Role of coagulase-negative staphylococci in human disease
A. Piette, G. Verschraegen

To cite this version:

HAL Id: hal-00532477
https://hal.science/hal-00532477
Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Role of coagulase-negative staphylococci in human disease.

A. Piette*, G. Verschraegen

Department of Microbiology, University Hospital Ghent, Belgium

De Pintelaan 185, 9000 Gent

* Corresponding author. Tel.: +32 9 3326639; Fax: +32 9 3324985

E-mail address: anne.piette@ugent.be
Abstract

Coagulase-negative staphylococci (CNS) are normal inhabitants of human skin and mucous membranes. They have long been dismissed as culture contaminants, but now the potentially important role of CNS as pathogens and their increasing incidence has been recognized. Approximately 55%-75% of nosocomial isolates is methicillin resistant. CNS were the first organisms in which glycopeptide resistance was recognized. In the immunocompetent host, CNS endocarditis and urinary tract infections with *Staphylococcus saprophyticus* are the most common CNS infections. Other patients are usually immunocompromised, with indwelling or implanted foreign bodies. CNS account for approximately 30% of all nosocomial blood stream infections. The majority of these concern catheter-related sepsis. Other important infections due to CNS include central nervous system shunt infections, endophthalmitis, surgical site infections, peritonitis in patients with continuous ambulatory peritoneal dialysis and foreign body infections. CNS are rarely associated with mastitis in humans. *Staphylococcus lugdunensis* is more pathogenic than other CNS as it expresses several potential virulence factors. The distinction between clinically significant, pathogenic and contaminating isolates is a major problem. Several studies show clonal intra and inter hospital spread of *Staphylococcus epidermidis* strains which suggests that infection control measures may be necessary for multiresistant CNS isolates as for methicillin resistant *Staphylococcus aureus*. As a result of medical progress, mainly due to the use of invasive and indwelling medical devices, CNS are now a major cause of nosocomial and health-care related infections.

Keywords: coagulase-negative staphylococci, human medicine, species distribution, antibiotic resistance, endocarditis, urinary tract infections, blood stream infections, nosocomial infection
1. Introduction

Coagulase-negative staphylococci (CNS) are normal inhabitants of human skin and mucous membranes. They were first described in 1884 by Rodenbach as *Staphylococcus albus*, an avirulent staphylococcus. They have long been dismissed as culture contaminants, even in type 1 samples (samples obtained from a normally sterile site by needle aspiration or surgery). Only in 1958 the first report on the potential pathogenicity of CNS in patients with septicaemia was published (Smith et al., 1958). Later on, casuistic reports of CNS endocarditis, wound and urinary tract infections (UTI) appeared (Kloos et al., 1994). Since the 1970s, CNS are recognised as etiologic agents of a wide variety of infections. Patients with CNS infections are usually immunocompromised, with indwelling or implanted foreign bodies. CNS play a role in bacteraemia, central nervous system shunt infection, endocarditis, urinary tract infection, surgical site infections, endophthalmitis, foreign body infection and many other infections. The distinction between clinically significant, pathogenic and contaminating isolates is difficult and remains a major problem.

An overview of the medical literature on CNS is given, with special focus on identification, species distribution, virulence factors, antibiotic resistance, epidemiology and specific infections caused by CNS in humans.

2. Identification

Before 1975, *S. albus* or *S. epidermidis* was distinguished from *S. aureus* by the inability to clot blood plasma. Today, tests based on coagulase production and the thermonuclease reaction are used for rapid differentiation of *S. aureus* from other staphylococcal species (Huebner et al., 1999). Currently, 39 species of CNS are recognized (Euzéby, 2007). Sixteen of these species have been found in specimens of human origin. They are grouped in novobiocin-resistant species (*S. cohnii*, *S. saprophyticus*, *S. sciuri*, *S. xylosis*) and novobiocin-susceptible species (*S. auricularis*, *S. capitis*, *S.

Accurate identification of CNS isolates to species level is difficult to perform and expensive. According to Huebner et al., 1999, identification to species level is, in general, not necessary for good patient management. However, recent literature indicates accurate species identification is necessary to provide a better understanding of pathogenic potential of various CNS species (Heikens et al., 2005; Sivadon et al., 2005).

Before 1975, CNS were classified in different biotypes, according to Baird-Parker. In 1975, Kloos and Schleifer proposed a scheme for identification of staphylococci in the routine laboratory. This scheme is based on 13 key characteristics, such as coagulase activity, hemolysis, nitrate reduction and aerobic acid production from carbohydrates (Kloos et al., 1975). Nowadays, besides phenotypic methods, a variety of genotypic methods (16S rRNA, sodA, gap, rpoB, tuf gene sequencing) have been developed (Heikens et al., 2005; Layer et al., 2006; Mellmann et al., 2006).

