Infection, excretion, seroconversion dynamics of porcine circovirus type 2 (PCV2) in pigs from postweaning multisystemic wasting syndrome (PMWS) affected farms in Spain and Denmark

To cite this version:

HAL Id: hal-00532522
https://hal.science/hal-00532522
Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Accepted Manuscript

Title: Infection, excretion, seroconversion dynamics of porcine circovirus type 2 (PCV2) in pigs from postweaning multisystemic wasting syndrome (PMWS) affected farms in Spain and Denmark

Authors: Llorenç Grau-Roma, Charlotte K. Hjulsager, Marina Sibila, Charlotte S. Kristensen, Sergio López-Soria, Claes Enoe, Jordi Casal, Annette Botner, Miquel Nofrarías, Vivi Bille-Hansen, Lorenzo Fraile, Poul Baekbo, Joaquim Segalés, Lars E. Larsen

PII: S0378-1135(08)00476-8
DOI: doi:10.1016/j.vetmic.2008.10.007
Reference: VETMIC 4229

To appear in: VETMIC

Received date: 3-6-2008
Revised date: 26-9-2008
Accepted date: 1-10-2008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Infection, excretion and seroconversion dynamics of porcine circovirus type 2 (PCV2) in pigs from postweaning multisystemic wasting syndrome (PMWS) affected farms in Spain and Denmark

Llorenç Grau-Roma1,2,a,* Charlotte K. Hjulsager3,a, Marina Sibila1, Charlotte S. Kristensen4, Sergio López-Soria1, Claes Enøe3, Jordi Casal1,2, Annete Bøtner5, Miquel Nofrarías1, Vivi Bille-Hansen3, Lorenzo Fraile1,6, Poul Baekbo4, Joaquim Segalés1,2, Lars E. Larsen3

1Centre de Recerca en Sanitat Animal (CRESA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
2Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
3National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, DK-1790 Copenhagen V, Denmark.
4Danish Pig Production, Vinkelvej 11, DK-8620 Kjellerup, Denmark.
5National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark.
6Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain.

*Corresponding Author: e-mail: llgrau@cresa.uab.cat, Phone: +34 93 581 32 84 Fax: +34 93 581 44 90.

Grau-Roma L. and Hjulsager C.K. contributed equally to the authorship of this work.
Abstract

Longitudinal case-control studies were performed in post-weaning multisystemic wasting syndrome (PMWS) affected farms from Denmark and Spain using similar designs. Fourteen independent batches of 100 to 154 pigs per batch were monitored from birth to PMWS outbreak occurrence. Pigs displaying PMWS-like signs and matched healthy cohorts were euthanized during the clinical outbreak. PMWS was diagnosed according to internationally accepted criteria and pigs were classified as: i) PMWS cases, ii) wasted non-PMWS cases and iii) healthy pigs. Porcine circovirus type 2 (PCV2) quantitative PCR (qPCR) and serology techniques were applied to analyse longitudinally collected sera and/or nasal and rectal swabs. Results showed that PCV2 load increased in parallel to waning maternal antibody levels, reaching the maximum viral load concurrent with development of clinical signs. PMWS affected pigs had higher PCV2 prevalence and/or viral load than healthy pigs in all collected samples at necropsy (p<0.0001 to 0.05) and even in sera and nasal swabs at the sampling prior to PMWS outbreak (p<0.01 to 0.05). Danish farms had a higher PCV2 prevalence in young piglets as well as an earlier PMWS presentation compared to Spanish farms. PMWS diagnoses were confirmed by laboratory tests in only half of pigs clinically suspected to suffer from PMWS. Positive and significant correlations were found among PCV2 viral loads present in sera, nasal swabs, rectal swabs and lymphoid tissues (R=0.289 to 0.827, p<0.0001 to 0.01), which indicates that nasal and rectal swabs were suitable indicators of PCV2 excretion. Sensitivity and/or specificity values observed from both tests used separately or combined suggested that qPCR and/or serology tests are not apparently able to substitute histopathology plus detection of PCV2 in tissues for the individual PMWS diagnosis within PMWS affected farms. However, qPCR appears to be a potential reliable technique to diagnose PMWS on a population basis.
Keywords: porcine circovirus type 2 (PCV2); postweaning multisystemic wasting syndrome (PMWS); epidemiology; quantitative real-time PCR (qPCR); longitudinal case-control study

1. Introduction

Porcine circovirus type 2 (PCV2) is considered the essential infectious agent of postweaning multisystemic wasting syndrome (PMWS), which causes significant economic losses to the swine industry worldwide (Armstrong and Bishop, 2004). First PMWS description in Spain and Denmark were in 1997 (Segalés et al., 1997) and at the end of 2001 (Hassing et al., 2002), respectively. Afterwards, the periods of maximum number of PMWS diagnoses emitted by the two major diagnostic laboratories in both countries were 1999-2003 in Spain and 2002-2005 in Denmark (Vigre et al., 2005; Segalés et al., 2007).

PMWS most commonly affects 2-4 month-old pigs, although the disease has been also described in younger and older animals (Segalés et al., 2005a). The internationally accepted criteria to diagnose PMWS include the presence of compatible clinical signs (mainly wasting and respiratory distress), moderate to severe lymphocyte depletion with granulomatous inflammation in lymphoid tissues, and detection of moderate to high amount of PCV2 within these lesions (Segalés et al., 2005a). However, PCV2 is an ubiquitous virus that has been detected in both PMWS affected and non-affected pigs and farms by pathogen detection as well as serological methods (Larochelle et al., 2003; Rose et al., 2003; Sibila et al., 2004). Therefore, the sole detection of PCV2 antibodies in serum and/or viral DNA or antigen of the virus does not constitute PMWS diagnosis,
since it only indicates evidence of PCV2 infection (Krakowka et al., 2005; Caprioli et al., 2006). However, serological and DNA detection techniques (PCR) have been widely used to monitor PCV2 infection dynamics in both PMWS affected and non-affected farms.

Most PMWS epidemiological field studies based on the abovementioned laboratory techniques have been focused on the moment of disease outbreak. These studies have shown higher PCV2 viral load in serum, lymphoid tissues and potential shedding sites in PMWS affected pigs compared to non-affected pigs (Brunborg et al., 2004; Olvera et al., 2004; Sibila et al., 2004; Segalés et al., 2005b). Moreover, a viral load threshold to discriminate PMWS affected and non-affected pigs has been suggested (Brunborg et al., 2004; Olvera et al., 2004). In contrast, only few studies have focused on PCV2 infection dynamics, based on cross-sectional (Larochelle et al., 2003; Rose et al., 2003; Sibila et al., 2004; Lopez-Soria et al., 2005) and longitudinal studies (Rodriguez-Arrioja et al., 2002; McIntosh et al., 2006; Carasova et al., 2007). These studies have been mainly based on serology and non-quantitative PCR techniques, and only one used quantitative PCR (qPCR) technique (Carasova et al., 2007). Overall, those studies demonstrated high levels of maternal antibodies in lactating piglets, which decreased gradually during the nursery period. PCV2 viremia usually occurred when maternal derived antibody levels waned, and decreased progressively after the increase of antibody titres (Rodriguez-Arrioja et al., 2002; Larochelle et al., 2003; Sibila et al., 2004).

