, further information
192	concerning acquisition and transmission routes of SCCmec is urgently needed.
193	In our study, antimicrobial susceptibility testing revealed a remarkable multidrug resistance
194	towards the majority of non-ß-lactam antimicrobials like fluorquinolones, aminoglycosides,
195	and macrolides in 45 of 46 investigated MRSP, showing a similar resistance pattern for all 45
196	isolates. MIC results for different β-lactam antimicrobials differ widely among the MRSP,
197	except those for Oxacillin, which presented a resistant result for all strains investigated here.
198	Especially for Cefoxitin MICs of MRSP, similar ambiguous results have been recently
199	reported (Bemis et al., 2008). Therefore, we recommend an Oxacillin-based approach for
200	phenotypical identification of MRSP.
201	SIG are common components of the skin, oral and nasal flora of several mammalian species
202	(Biberstein et al., 1984) and increasing prevalence of MRSP in companion animals and horses
203	reported from different countries probably reflects a minatory development. While human
204	infections due to SIG were only reported sporadically (Campanile et al., 2007), a first case of
205	human MRSP-infection was recently published (Van Hoovels et al., 2006). Animal to human
206	transmission of methicillin-resistant staphylococci or vice versa, as it has been assumed for
207	MRSA (Weese et al., 2006), should be contemplated as a potential problem. In conclusion,
208	further epidemiological studies concerning MRSP in veterinary settings and the community

209	are needed, including detailed clinical data, analysis of potential transmission pathways in
210	addition to comprehensive microbiological typing approaches.
211	6. Acknowledgements
212	We thank Prof. Keiichi Hiramatsu from the Faculty of Medicine, Department of Bacterio-
213	logy at Juntendo University Tokyo, Japan for providing reference strains for SCCmec-typing
214	and Esther-Maria Antao for critical review of the manuscript.
215	7. References
216	Bannermann, T., Peacock, S., 1999, Staphylococcus, Micrococcus, and Other Catalase-
217	Positive Cocci, In: Murray PR, Baron.E., Landry FC, Jorgensen JH, Pfaller MA
218	(Ed.).Manual of Clinical Microbiology. ASM Press, Washington DC, pp. 397-398.
219	Bannoehr, J., Ben Zakour, N.L., Waller, A.S., Guardabassi, L., Thoday, K.L., van den Broek,
220	A.H., Fitzgerald, J.R., 2007, Population genetic structure of the Staphylococcus
221	intermedius group: insights into agr diversification and the emergence of methicillin-
222	resistant strains. J. Bacteriol. 189, 8685-8692.
223	Bemis, D.A., Jones, R.D., Kania, S.A., 2008. Evaluation of interpretive breakpoint recom-
224	mendations for detection of mecA-mediated resistance in Staphylococcus
225	pseudintermedius isolated from dogs in the United States. In: Antimicrobial Resis-
226	tance in Zoonotic Bacteria and Foodborne Pathogens 2008, Washington D.C.
227	Biberstein, E.L., Jang, S.S., Hirsh, D.C., 1984, Species distribution of coagulase-positive
228	staphylococci in animals. J. Clin. Microbiol. 19, 610-615.
229	Boyle-Vavra, S., Ereshefsky, B., Wang, C.C., Daum, R.S., 2005, Successful multiresistant
230	community-associated methicillin-resistant Staphylococcus aureus lineage from
231	Taipei, Taiwan, that carries either the novel Staphylococcal chromosome cassette mec
232	(SCCmec) type VT or SCCmec type IV. J. Clin. Microbiol. 43, 4719-4730.