Heikens et al. compared phenotypic with genotypic (16S rRNA gene and tuf gene sequencing) identification (Heikens et al., 2005). The results showed that tuf gene sequencing is the best identification method (5 of 57 isolates misidentified). The API staph ID test (BioMérieux, Marcy l’Etoile, France) appeared to be a reliable alternative (7 of 57 isolates misidentified). The performance of the BD Phoenix system (Becton Dickinson Diagnostic Systems, Sparks, MD, USA) was poor. A recent study (Layer et al., 2006) compared 3 phenotypic, commercial identification methods with a molecular identification method (gap based terminal restriction fragment length polymorphism analysis) as reference method. The BD Phoenix ID-13 system (Becton Dickinson Diagnostic Systems) identified 18 of 27 reference strains and 70 of 86 clinical isolates correctly, the VITEK 2 ID-GP system (BioMérieux) 20 of 27 reference strains and 80 of 86 clinical isolates, the ID 32 STAPH system (BioMérieux) 23 of 27 reference strains and 19 of 20 clinical isolates. Thus, genotypic methods are superior to phenotypic methods, but some phenotypic methods have a highly
acceptable level of identification accuracy when used in routine practice (Heikens et al., 2005; Layer et al., 2006).

3. Species distribution

Interpretation and comparison of the species distribution found in different studies is very difficult. The type of identification method used, may influence the species distribution found and some *Staphylococcus* species demonstrate habitat or niche preference. *S. capitis* for example is mainly found on the adult head, *S. cohnii* on the feet. *S. saprophyticus* is found in urine of young women (Kloos et al., 1994; Bannerman, 2003).

S. epidermidis, *S. haemolyticus* and *S. hominis* are the most frequently encountered CNS species in clinical samples. The isolation frequency of the different CNS species in clinical, human specimens is shown in Table 1. Usually, more than 50% of CNS isolates belong to the species *S. epidermidis*. In India, low percentages of *S. epidermidis* were found (13.2%) and high percentages of *S. haemolyticus* (71.9%) (Chaudhury et al., 2007). A Japanese study (Kawamura et al., 1998) found a very high percentage of *S. caprae* (14%), while the frequency of isolation in other studies is very low. In the study by Kawamura et al., 1998, all isolates were identified by a DNA-DNA hybridisation and by conventional, phenotypic identification based on the Kloos and Schleifer method. None of the *S. caprae* isolates was identified correctly by the phenotypic method.

In Spanish point prevalence studies in a large group of hospitals, performed from 1986 to 2002, showed no major shifts in the distribution of CNS species (Cuevas et al., 2004). When the distribution in 2002 is compared with 1986, there is a decrease in isolation of *S. epidermidis*, *S. simulans*, *S. cohnii* and *S. xylosis* and an increase in isolation of *S. hominis* and *S. saprophyticus*.

S. epidermidis is the predominant pathogen in intravascular catheter-related infections, nosocomial bacteremia, endocarditis, urinary tract and surgical wounds infections, central nervous system shunt infections, ophthalmologic infections, peritoneal dialysis-related infections and infections of
prosthetic joints (Bannerman, 2003). *S. haemolyticus* has been implicated in native valve endocarditis, septicemia, urinary tract infections, peritonitis and wound, bone and joint infections (Bannerman, 2003). *S. saprophyticus* is associated with urinary tract infections in young females. *S. lugdunensis* has been implicated in arthritis, catheter infections, bacteremia, urinary tract infections, prosthetic joint infections and endocarditis (Bannerman, 2003). Other CNS species have been implicated in a variety of infections.