Some epidemiological studies have been designed as case-control studies. Overall, higher percentages of pigs with PCV2 in serum and in nasal cavities were detected using PCR in PMWS affected farms (Sibila et al., 2004). Moreover, the earlier the
PCV2 infection, the higher the risk of developing PMWS (Rose et al., 2003; Lopez-Soria et al., 2005). However, those studies did not describe in detail the infection dynamics of PCV2 infection in PMWS affected and non-affected farms.

The aim of the present study was to describe the evolution of PCV2 infection, excretion and seroconversion in PMWS, wasted non-PMWS and healthy pigs from PMWS affected farms in two different countries, Denmark and Spain. The study period went from the first week of age until the moment of disease development.

2. Materials and methods

2.1. Study design

Two longitudinal case-control studies in PMWS affected farms, one in Spain and one in Denmark, were performed in parallel during 2005 and 2006. The diagnosis of PMWS at the farm level was confirmed according to the EU definition (www.pcvd.org/news.php) before the start of the study. Diagnostic procedures included a prevalence of pigs with wasting and mortality in nurseries plus fattening/finishing areas higher than 10%, as well as the individual diagnostic case definition fulfilment of PMWS (Segalés et al., 2005a) in at least 1 out of 5 necropsied pigs.

Production systems slightly varied between Spain and Denmark. Piglets were nursed at farrowing facilities from birth until 3 (Spain) and 4 (Denmark) weeks of age. After weaning, piglets were moved into the nursery until 8-9 (Spain) or 11-13 (Denmark), weeks of age. Finally, animals were placed in fattening areas until slaughter age.
Both studies were carried out using similar designs, and were performed on 14 independent batches of 100 to 154 animals from each of 8 Danish (8 batches) and 3 Spanish (6 batches) farms. Ten to 21 sows were selected in order to reach 100 piglets per batch. Number of studied farms, batches and animals, as well as specific differences between Spanish and Danish protocols, are displayed in table 1. Studied piglets were ear-tagged at 1 week of age. Nasal and rectal swabs (Collection swab, Eurotubo, Spain; and Kirudan A/S, Denmark) as well as blood samples (Vacutainer®, Becton-Dickinson, Meylan Cedex, France) were serially collected from those piglets at established weeks of age (table 1) and when the PMWS compatible clinical picture appeared (necropsy) (Segalés and Domingo, 2002). The animals were evaluated clinically at the time of samplings and the herds were visited regularly by the corresponding responsible veterinarians, in order to alert the researchers of any potential apparition of clinical signs compatible to PMWS in the studied pigs. Nasal samples were collected by swabbing deeply into the turbinates (both nostrils). Rectal swabs were obtained by introducing the swab into the rectum and swabbing the surface of the colo-rectal region. All swabs were placed in tubes containing 1 (Spain) or 2 (Denmark) ml of phosphate-buffered saline (PBS) solution. Pigs were bled at the anterior vena cava. Blood from sows were also collected at 1st sampling day by puncture in the tail vessels. Once in the laboratory, blood samples were allowed to clot at 4ºC and then centrifuged at 200 x g for 10 minutes at 4ºC. All samples were frozen at -80ºC until testing. When the PMWS compatible clinical picture appeared at the studied farms, healthy animals and pigs displaying PMWS-like signs were selected, euthanized and necropsied. Necropsied animals were also bled and nasal and rectal swabs taken. Piglets suffering natural death and displaying clinical signs compatible with PMWS were also selected. At necropsy, sections of lymphoid tissues were collected (table 1) and fixed by immersion in neutral-
buffered 10% formalin to assess the pathological status of both clinically healthy and diseased animals.

Characteristics of studied farms, batches and necropsied animals are displayed in table 2. All treatments, housing, husbandry and slaughtering conditions were conformed to the European Union Guidelines and Good Clinical Practices.

2.2. Histopathology

Formalin fixed tissues were dehydrated and embedded in paraffin blocks. Two consecutive 4 µm thick sections containing collected lymphoid tissues from each pig were cut from each block. One section was processed for haematoxylin and eosin stain, while the other was for PCV2 nucleic acid detection by in situ hybridization (ISH) (Rosell et al., 1999) for Spanish cases, and for immunohistochemistry (IHC) for PCV2 antigen detection (Jensen et al., 2006) for Danish cases. Four lymph nodes and tonsil (Spain) and two lymph nodes (Denmark) per pig were evaluated in a blinded fashion, by the same pathologist for three different parameters using a criteria based on previously described scoring systems (Krakowka et al., 2005; Opriessnig et al., 2006) from 0 to 4, as summarised in table 3. The score was calculated in each lymphoid tissue as: Score = (lymphoid depletion + granulomatous infiltration)/2 + PCV2 amount. PCV2 amount corresponded to the level of PCV2 DNA staining (ISH) or PCV2 antigen (IHC) detected in the lymphoid tissue (table 3). Afterwards, a global average histopathological score per pig was calculated by summing the individual scores of all five or two lymphoid tissues and divided by five or two, respectively. Global average scores ranged from 0 to 8. A pig was diagnosed as PMWS when it suffered clinical signs compatible with PMWS (mainly wasting) and the global average score was superior to 4. All the pigs
classified as PMWS cases had to have an amount of PCV2 antigen/nucleic acid of 2 or more in at least one studied lymphoid tissue. Based on this global scoring system and the clinical condition, necropsied pigs were classified into three different categories (Grau-Roma et al., 2008): i) PMWS cases: pigs showing clinical wasting and a global scoring >4, corresponding to pigs with moderate to severe lymphoid lesions and moderate to high amount of PCV2 antigen/nucleic acid; ii) Wasted non-PMWS cases: pigs showing clinical wasting but a global scoring ≤4, corresponding to no or slight PMWS characteristic histopathological lesions and no or low amount of PCV2 antigen/nucleic acid within lymphoid tissues; iii) Healthy pigs: pigs showing good clinical condition, which presented low global scoring averages (≤4), corresponding to no or slight PMWS characteristic histopathological lesions and no or low amount of PCV2 antigen/nucleic acid within lymphoid tissues.