233	Campanile, F., Bongiorno, D., Borbone, S., Venditti, M., Giannella, M., Franchi, C., Stefani,
234	S., 2007, Characterization of a variant of the SCCmec element in a bloodstream isolate
235	of Staphylococcus intermedius. Microb. Drug. Resist. 13, 7-10.
236	Clinical And Laboratory Standards Institute, CLSI. 2004. Performance standards for antimi-
237	crobial disk and dilution susceptibility tests for bacteria isolated from animals. In
238	NCCLS document M31-S1. (Wayne, PA.).
239	Clinical And Laboratory Standards Institute, CLSI. 2005. Performance standards for antimic-
240	robial susceptibility testing. In CLSI approved standard M100-S15 (Wayne, PA.).
241	Cox, H.U., Hoskins, J.D., Newman, S.S., Foil, C.S., Turnwald, G.H., Roy, A.F., 1988, Tem-
242	poral study of staphylococcal species on healthy dogs. Am. J. Vet. Res. 49, 747-751.
243	Descloux, S., Rossano, A., Perreten, V., 2008, Characterization of new staphylococcal cas-
244	sette chromosome mec (SCCmec) and topoisomerase genes in fluoroquinolone- and
245	methicillin-resistant Staphylococcus pseudintermedius. J. Clin. Microbiol. 46, 1818-23
246	Devriese, L.A., Vancanneyt, M., Baele, M., Vaneechoutte, M., De Graef, E., Snauwaert, C.,
247	Cleenwerck, I., Dawyndt, P., Swings, J., Decostere, A., Haesebrouck, F., 2005,
248	Staphylococcus pseudintermedius sp. nov., a coagulase-positive species from animals.
249	Int. J. Syst. Evol. Microbiol. 55, 1569-1573.
250	Griffeth, G.C., Morris, D.O., Abraham, J.L., Shofer, F.S., Rankin, S.C., 2008, Screening for
251	skin carriage of methicillin-resistant coagulase-positive staphylococci and Staphyloco-
252	ccus schleiferi in dogs with healthy and inflamed skin. Vet. Dermatol. 19, 142-149.
253	Hanselman, B.A., Kruth, S., Weese, J.S., 2008, Methicillin-resistant staphylococcal colo-
254	nization in dogs entering a veterinary teaching hospital. Vet. Microbiol. 126, 277-281.
255	Hanssen, A.M., Kjeldsen, G., Sollid, J.U., 2004, Local variants of Staphylococcal cassette
256	chromosome mec in sporadic methicillin-resistant Staphylococcus aureus and methi-
257	cillin-resistant coagulase-negative Staphylococci: evidence of horizontal gene
258	transfer? Antimicrob. Agents Chemother. 48, 285-296.

259	Ito, T., Katayama, Y., Asada, K., Mori, N., Tsutsumimoto, K., Tiensasitorn, C., Hiramatsu.
260	K., 2001, Structural comparison of three types of staphylococcal cassette chromosome
261	mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus.
262	Antimicrob. Agents Chemother. 45, 1323-1336.
263	Ito, T., Ma, X.X., Takeuchi, F., Okuma, K., Yuzawa, H., Hiramatsu, K., 2004, Novel type V
264	staphylococcal cassette chromosome mec driven by a novel cassette chromosome re-
265	combinase, <i>ccr</i> C. Antimicrob. Agents Chemother. 48, 2637-2651.
266	Merlino, J., Watson, J., Rose, B., Beard-Pegler, M., Gottlieb, T., Bradbury, R., Harbour, C.,
267	2002, Detection and expression of methicillin/oxacillin resistance in multidrug-
268	resistant and non-multidrug-resistant Staphylococcus aureus in Central Sydney,
269	Australia. J. Antimicrob. Chemother. 49, 793-801.
270	Moodley, A., Stegger, M., Zakour, N.L.B., Fitzgerald, J.R., Guardabassi, L., 2008, Tandem
271	repeat sequence analysis of staphylococcal protein A (spa) gene in methicillin-
272	resistant Staphylococcus pseudintermedius: doi:10.1016/j.vetmic.2008.09.070.
273	Morris, D.O., Rook, K.A., Shofer, F.S., Rankin, S.C., 2006, Screening of Staphylococcus
274	aureus, Staphylococcus intermedius, and Staphylococcus schleiferi isolates obtained
275	from small companion animals for antimicrobial resistance: a retrospective review of
276	749 isolates (2003-04). Vet. Dermatol. 17, 332-337.
277	Sasaki, T., Kikuchi, K., Tanaka, Y., Takahashi, N., Kamata, S., Hiramatsu, K., 2007a,
278	Methicillin-resistant Staphylococcus pseudintermedius in a veterinary teaching
279	hospital. J. Clin. Microbiol. 45, 1118-1125.
280	Sasaki, T., Kikuchi, K., Tanaka, Y., Takahashi, N., Kamata, S., Hiramatsu, K., 2007b, Re-
281	classification of phenotypically identified S. intermedius strains. J. Clin. Microbiol.
282	45, 2770-2778.

Van Hoovels, L., Vankeerberghen, A., Boel, A., Van Vaerenbergh, K., De Beenhouwer, H.,
2006, First case of S. pseudintermedius infection in a human. J. Clin. Microbiol. 44,
4609-4612.
Vengust, M., Anderson, M.E., Rousseau, J., Weese, J.S., 2006, Methicillin-resistant staphylo-
coccal colonization in clinically normal dogs and horses in the community. Lett. Appl
Microbiol. 43, 602-606.
Walther, B., Wieler, L.H., Friedrich, A.W., Hanssen, A.M., Kohn, B., Brunnberg, L., Lübke-
Becker, A., 2008, Methicillin-resistant S. aureus (MRSA) isolated from small and
exotic animals at a university hospital during routine microbiological exami-nations.
Vet. Microbiol. 127, 171-178.
Weese, J.S., Dick, H., Willey, B.M., McGeer, A., Kreiswirth, B.N., Innis, B., Low, D.E.,
2006, Suspected transmission of methicillin-resistant S. aureus between domestic pets
and humans in veterinary clinics and in the household. Vet. Microbiol. 115, 148-155.