4. Virulence factors

Already in 1972, the “slime” production of CNS was noted as an important factor in the pathogenesis of infections (Huebner et al., 1999). This “slime” or biofilm is the most important virulence factor of *S. epidermidis*. The biofilm formation enables attachment and persistence of the bacteria on foreign materials. Moreover, bacteria organized in biofilms are protected from the action of antibiotics and the immune system (Costerton et al., 1999; Mack et al., 2007). The first phase in biofilm formation is attachment, in which staphylococcal binding proteins such as the autolysin/adhesins AtlE and Aae, the fibrinogen-binding protein Fbe/Sdrg, the fibronectin-binding protein Embp and the lipase GehD, play an important role (Mack et al., 2007). The most important adhesion molecule is AtlE. The second phase in biofilm formation is accumulation, in which the polysaccharide intercellular protein PIA, encoded by the icaADBC locus, is a major functional component (von Eiff et al., 2002; Mack et al., 2007). In strains lacking the icaADBC locus, biofilm formation is mediated by the accumulation-associated protein (Aap) or by the biofilm-associated protein (Bap/Bhp) (Ziebuhr et al., 2006). Recently, 2 biofilm producing strains, negative for PIA, Aap and Bhp, have been described (Qin et al., 2007). The regulation of biofilm formation is very complicated and best studied in *S. epidermidis*. Different regulatory systems, such as sae, alternative sigma factor σ^B, sar and quorum sensing (this is inter and intra species communication, possible when a certain bacterial density has been established) systems play a role (Xu et al., 2006; Mack et
The 2 quorum sensing systems in *S. epidermidis*, *agr* and *luxS/AI-2*, repress the biofilm formation: *luxS* system by downregulating PIA production, *agr* system by downregulating AtlE production. *Agr* controls the expression of toxins and secreted virulence factors and the interaction with the immune system (Kong et al., 2006). Quorum sensing systems have potential as therapeutic targets for control of staphylococcal infections (Harraghy et al., 2007). Another important virulence factor of CNS is the antibiotic resistance. Regulation of biofilm formation and methicillin resistance seem to use similar pathways, as insertion of a certain transposon influences both biofilm formation and the expression of methicillin resistance (Mack et al., 2007). Methicillin resistance was found to be significantly higher in slime positive isolates (81%) than in slime negative isolates (57%) (Koksal et al., 2007).

The phenotypic variability and heterogeneous gene expression observed in CNS, especially in *S. epidermidis*, is an advantage for adaptation to changing environmental conditions (Ziebuhr et al., 2006).

Other potential virulence factors of *S. epidermidis* include the following: extracellular enzymes and toxins: metalloprotease with elastase activity, cysteine protease, serine protease, lipase, fatty acid modifying enzymes (FAME) and the δ-toxin. CNS also produce lantibiotics (von Eiff et al., 2002; Vuong et al., 2002). Lantibiotics are bacteriocins such as epidermin, which are active against other gram-positive bacteria.

Several studies tried to discriminate between invasive and commensal *S. epidermidis* strains by the detection of virulence associated genes (Frebourg et al., 2000; Vandecasteele et al., 2003; Rohde et al., 2004). In the study by Rohde et al (Rohde et al., 2004) the virulence genes *icaADBC*, *mecA* and IS256 were all highly prevalent in invasive strains. Commensal strains from healthy individuals almost completely lacked *icaADBC*, *mecA* and IS256. However in the commensal strains isolated from hospitalized bone marrow transplant patients the studied genes had the same distribution as the invasive strains, suggesting replacement of their own commensal flora by hospital strains. As a consequence these genes cannot discriminate between invasive and commensal strains.
S. lugdunensis and S. schleiferi are more pathogenic than other CNS species. Like S. aureus, they may express a clumping factor and/or produce a thermostable DNase (von Eiff et al., 2002). A variable percentage of these strains produces extracellular slime or glycocalix, esterase, FAME, protease, lipase and a haemolysin. S. lugdunensis is more likely than other CNS, to be considered a pathogen until proven otherwise (Poutanen et al., 2001; Koziol-Montewka et al., 2006). S. lugdunensis is often misidentified as S. aureus, because slide agglutination tests are often positive.

The main virulence factor of S. saprophyticus in UTI is the capacity to adhere to uroepithelial cells by means of surface-associated proteins: the autolysin/adhesin Aas, Ssp and Sdrl. Once colonization has been established several invasion factors are produced: urease, elastase, lipase and FAME (von Eiff et al., 2002).