2.3. PCV2 Serology
Collected sera were analyzed by serology to detect individual antibody titers to PCV2. An immunoperoxidase monolayer assay (IPMA) (Rodriguez-Arrioja et al., 2000) was applied on Spanish samples using serial three-fold dilution of sera from 1:20 to 1:4860. An in-house Enzyme Linked Immunosorbent Assay (ELISA) technique (Enøe et al., 2006) was used to analyze the Danish samples. All serologic titers were expressed as reciprocal dilutions and coded titers corresponding to log10 values in order to facilitate statistical analysis and graphic representations. Thus, the equivalence used between serologic titers and coded titers in IPMA was: 0=seronegative, 1.3 = 1:20, 1.8 = 1:60, 2.3 = 1:180, 2.7 = 1:540, 3.2 = 1:1620 and 3.7 = 1:4860. The equivalence in ELISA test was: 0=seronegative, 1.0=1:10, 1.7=1:50, 2.4=1:250, 3.1=1:1250, 3.8=1:6250 and 4.5=1:31250.
In order to compare the two serological methods, a set of 94 serum samples were analyzed in both laboratories. A positive correlation was detected between IPMA and ELISA titres (R=0.84, p<0.001), and a good agreement was determined by the kappa statistic (k=0.688), showing that both tests gave congruent results. It is worthy mentioning that all samples that gave negative results by IPMA were also negative by ELISA test; 6 out of 94 samples gave positive results by IPMA (low titres 1:20-1:60) and negative by ELISA.

2.4. DNA extraction and PCV2 quantitative PCR (qPCR)

DNA from Spanish samples was extracted from 200 µl of serum or 300 µl of nasal PBS solution (Nucleospin® Blood, Macherey-Nagel, GmbH & Co KG, Düren, Germany) or from 300 µl of rectal PBS solution (QIAamp DNA Stool Mini Kit, Qiagen® GmbH, Germany), according to the manufacturers instructions. DNA from serum and nasal swab samples was eluted in 100 µl of elution buffer, and in 200 µl for rectal swab samples. DNA from Danish samples was extracted from 200 µl of serum or 200 µl nasal PBS solution (QIAamp DNA Mini Kit, Qiagen® GmbH, Germany) or 200 µl of rectal PBS solution (QIAamp DNA Stool Mini Kit, Qiagen® GmbH, Germany), according to the instructions of the manufacturer. DNA was eluted with 200 µl elution buffer.

PCV2 DNA was quantified using two previously described real time qPCR techniques on Spanish (Olvera et al., 2004) and Danish (Hjulsager et al., 2008) samples, respectively. The performance of both qPCRs was compared in a previous study based on field samples (Hjulsager et al., 2008). This latter work showed that the two qPCRs gave comparable results showing a highly significant linear association between results.
of the two assays. However, the method performed by the Danish laboratory had higher sensitivity and yielded systematically higher PCV2 load values than the one used in the Spanish laboratory (corresponding to a mean difference of 1.4 log\textsubscript{10} copies of PCV2 per ml of sample).

2.5. Statistical analyses

Statsdirect (version 2.6.6, CamCode, Ashwell, UK) and SPSS 15.0 (SPSS Inc. Chicago, USA) were used for statistical analyses. Analysis of variance with Bonferroni multiple comparisons (for normally distributed variables) and Kruskal-Wallis and Mann-Whitney tests (for non-normally distributed variables) were used to compare IPMA titres, ELISA titres, lesional scores, antigen or DNA staining levels in lymphoid tissues, and viral loads in sera, nasal swabs and rectal swabs between the three categories of pigs studied (PMWS cases, wasted non-PMWS cases and healthy) in both countries. Chi-square test was used to compare the proportions of positive qPCR results between the three categories of pigs studied; when statistically significant different proportions were detected, the Fischer’s exact test was applied to compare in pairs the different categories of pigs. The Fischer’s exact test was also applied to compare the proportion of viremic and non-viremic sows that had at least one PMWS case in their litter. Linear associations between viral loads detected in the different samples, between lesions characteristic of PMWS and amount of PCV2 in lymphoid tissues, and between total antibody titres detected in sows and their piglets at 1 week of age, were determined by Pearson’s (normally distributed variables) and Spearman’s (non-normally distributed variables) correlations. To determine the diagnostic performance of serology and qPCR techniques on clinically affected animals, a Receiver Operating Characteristic (ROC) analysis was carried out using Statsdirect. For this, only wasted pigs were considered,
which perfectly fits a practical situation where a diagnosis of clinically suspected
animals at field is required. Thus, PMWS cases were considered as diseased, whereas
wasted non-PMWS cases were considered as non-diseased animals. The probability of
making a correct diagnosis was assessed through calculation of positive predictive value
(PV+) and negative predictive value (PV-). The level of significance for all analyses (α)
was set to p<0.05.

3. Results

3.1. Studied animals and histopathology

A total of 108 and 118 animals were necropsied and pathologically characterised in
Spain and Denmark, respectively (Table 2). All Spanish PMWS outbreaks occurred at
the beginning of the fattening phase, whereas all Danish clinical outbreaks were
observed at nurseries. Mean±SD of weeks of age at necropsy were 10.6±1.8 (PMWS:
10.6±1.7, healthy: 10.8±2.0, wasted non-PMWS: 10.3±1.9) and 14.7±2.5 (PMWS:
14.0±2.1, healthy: 14.7±2.5, wasted non-PMWS: 15.2±2.7) in Denmark and Spain,
respectively. Accordingly, highest mortality ratios were observed at nurseries
(Denmark) and fattening facilities (Spain).

After histopathological examination, 35 out of 78 (45%) and 51 out of 91 (56%) pigs
showing wasting were diagnosed as PMWS cases in Spain and Denmark, respectively.
PMWS cases had higher amount of PCV2 in tissue (antigen or DNA staining), as well
as higher histopathological scores for lymphoid depletion and granulomatous infiltration
compared to wasted non-PMWS cases and healthy pigs from both countries (p<0.0001).
Moreover, wasted non-PMWS pigs had higher global histopathological average scores
(p<0.0001), as well as higher lymphoid depletion (p<0.02) and granulomatous
infiltration (p<0.01) scores, than healthy pigs from both countries. The PCV2 amount in lesions of wasted non-PMWS pigs was higher than in healthy pigs from Spain (p<0.01) but not from Denmark (p=0.5). Surprisingly, 1 (Spain) and 2 (Denmark) pigs with good clinical condition (apparently healthy) had a global average score >4, showing both the lesional score and the score for PCV2 amount, each above 2. These three animals were finally not classified into the category of healthy pigs and were consequently excluded from the statistical analyses due to the low number of cases with this situation.