Table 1: Distribution of animal species and body site of infection of 72 isolated

	Body site of infection																
Animal species	n	Wounds	(%)	Urogenital- tract	(%)	Auditory channel	(%)	Skin and mucosa	(%)	Gastrointes- tinaltract	(%)	Eye and conjunctiva	(%)	Systemic infection		Other sites*	(%
all species	72	29	40.3	6	8.3	24	33.3	6	8.3	2	2.8	1	1.4	3	4.2	1	1.4
Dog	61	24	39.3	3	4.9	23	37.7	6	9.9	0	0	1	1.6	3	4.9	1	1.6
Cat	6	2	33.3	3	50	1	16.7	0	0	0	0	0	0	0	0	0	0
Horse	4	3	75	0	0	0	0	0	0	1	25	0	0	0	0	0	0
Donkey	1	0	0	0	0	0	0	0	0	1	100	0	0	0	0	0	0

Abbreviations: *n*, number; * joint aspirate

Table 2: Distribution of Coagulase-positive staphylococci among isolates of small animals and equidaes in 2007

	Coagulase-positive Staphylococci (CPS)*												
		SIG ¹	(%)	S. aureus	(%)								
						MRSP	(%)	MSSIG ²	(%)	MRSA	(%)	MSSA	(%)
Animal species	n												
total	1141	870	76.2	271	23.8	72	6.3	798	70.0	29	2.5	242	21.2
Dog	901	821	91.1	80	8.9	61	6.8	760	84.3	15	1.7	65	7.2
Cat	91	26	28.6	65	71.4	6	6.6	20	22.0	11	12.1	54	59.3
Horse	148	22	14.9	126	85.1	4	2.7	18	12.2	3	2.0	123	83.1
Donkey	1	1	100	0	0	1	100	0	0	0	0	0	0

^{*}except S.hyicus

¹Staphylococci of the intermedius-group: *S. intermedius*, *S. delphini*, *S. pseudintermedius*; ² other *mec*A-negative SIGs, species not closer identified Abbreviations:

n, number; MRSP, Methicillin-resistant *S. pseudintermedius*; MSSIG, Methicillin-susceptible SIGs; MRSA, Methicillin-resistant *S. aureus*; MSSA, Methicillin-susceptible *S. aureus*

Table 3: Results of MIC-Determination of 20 antimicrobial agents for 46 MRSP

Antimicrobial	MIC Range,	resistant	(%)	intermediate	(%)	susceptible	(%)
agent*	$\mu \mathrm{g/ml}$						
non-B-lactam antimicrobials							
Clindamycin	$\leq 0.5 - 2$	45	97.8	0	0	1	2.2
Ciprofloxacin	1 -> 2	45	97.8	0	0	1	2.2
Erythromycin	$\leq 0.25 -> 4$	45	97.8	0	0	1	2.2
Fosfomycin	≤ 16 - 64	0	0	45	97.8	1	2.2
Fusidic acid	≤ 4	0	0	0	0	46	100
Gentamicin	> 8	46	100	0	0	0	0
Levofloxacin	$\leq 1 -> 4$	45	97.8	0	0	1	2.2
Linezolid	≤1 - 4	0	0	0	0	46	100
Moxifloxacin	$\leq 1 -> 4$	45	97.8	0	0	1	2.2
Rifampin	≤ 0.5	0	0	0	0	46	100
Teicoplanin	≤ 1	0	0	0	0	46	100
Tetracyclin	$\leq 0.5 - 8$	28	60.9	3	6.5	15	32.6
Tobramycin	8 -> 8	44	95.7	2	4.3	0	0
Trimethoprim/Sulfamethoxazol	> 2 / 38	46	100	0	0	0	0
Vancomycin	≤1 - 4	0	0	0	0	46	100
B-lactam antimicrobials							
Ampicillin/Sulbactam	$\leq 4/2 -> 16/8$	37	80.4	NA	0	9	19.6
Cefoxitin	$\leq 2 - > 16$	12	26.1	0	0	34	73.9
Imipenem	≤2 - 8	0	0	1	2.2	45	97.8
Meropenem	≤2 - 8	13	28.3	2	4.3	31	67.4
Oxacillin	>2	46	100	0	0	0	0

^{*} Breakpoints according to Clinical And Laboratory Standards Institute (CLSI), approved standard M100-S15, M31-S1 Abbreviations: NA, no CLSI-approved breakpoint available