5. Antibiotic resistance

Resistance to antibiotics in CNS is of major concern. Penicillin resistance in CNS is very high: even in 1968 the resistance rate was 60% (Corse et al., 1968). Nowadays, resistance is around 91% in clinical strains (Cuevas et al., 2004; Koksal et al., 2007). Methicillin resistance in staphylococci is caused by expression of PBP2a encoded by the mecA gene. MecA is located on a genetic element called the staphylococcal cassette chromosome (SCC). There is evidence of horizontal transfer of SCC cassettes between staphylococcal species (Hanssen et al., 2004), which implies that CNS could serve as a reservoir for the spread of resistance genes to S. aureus. In clinical samples, rates of methicillin resistance of 55% - 77% and even 86% in ICU settings, have been reported (Del’ Alamo et al., 1999; Agvald-Öhman et al., 2004; Cuevas et al., 2004; Chaudhury et al., 2007; Gatermann et al., 2007; Jones et al., 2007a; Jones et al., 2007b; Koksal et al., 2007; Sader et al., 2007). In continuous ambulatory peritoneal dialysis (CAPD) patients and medical students 38% and 27%, respectively, of colonizing CNS strains were methicillin resistant (de Mattos et al., 2003; Koziol-Montewka et al., 2006; Higuchi et al., 2007). Several studies show an increase of MR CNS
over time. In Spain, methicillin or oxacillin resistance remained stable (26%-34% of CNS) between 1986 and 1994, increased significantly in 1996 (51%) and reached 61% in 2002 (Cuevas et al., 2004). An increase of methicillin resistant CNS strains was also found in other studies: from 38% in 1996 to 68% in 2007 in blood of patients with true bacteremia (Koksal et al., 2007), from 19% in 1991 to 74% in 1998 in peritoneal dialysis patients (Zelenitsky et al., 2000). It is generally assumed that approximately 80% of nosocomial isolates and 30-40% of isolates obtained from healthy carriers or patients from the community, demonstrate resistance to methicillin (Huebner et al., 1999; de Mattos et al., 2003; Koziol-Montewka et al., 2006).

In Spain, resistance to ciprofloxacin and erythromycin increased progressively in CNS from 1% and 41% in 1986 to 45% and 63% in 2002 (Cuevas et al., 2004). Susceptibility percentages to different antibiotics are given in Table 2. Two surveillance studies, performed in 2006, one in the US and one in Europe, Asia, Australia and Latin America show comparable susceptibility results. Susceptibility rates to fluoroquinolones, erythromycin, clindamycin, trimethoprim/sulfamethoxazole, gentamicin, teicoplanin and linezolid are 42%-47%, 30%-34%, 60%-61%, 62%-59%, 71%-58%, 99 and 98-99%, respectively (Jones et al., 2007a, Jones et al., 2007b). Methicillin resistant strains have high rates of resistance to other classes of antibiotics. Resistance rates in methicillin susceptible strains are much lower (Reynolds et al., 2004; Biedenbach et al., 2007; Koksal et al., 2007; Sader et al., 2007).

CNS were the first organisms in which acquired glycopeptide resistance (vancomycin MIC ≥8 µg/mL, teicoplanin MIC ≥16 µg/mL) was recognized (Biavasco et al., 2000). Most of the clinical glycopeptides resistant isolates are resistant to teicoplanin, but susceptible to vancomycin, indicating a heterogeneous expression of glycopeptides resistance (Nunes et al., 2006). The resistance mechanisms to glycopeptides in CNS are not yet fully understood. Most reports show that resistance mechanism in CNS is similar to that described in VISA and hetero-VISA strains (Nunes et al., 2006). This mechanism is multifactorial, expression related and can be selected, in vitro, by exposure to teicoplanin and vancomycin (Biavasco et al., 2000; Nunes et al., 2006). Laboratory detection of
glycopeptide-resistance may be problematic, as there is an influence of various technical factors. Susceptibility testing by disk diffusion results in a very high percentage of false susceptible results (very major errors in 80% of the nonsusceptible to teicoplanin strains) (Del’ Alamo et al., 1999). Susceptibility rates to vancomycin and teicoplanin of respectively 99%-100% and 68%-100% are found in clinical studies (Del’ Alamo et al., 1999; Cuevas et al., 2004; Reynolds et al., 2004; Chaudhury et al., 2007; Koksal et al., 2007; Sader et al., 2007).

Novel antibiotics have been developed to overcome the resistance problem in CNS. These antibiotics include for example linezolid, daptomycin, tigecycline and quinupristin/dalfopristin. Susceptibility of CNS isolates towards these agents is usually 100% (Garrison et al., 2005; Sader et al., 2007). In recent surveillance studies the lowest reported susceptibility percentages are 98.4% for linezolid (Jones et al., 2007a), 99% for quinupristin/dalfopristin (Jones et al., 2007b) and 99.9% for daptomycin (Sader et al., 2007). In one institution, 4% of CNS, originating from 25 patients, were found to be linezolid resistant. The majority of these resistant strains showed some genetic relatedness, previous linezolid use was an independent predictor of linezolid resistance and the majority of patients had been accommodated in a single ward (Potoski et al., 2006).