3.2 PCV2 qPCR

Percentage of pigs with PCV2 qPCR positive results at each sampling point from both countries are displayed in table 4. In Spain, results showed only sporadic positive values before 11 weeks of age. During the last two samplings, the number of qPCR positive pigs increased progressively over time in all the three types of material studied (serum and nasal and rectal swabs), reaching the maximum levels at the moment of PMWS outbreak. In Danish farms, 18%, 69% and 23% of sera, nasal swabs and rectal swabs gave positive results by PCV2 qPCR technique at the first week of age, increasing also progressively to the moment of occurrence of clinical disease. In Spain, a higher proportion of qPCR PCV2 positive pigs in sera were observed among PMWS cases compared to healthy animals at 11 weeks of age (p<0.015), as well as in sera (p<0.0001), nasal (p<0.05) and rectal swabs (p<0.01) at necropsy. Contrary, no statistical significant differences were found between the prevalence of PCV2 among the three categories (PMWS, healthy and wasted non-PMWS) of studied Danish pigs. At necropsy, PCV2 prevalence in PMWS affected pigs was 100% in all 3 types of samples from both countries, with the exception that rectal swabs from PMWS Spanish cases had a prevalence of only 68% (23 out of 34).
Means of PCV2 load by qPCR in positive samples (figure 1) showed significant differences between PMWS cases and healthy pigs at necropsy in serum, nasal and rectal swabs from both countries \((p<0.001)\). Furthermore, it was possible to distinguish PMWS cases from healthy pigs in Danish farms at the sampling prior at the necropsy on sera \((p<0.01)\) and nasal swabs \((p<0.05)\), but not in Spanish samples, even though a tendency was observed for serum samples \((p=0.08)\).

Positive and significant correlations were found in both countries among PCV2 viral loads in sera and nasal swabs \((\text{Spain: } R=0.693, \ p<0.0001; \text{Denmark: } R=0.663; p<0.001)\), in sera and rectal swabs \((\text{Spain: } R=0.608, \ p<0.0001; \text{Denmark: } R=0.720, p<0.0001)\) and in nasal and rectal swabs \((\text{Spain: } R=0.593; \ p<0.0001; \text{Denmark: } R=0.736, \ p<0.0001)\) considering longitudinally collected samples. Moreover, positive and significant correlations were also found between PCV2 amount detected in tissue by ISH/IHC and viral loads detected by qPCR in sera \((\text{Spain: } R=0.625, \ p<0.0001; \text{Denmark: } R=0.827, \ p<0.0001)\), in nasal swabs \((\text{Spain: } R=0.573, \ p<0.0001; \text{Denmark: } R=0.779, \ p<0.0001)\) and in rectal swabs \((\text{Spain: } R=0.289, \ p<0.01; \text{Denmark: } 0.507, \ p<0.0001)\) collected at the moment of necropsy from both countries.

One healthy and 2 PMWS Danish cases were qPCR positive in sera at all sampling times (from 1 to 10-11 weeks of age). These animals were positive in nasal swabs and negative in rectal swabs at the first week of age and intermittently positive in both swabs afterwards. Moreover, the only Spanish pig that was PCV2 positive by qPCR in sera at 7 weeks of age was a PMWS case which was also PCV2 qPCR positive in sera, nasal and rectal swabs until necropsy (at 12 weeks of age).
Positive PCV2 qPCR results were found in 2 out of the 87 (2.3%) and in 20 out of 68 (29.4%) studied sow’s sera from Spain and Denmark, respectively (table 5). In Denmark, 9 out of 20 sows with low but detectable viremia (45.0%) and 18 out of 48 sows with no detectable viremia (37.5%) had one or more PMWS affected pig in their litter (p=0.596). Thus, there was no indication of any association between sow-viremia and bearing of PMWS cases in the Danish study. Due to the low number of PCV2 positive sows in the Spanish data-set, a similar analysis based on Spanish data was not possible.

3.3. PCV2 Serology

PCV2 serology results from both countries are displayed in figure 2. PCV2 maternal antibodies were present at the first week of age in all pigs from both countries. In Spain, healthy pigs had significant higher titres than PMWS and wasted non-PMWS cases at 1 week of age (p<0.05). However, no statistical significant differences were found between antibody titres detected at 3 and 7 weeks of age. Moreover, Spanish PMWS cases had lower antibody titres than non-PMWS affected pigs (healthy and wasted non-PMWS cases) at 11 weeks of age (p<0.05) and at necropsy (p<0.05). In Denmark, healthy pigs had statistically significant higher PCV2 maternal antibody titres than PMWS cases during the first three samplings (p<0.01). No statistical significant differences were obtained in Danish pigs after seroconversion.

For the Spanish study, a significant and positive correlation was found between sow PCV2 antibody titres and PCV2 antibody titres of their piglets at 1 week of age
(R=0.66, p<0.0001). No correlation was found for antibody titers between Danish sow and piglets (R=0.2, p=0.2).

3.5. Diagnostic performance of qPCR and serological tests

Serology and qPCR results from samples coming from pigs with clinical signs of PMWS at necropsy were used in a ROC analysis to evaluate the diagnostic performance of those techniques for live animals and the optimal conditions under which those techniques should be applied. Optimal cut-off values for each studied sample material and technique applied, together with their sensitivity, specificity, PV+ and PV- values, are displayed in table 6. Optimal cut-offs were calculated maximizing both sensitivity and specificity values.

None of the tests on the studied samples were specific and sensitive enough to diagnose PMWS at the level of individual pigs in any of the two countries. Consequently, none of the tests on the studied samples gave PV+ or PV- values higher than 90% in both countries. On the other hand, taking into account the previously described bias between the two qPCR assays of approximately 1.4 log copies PCV2/ml (Hjulsager et al., 2008) qPCR on sera gave similar optimal cut-off for both qPCRs (6.21 in Spain and 7.43 in Denmark). This fact led us to further explore the diagnostic performance of a combination of qPCR in sera and serology tests for the Danish and the Spanish data-sets. Results showed that the serial use of qPCR from sera and serology gave adequate results in terms of specificity in both countries, but with an evident lack of sensitivity. Thus, when Spanish qPCR serum load ≥6.21 and IPMA titres ≤1:1620 were simultaneously considered to confirm or discard a PMWS case, specificity and PV+ were 100%, but sensitivity was 42.9% and PV- was 68.3%. Regarding Danish tests,
when qPCR values in sera were ≥ 7.43 and ELISA titres were $= 0$, specificity was $=93.3\%$, PV$+=83.3\%$, sensitivity=21.7% and PV$-=43.8\%$.

4. Discussion

The lack of an effective and consistent experimental model to reproduce PMWS makes it especially relevant to carry out epidemiological studies within PMWS affected farms. Up to date, few longitudinal epidemiological data are available on PCV2 infection dynamics in PMWS affected farms (Rodriguez-Arrioja et al., 2002; McIntosh et al., 2006; Carasova et al., 2007). In the present work, serology and qPCR techniques were used to describe the evolution of PCV2 infection and excretion in histopathologically well-characterized pigs (PMWS cases, wasted non-PMWS cases and healthy pigs) from two different countries: Spain and Denmark. This is the first collaborative multi-centre epidemiological study on PMWS, which has been carried-out on different farms and in two different countries.

Overall, similar PCV2 dynamic patterns were observed between countries. Serological analyses showed maternal antibody titres in all piglets at 1 week of age, which decreased gradually and reached a minimum at approximately 6-7 weeks of age. PCV2 viral load in serum increased concurrently to waning of maternal antibody levels, reaching the highest level at PMWS outbreak in all the three studied types of samples (serum, and nasal and rectal swabs) in both countries. As expected (Brunborg et al., 2004; Olvera et al., 2004), PCV2 load was higher in PMWS affected than in healthy pigs at the moment of necropsy. Interestingly, even at the sampling previous to the clinical outcome (9 and 11 weeks of age for Denmark and Spain, respectively), PMWS cases had significant higher PCV2 load (Denmark) or PCV2 prevalence (Spain) than
healthy pigs, suggesting that PMWS affected pigs suffered from a higher viral load and/or longer viremia than healthy ones.

A previous comparison of both qPCR showed that despite the results obtained by both techniques had a good correlation, the Danish assay was more sensitive and yielded systematically higher PCV2 viral loads than the Spanish assay (Hjulsager et al., 2008). However, these differences in qPCR performance can not explain all the variation between the findings in Spain and Denmark. Additional variation in results potentially could be due to the employment of different extraction methods, which could also affect the sensitivity of PCV2 detection (Fahle and Fischer, 2000; Cler et al., 2006).

PMWS was described as enzootic and epizootic presentations during the studied period in Spain and Denmark, respectively (Segalés et al., 2007). Interestingly, the high percentage of nasal Danish swabs positive by qPCR at younger ages agrees with a previous work performed during the years of maximum PMWS affection (epizootic presentation) in Spain, which was based on conventional non-quantitative PCR on nasal swabs (Sibila et al., 2004). Furthermore, present results showed a substantial delay in PMWS age-presentation in Spain compared to Denmark. These data suggested the existence of a relation between early infection and age at disease presentation. The apparent higher PCV2 prevalence observed in young Danish piglets and sows suggested that an earlier and higher PCV2 infection pressure was present in Danish farms compared to Spanish ones, which might be the reason for an earlier PMWS presentation and reflects the epidemiological disease presentation in both countries during the study period.
The positive and significant correlation found between amounts of PCV2 detected in lymphoid tissues, sera and swabs suggests that nasal and rectal swabs are suitable indicators of the level of PCV2 excretion. However, it has to be taken into account that swab samples may be associated with a certain degree of error if results from swab samples collected in different ways are being compared, which is not the case in the present study. Significant differences in viral loads in rectal and nasal swabs between PMWS affected and healthy animals support the idea that pigs suffering from PMWS excrete higher levels of PCV2 by nasal and rectal routes when showing the disease (Segalés et al., 2005b). These differences were also observed at the sampling prior to the clinical manifestation, when higher viral load in PMWS affected pigs was detected in Danish nasal swabs. Results also showed that a higher prevalence of PCV2 was present in the nasal cavity than in faeces during the PMWS outbreak, further supporting the oro-nasal route as the most important route of PCV2 infection and transmission (Segalés et al., 2005a).

The results of the present study indicated that the major spread of PCV2 occurred between 4 and 6 weeks of age in Danish farms and between 7 and 11 weeks of age in Spanish farms, which corresponded to the nursery phase (Denmark) and/or at the beginning of fattening (Spain). However, the fact that some sows were viremic during the lactating period together with PCV2 detection in piglets demonstrated that PCV2 infection was already present at pre-weaning ages and support the possible transmission of virus from sows to nursing piglets (Larochelle et al., 2003; Sibila et al., 2004) and also points out a potential vertical transmission (Pensaert et al., 2004; Shibata et al., 2006). In fact, PCV2 DNA was repeatedly found in sera of pigs from 7 to 70 days of life, further supporting the idea that some animals can be persistently infected under
field conditions, even in the presence of high levels of PCV2 specific antibodies
(Rodriguez-Arrioja et al., 2002; McIntosh et al., 2006). Those viremic pigs were
demonstrated to intermittently excrete PCV2 in nasal excretions and faeces, which
could potentially cause infection to their littermates and contribute to virus
dissemination in weaning and/or fattening facilities. On the other hand, no difference
between PMWS occurrence in piglets from viremic and non-viremic Danish sows was
found, which is in contradiction to a previously published field study (Calsamiglia et al.,
2007), probably due to cross-fostering practices which were allowed in Danish farms, in
contrast to the above-mentioned study.

PMWS cases had lower maternal antibody titres than healthy ones in both studied
countries, supporting previous studies indicating that total antibody titres may confer a
certain protection against PCV2 infection and clinical disease (Rodriguez-Arrioja et al.,
2002; Lopez-Soria et al., 2005; Calsamiglia et al., 2007). Maternal antibodies at the first
week of age were correlated with sow antibody levels in the Spanish study, but not in
the Danish one, probably as a consequence of cross-fostering practice in the Danish
study. Antibody titres after infection in Spanish pigs showed that non-PMWS affected
animals (both healthy and wasted non-PMWS affected pigs) had a higher antibody
response, being able to produce higher antibody titres than PMWS affected animals.
The fact that Spanish wasted non-PMWS and healthy pigs were as a mean 2 and 1
week, respectively, older than PMWS could contribute in explaining these differences at
the moment of necropsy, but not at 11 weeks of age. It is possible that wasted non-
PMWS affected animals, although infected with higher PCV2 loads than healthy pigs,
were able to overcome or limit the disease expression by the development of PCV2
antibodies, among other potential factors. However, these differences were not observed
in Danish farms. Taken together these findings suggest that total antibodies are not the only factor involved in avoiding PMWS development (Meerts et al., 2006; Fort et al., 2007). Other factors such as levels of neutralizing antibodies or cellular immunity, although they were not evaluated in the present work, were previously demonstrated to play an important role in PMWS development (Segalés et al., 2004; Fort et al., 2007).

Histopathological results showed that only half of pigs suspected to suffer from PMWS in an affected farm during the acute outbreak corresponded to true PWMS affected animals, according to the internationally accepted individual case definition (Segalés et al., 2005a). There is a wide range of causes apart from PMWS that can produce wasting in pigs (Harding, 1997), which makes the group of wasted non-PMWS affected pigs difficult to interpret collectively from a diagnostic point of view. Severity of PMWS-like lesions and amount of PCV2 in lymphoid tissues were evaluated by the above described average histopathological score, which is based on scores for each histopathological finding each varying from 0 to 4. Thus, wasted non-PMWS pigs with a global average score close to 0 might correspond to animals suffering from wasting due to PMWS-unrelated causes, such as other infectious or non-infectious diseases and/or management conditions. On the contrary, wasted non-PMWS pigs with global scoring close to 4 might correspond to convalescent pigs or to pigs that were able to overcome or limit the disease expression (Segalés, 2002; Krakowka et al., 2005). The fact that wasted non-PMWS affected pigs had higher global histopathological scores than healthy animals, suggests that PCV2 was involved to some degree in the clinical signs that those pigs displayed.
Most healthy pigs had practically no PMWS-like lesions and none to low amounts of PCV2 in lymphoid tissues. However, approximately one third of Spanish and Danish healthy pigs had global histopathological scores ≥ 2. This finding indicated that characteristic mild PMWS microscopic lesions can be present in subclinically PCV2 infected pigs in the field, which has been previously observed in both experimental (Allan et al., 1999; Grasland et al., 2005; Krakowka et al., 2007) and field conditions (Quintana et al., 2001). Surprisingly, 3 out of the 57 euthanized clinically healthy animals (one from Spain and two from Denmark) had moderate to severe lesions and moderate to high amount of PCV2 in lymphoid tissues. These three animals had also high amount of PCV2 in sera, nasal and rectal swabs. One possible explanation for this situation would be that these animals were in the initial phase of PMWS development (Segalés, 2002), thus displaying minimal or no signs of disease yet. On the other hand, those three animals had moderate to high PCV2 antibody titres, which alternatively suggests that antibody response was maybe enough to counteract the potential detrimental effect of the infection (overt clinical disease). It has to be taken into account, however, that the criterion to select healthy animals was the clinical evaluation at the moment of PMWS outbreak, selecting the best pigs from a reduced group comprised by 100 pigs ear-tagged at 1 week of age. Therefore, pre-clinical signs such as initial decrease of growing or loose of weight could have been unnoticed. For obvious reasons, it is not possible to assess if these 3 animals would have been clinically affected by the disease subsequently.

Diagnostic performance of both qPCR and serology tests used in Denmark and Spain was assessed to evaluate if they can be useful to diagnose PMWS in live animals. This was especially relevant in the present work because most of samples were obtained
from live animals, fitting perfectly a practical situation in which veterinarians may be able to diagnose PMWS without having to euthanize suspected animals. Taking into account the bias among the qPCR methods used (Hjulsager et al., 2008), sera was the only type of sample that gave an optimal cut-off value similar in both countries. Those values were close to the threshold of 10^7 PCV2 copies per ml of sera previously proposed (Brunborg et al., 2004; Olvera et al., 2004; Fort et al., 2007). Differences in sampling procedure and material used could explained the different optimal cut-offs values obtained by nasal and rectal swabs in both countries. Overall, our results indicated that PCV2 qPCR (mainly from sera and nasal swabs) can give valuable information related to PMWS status in a group of pigs, being able to differentiate a population of PMWS affected from one of non-PMWS affected pigs during a PMWS outbreak and even some days before. However, a desirable probability of making a correct individual diagnosis higher than 90% was far from being achieved. The combination of the qPCR technique and a serology test improved specificity and PV+, indicating that such combination could be used to potentially confirm PMWS in live PMWS-suspected animals, but with a high percentage of false negatives due to their low combined sensitivity and PV-. Therefore, the lack of sensitivity and/or specificity values observed from both tests used separately or combined suggested that qPCR and/or serology tests are not able to substitute histopathology plus detection of PCV2 in tissues for the individual PMWS diagnosis within PMWS affected farms.

The present report is the first descriptive infection dynamics study performed in multiple PMWS affected farms from different countries. This work describes the evolution of PCV2 infection, excretion and PCV2 antibodies in histopathologically well-characterized pigs. Vaccines against PCV2 have been recently developed and are
under commercial use in different parts of the world. Understanding PCV2 infection
dynamics in the field is considered crucial for a proper design of vaccine strategies and
its corresponding monitoring.

Acknowledgements

This work was funded by the Projects No. 513928 from the Sixth Framework
Programme of the European Commission, GEN2003-20658-C05-02 (Spanish
Government) and Consolider Ingenio 2010 – PORCIVIR (Spanish Government). We
are grateful to all the production team from Vallcompanys S.A. for their great
collaboration during the study, and to M. Pérez, M. Mora, E. Huerta, H. Nielsen, H.
Tran and I. Larsen for their excellent technical assistance. PhD studies of Mr. Grau-
Roma are funded by a pre-doctoral FPU grant of Ministerio de Educación y Ciencia of
Spain.

References

Allan, G.M., Kennedy, S., McNeilly, F., Foster, J.C., Ellis, J.A., Krakowka, S.J.,
Meehan, B.M., Adair, B.M., 1999, Experimental reproduction of severe wasting
disease by co-infection of pigs with porcine circovirus and porcine parvovirus. J
Comp Pathol 121, 1-11.

Armstrong, D., Bishop, S., 2004, Does genetics or litter effect influence mortality in
PMWS. Proceedings of the international pig veterinary society congress, p.809.

Brunborg, I.M., Moldal, T., Jonassen, C.M., 2004, Quantitation of porcine circovirus
type 2 isolated from serum/plasma and tissue samples of healthy pigs and pigs
with postweaning multisystemic wasting syndrome using a TaqMan-based real-

cases with and without PCV2-associated lesions provides evidence for

Pensaert, M.B., Sanchez, R.E., Jr., Ladekjaer-Mikkelsen, A.S., Allan, G.M., Nauwynck,
H.J., 2004, Viremia and effect of fetal infection with porcine viruses with

Quintana, J., Segalés, J., Rosell, C., Calsamiglia, M., Rodríguez-Arrioja, G.M.,
Chianini, F., Folch, J.M., Maldonado, J., Canal, M., Plana-Duran, J., Domingo,
M., 2001, Clinical and pathological observations on pigs with postweaning
multisystemic wasting syndrome. Vet Rec 149, 357-361.

Rodríguez-Arrioja, G.M., Segalés, J., Calsamiglia, M., Resendes, A.R., Balasch, M.,
Plana-Duran, J., Casal, J., Domingo, M., 2002, Dynamics of porcine circovirus
type 2 infection in a herd of pigs with postweaning multisystemic wasting

Rodríguez-Arrioja, G.M., Segalés, J., Balasch, M., Rosell, C., Quintant, J., Folch, J.M.,
Plana-Duran, J., Mankertz, A., Domingo, M., 2000, Serum antibodies to porcine
circovirus type 1 and type 2 in pigs with and without PMWS. Vet Rec 146, 762-
764.

Le Dimna, M., Jestin, A., Madec, F., 2003, Risk factors for porcine post-
weaning multisystemic wasting syndrome (PMWS) in 149 French farrow-to-

Rosell, C., Segalés, J., Plana-Duran, J., Balasch, M., Rodríguez-Arrioja, G.M.,
Kennedy, S., Allan, G.M., McNeilly, F., Latimer, K.S., Domingo, M., 1999,
Pathological, immunohistochemical, and in-situ hybridization studies of natural
cases of postweaning multisystemic wasting syndrome (PMWS) in pigs. J Comp Pathol 120, 59-78.

Segalés, J., Calsamiglia, M., Olvera, A., Sibila, M., Badiella, L., Domingo, M., 2005b, Quantification of porcine circovirus type 2 (PCV2) DNA in serum and tonsillar, nasal, tracheo-bronchial, urinary and faecal swabs of pigs with and without postweaning multisystemic wasting syndrome (PMWS). Veterinary Microbiology 111, 223-229.

Figure 1. Mean of positive Log10(copies PCV2 per ml serum or per ml swab material) in serum (A), nasal swabs (B) and rectal swabs (C) by qPCR in PMWS (), Wasted non-PMWS () and Healthy () pigs at the different samplings from Spanish (left) and Danish (right) farms. a,b,c indicate statistical significant differences between groups (p < 0.05).
Figure 2. Mean ± SD coded titres for porcine circovirus type 2 (PCV2) total antibodies in PMWS (▲), Wasted non-PMWS (■) and Healthy (○) pigs at the different samplings from Spanish (above) and Danish (below) farms. Different letters in each sampling indicate significant differences between groups (p < 0.05).
Table 1. Experimental design of the study in Denmark and Spain.

<table>
<thead>
<tr>
<th>Country</th>
<th>No. farms</th>
<th>No. batches</th>
<th>Pigs per batch</th>
<th>Sows per batch</th>
<th>Cross-fostering</th>
<th>Age of sampling prior to necropsy (weeks)</th>
<th>No. of healthy pigs necropsied per batch</th>
<th>No. of PMWS-like affected pigs necropsied</th>
<th>Tissues collected***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denmark</td>
<td>8</td>
<td>8</td>
<td>109-154</td>
<td>10</td>
<td>Yes</td>
<td>1, 4, 6, 9</td>
<td>2-5</td>
<td>4-15**</td>
<td>MLN, SILN</td>
</tr>
<tr>
<td>Spain</td>
<td>3</td>
<td>6</td>
<td>100-105</td>
<td>10-14*</td>
<td>No</td>
<td>1, 3, 7, 11</td>
<td>3-5</td>
<td>8-19</td>
<td>MLN, SILN, SLN, TBLN, TONSIL</td>
</tr>
</tbody>
</table>

* In 2 out of 6 Spanish studied batches only males were followed up. Consequently, up to 21 sows were needed to select 100 pigs in those two batches.

** This range comprised 7 out of 8 studied Danish batches, but in one batch this number was 38.

***MLN = mesenteric lymph node, SILN= superficial inguinal lymph node, SLN=sub-mandibular lymph node, TBLN=tracheo-bronchial lymph node.
Table 2. Characteristics of farms and studied animals. Sanitary status describes which other pathogens were known to be present or absent in the sow-farm by serological determinations at the time the study was performed. Aujeszky disease virus (ADV), porcine parvovirus (PPV), porcine reproductive and respiratory virus (PRRSV), swine influenza virus (SIV), *Actinobacillus pleuropneumoniae* (Ap), *Lawsonia intracellularis* (law), *Mycoplasma hyopneumoniae* (Myc), *salmonella spp.* (salm), Toxigenic *Pasteurella multocida* (PMT).

<table>
<thead>
<tr>
<th>Farm</th>
<th>Health status</th>
<th>Production system</th>
<th>Number of sows</th>
<th>Batch</th>
<th>Weeks of age at necropsy</th>
<th>Number of necropsied pigs during PMWS outbreak</th>
<th>% Mortality**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PMWS</td>
<td>Wasted non-PMWS</td>
<td>Healthy</td>
</tr>
<tr>
<td>SP-1</td>
<td>PRRSV+, ADV+, Myc+, PPV+, SIV+, Salm+</td>
<td>3 sites</td>
<td>2400</td>
<td>SP-1</td>
<td>18-21</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>SP-2</td>
<td>PRRSV+, ADV+, Myc+, PPV+, SIV+, Salm+</td>
<td>2 sites*</td>
<td>600</td>
<td>SP-2a</td>
<td>15-17</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SP-2b</td>
<td>13-15</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SP-2c</td>
<td>11-15</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>SP-3</td>
<td>PRRSV-, ADV-, Myc-, PPV+, SIV+, Salm+</td>
<td>2 sites</td>
<td>950</td>
<td>SP-3a</td>
<td>12-15</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SP-3b</td>
<td>12-15</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-1</td>
<td>PRRSV+, Myc+, PPV+, SIV+, law+, Ap12+</td>
<td>1 site</td>
<td>570</td>
<td>DK-1</td>
<td>9-10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>SP-2</td>
<td>PRRSV+, Myc+, PPV+, SIV+, law+, Ap6+</td>
<td>2 sites*</td>
<td>700</td>
<td>DK-2</td>
<td>10-13</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DK-3</td>
<td>10-13</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>SP-3</td>
<td>PRRSV+, Myc+, PMT+, PPV+, SIV+, law+, Ap6+</td>
<td>3 sites</td>
<td>240</td>
<td>DK-4</td>
<td>10-13</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>SP-4</td>
<td>PRRSV+, Myc+, PPV+, SIV+, law+, Ap2+, Ap6+, PMT+</td>
<td>1 site</td>
<td>300</td>
<td>DK-5</td>
<td>10-11</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>SP-5</td>
<td>PRRSV+, Myc+, PPV+, SIV+, law+, Ap6+, Ap12+</td>
<td>2 site</td>
<td>570</td>
<td>DK-6</td>
<td>10-13</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>SP-6</td>
<td>PRRSV+, Myc+, PMT+, PPV+, SIV+, law+, Ap6+</td>
<td>2 sites</td>
<td>900</td>
<td>DK-7</td>
<td>8-10</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>SP-7</td>
<td>PRRSV+, Myc+, Ap2+, Ap12+, PPV+, SIV+, law+</td>
<td>1 site</td>
<td>400</td>
<td>DK-8</td>
<td>9</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>SP-8</td>
<td>PRRSV+, Myc+, PPV+, SIV+, law+</td>
<td>1 site</td>
<td>550</td>
<td>DK-9</td>
<td>9</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

* All studied 2 site farms had sites I and II located in the same farm and site III located separately.
** Percentages of mortality are referred to the total number of pigs present in each phase.
*** Not recorded data
Table 3. Histopathological scoring system used to evaluate the presence of PMWS-like lesions in studied lymphoid tissues of each necropsied pig.

<table>
<thead>
<tr>
<th>Evaluated parameter</th>
<th>Scoring value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Lymphocyte depletion</td>
<td>Absence</td>
</tr>
<tr>
<td>Granulomatous infiltration</td>
<td>Absence</td>
</tr>
<tr>
<td>ISH/IHC labelling</td>
<td>No labelling</td>
</tr>
</tbody>
</table>
Table 4. Percentage of PCV2 qPCR positive serum, nasal and rectal samples at the different samplings. When statistical significant differences between studied groups were detected, percentage of qPCR positive animals are given in parentheses (PMWS, wasted non-PMWS and healthy pig, respectively) and differences indicated by superscripts.

<table>
<thead>
<tr>
<th>Samplings (weeks of age in Spain - Denmark)</th>
<th>1st (1)</th>
<th>2nd (3-4)</th>
<th>3th (6-7)</th>
<th>4th (9-11)</th>
<th>5th*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sera (Spanish farms)</td>
<td>0</td>
<td>0.9</td>
<td>0.9</td>
<td>40.7</td>
<td>76.0</td>
</tr>
<tr>
<td></td>
<td>(54<sup>a</sup>;46<sup>b</sup>;21<sup>b</sup>)</td>
<td></td>
<td></td>
<td>(100<sup>b</sup>;83<sup>b</sup>;41<sup>c</sup>)</td>
<td></td>
</tr>
<tr>
<td>Nasal</td>
<td>0.9</td>
<td>2.8</td>
<td>31.5</td>
<td>70.4</td>
<td>87.0</td>
</tr>
<tr>
<td></td>
<td>(100<sup>a</sup>;86<sup>b</sup>;76<sup>b</sup>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectal</td>
<td>8.4</td>
<td>1.9</td>
<td>10.3</td>
<td>45.8</td>
<td>50.5</td>
</tr>
<tr>
<td></td>
<td>(66<sup>a</sup>;51<sup>a</sup>;28<sup>b</sup>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sera (Danish farms)</td>
<td>18.4</td>
<td>16.0</td>
<td>41.0</td>
<td>93.4</td>
<td>94.8</td>
</tr>
<tr>
<td>Nasal</td>
<td>69.3</td>
<td>87.5</td>
<td>96.4</td>
<td>96.4</td>
<td>100</td>
</tr>
<tr>
<td>Rectal</td>
<td>22.8</td>
<td>35.1</td>
<td>50.9</td>
<td>96.3</td>
<td>98.5</td>
</tr>
</tbody>
</table>

*5th sampling correspond to necropsy moment in both countries.
Table 5. Number of qPCR PCV2 positive sows in sera, mean of viral load of positive sows, and number of PMWS cases from viremic and non-viremic sows per studied batch.

<table>
<thead>
<tr>
<th>Country</th>
<th>Batch</th>
<th>Number of PCV2 qPCR positive sows /Number studied sows</th>
<th>Viral load of positive sows (Log_{10} copies PCV2/ml) (mean±standard deviation)</th>
<th>Number of PMWS cases From PCV2 positive sows</th>
<th>From PCV2 negative sows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spain</td>
<td>sp-1a</td>
<td>0/12</td>
<td>-</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>sp-2a</td>
<td>1/12</td>
<td>5.35</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>sp-2b</td>
<td>0/12</td>
<td>-</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>sp-2c</td>
<td>0/12</td>
<td>-</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>sp-3a</td>
<td>0/20</td>
<td>-</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>sp-3b</td>
<td>1/19</td>
<td>5.13</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>2/87</td>
<td>5.24±0.16</td>
<td>3</td>
<td>32</td>
</tr>
<tr>
<td>Denmark</td>
<td>dk-1a</td>
<td>2/8</td>
<td>4.16±0.6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>dk-2a</td>
<td>1/10</td>
<td>3.84</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>dk-3a</td>
<td>0/10</td>
<td>-</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>dk-4a</td>
<td>6/10</td>
<td>3.79±0.31</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>dk-5a</td>
<td>6/10</td>
<td>3.87±0.12</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>dk-6a</td>
<td>2/10</td>
<td>3.97±0.34</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>dk-7a</td>
<td>1/4</td>
<td>3.79</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>dk-8a</td>
<td>2/6</td>
<td>3.71±0.19</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>20/68</td>
<td>3.86±0.27</td>
<td>17</td>
<td>33</td>
</tr>
</tbody>
</table>
Table 6. Optimal cut-off values, sensitivity, specificity, positive predictive value (PV+) and negative predictive value (PV-) obtained from ROC analyses from serological and quantitative PCR (qPCR) techniques in each of studied samples. qPCR results are expressed as log_{10} copies of PCV2 per ml sample.

<table>
<thead>
<tr>
<th>Country</th>
<th>Sample</th>
<th>Test</th>
<th>Optimal cut-off</th>
<th>Sensitivity (CI 95%)</th>
<th>Specificity (CI 95%)</th>
<th>PV+ (CI 95%)</th>
<th>PV- (CI 95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spain</td>
<td>Nasal swab</td>
<td>qPCR</td>
<td>≥5.9</td>
<td>68.6 (31.4-66.0)</td>
<td>74.4 (77.8-97.4)</td>
<td>68.6 (52.5-86.9)</td>
<td>74.4 (67.5-90.4)</td>
</tr>
<tr>
<td></td>
<td>Rectal swab</td>
<td>qPCR</td>
<td>≥5.9</td>
<td>41.2 (24.7-59.3)</td>
<td>97.7 (87.3-99.9)</td>
<td>93.3 (68.1-99.8)</td>
<td>67.7 (55.3-80.2)</td>
</tr>
<tr>
<td></td>
<td>Sera</td>
<td>qPCR</td>
<td>≥6.21</td>
<td>48.6 (31.4-66.0)</td>
<td>90.7 (77.8-97.4)</td>
<td>81.0 (58.1-94.6)</td>
<td>68.4 (55.5-81.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IPMA</td>
<td>≤1:1620</td>
<td>73.5 (55.6-87.1)</td>
<td>88.4 (74.9-96.1)</td>
<td>83.3 (65.3-94.4)</td>
<td>80.9 (68.5-93.2)</td>
</tr>
<tr>
<td>Denmark</td>
<td>Nasal swab</td>
<td>qPCR</td>
<td>≥9.2</td>
<td>86.2 (68.3-96.1)</td>
<td>81.3 (54.4-96.0)</td>
<td>89.3 (71.8-97.7)</td>
<td>76.4 (50.1-93.2)</td>
</tr>
<tr>
<td></td>
<td>Rectal swab</td>
<td>qPCR</td>
<td>≥8.1</td>
<td>50.5 (31.3-68.7)</td>
<td>82.4 (56.6-96.2)</td>
<td>83.3 (58.6-96.4)</td>
<td>48.3 (28.4-68.2)</td>
</tr>
<tr>
<td></td>
<td>Sera</td>
<td>qPCR</td>
<td>≥7.43</td>
<td>91.3 (72.0-98.9)</td>
<td>46.7 (21.3-73.4)</td>
<td>72.4 (54.4-90.4)</td>
<td>77.8 (40.0-97.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ELISA</td>
<td>=0</td>
<td>92.9 (76.5-99.1)</td>
<td>27.8 (9.7-53.5)</td>
<td>66.7 (50.6-82.7)</td>
<td>71.4 (29.0-96.3)</td>
</tr>
</tbody>
</table>