The prevalence of resistance varies widely among staphylococcal species. The highest rates of resistance are found in S. haemolyticus: 76-96% oxacillin resistant, 80-90% erythromycin resistant, 26-29% teicoplanin nonsusceptible (Gill et al., 1983; Del’ Alamo et al., 1999; Chaudhury et al., 2007; Gatermann et al., 2007). Oxacillin resistance rates are also high in S. hominis (80%) (Gatermann et al., 2007) and S. epidermidis (38-81%) (Gill et al., 1983; Del’ Alamo et al., 1999; Gatermann et al., 2007). Teicoplanin nonsusceptible isolates occur in 3% of S. epidermidis and in none of the S. hominis isolates (Del’ Alamo et al., 1999). S. lugdunensis has nearly uniform in vitro susceptibility to most antimicrobials, including penicillins, cephalosporins and macrolides (Poutanen et al., 2001; Gatermann et al., 2007).

6. Epidemiology
Several studies show that most CNS infections are hospital-acquired or health-care related (Rupp et al., 1994; Huebner et al., 1999). Colonization of patients and hospital staff with antibiotic resistant \textit{S. epidermidis} precedes infection with these organisms (Kloos et al., 1994; Nouwen et al., 1998; Widerström et al., 2006). Some clones are probably endemic in the hospital environment. CNS have the ability to survive in the intensive care unit (ICU) surroundings on medical devices and medical equipment for weeks to months (Neely et al., 2000). The clonal spread of identical or closely related methicillin-resistant CNS strains within hospitals and even between hospitals has been demonstrated (Monsen et al., 2000; Widerström et al., 2006). Frequent transmission of CNS between intubated patients was demonstrated in a multidisciplinary ICU (Agvald-Öhman et al., 2004). The spread of CNS strains is well studied in neonatal ICUs, where CNS are the major causative organism of sepsis. A relatively small number of molecular types of CNS can persist in the neonatal ICU for many years. The \textit{mecA} gene carriage in these clusters is usually very high, which suggests that antibiotic resistance is one of the major selective forces (Krediet et al., 2004). Multi locus sequence typing identified a sequence type (ST 27), which contained exclusively \textit{ica}-positive isolates and represented the majority of clinical strains within different hospitals in Germany. The ST 27 clone was also detected in a Norwegian hospital and in medical facilities in the United States (Kozitskaya et al., 2005). The combination of biofilm formation, antibiotic resistance and genetic flexibility (due to multiple copies of IS256) in the ST27 clone may explain why this clone is so predominant in hospital settings. It is tempting to assume that patients who are admitted to hospital are rapidly colonized with this clone and that this newly acquired microflora might represent the origin for later infection (Kozitskaya et al., 2005; Ziebuhr et al., 2006). Hospital personnel can also be responsible for spreading multi resistant CNS isolates (Hira et al., 2007). Clonal types can only be distinguished by genotypic methods and not by phenotypic appearance of the colonies or by antibiotype (Nouwen et al., 1998; Miragaia et al., 2002). Risk factors for the emergence and spread of CNS clones in hospitals include the duration of hospital stay (especially ICU stay), duration of antibiotic treatment,
antibiotic pressure in the environment, and hygienic standards (Widerström et al., 2006). The use of contact and hand hygiene precautions is extremely important for preventing nosocomial colonization and infections. Maybe periodic surveillance of patients and staff in specific wards could be useful to avoid the spread of multi resistant CNS. A good antibiotic policy, in order to reduce the antibiotic pressure, will help to reduce the incidence of multi resistant CNS.

7. Specific infections

7.1. Urinary tract infections (UTI)

S. saprophyticus is the second (after *Escherichia coli*) most frequent causative organism of uncomplicated urinary tract infections (UTI) in women. Complications, such as recurrent infection, acute pyelonephritis, nephrolithiasis, septicaemia and endocarditis have been documented but are rare (Raz et al., 2005; Widerström et al., 2007). The vast majority of infections occur in young, sexually active women. *S. saprophyticus* can also cause UTI in males of all ages (Raz et al., 2005). *S. saprophyticus* is found in 3-9% of cases of uncomplicated acute cystitis (Christiaens et al., 1998; Grude et al., 2005; Nys et al., 2006). Frequency of isolation is age dependent. In a recent study, *S. saprophyticus* was isolated from 7%, 4% and 0.5% of subjects in age categories 11-20 years, 21-50 years and 51-70 years, respectively (Nys et al., 2006). *S. saprophyticus* can be pathogenic in low numbers (<10⁵ cfu/mL) (Rupp et al., 1994). *S. saprophyticus* is probably often missed as causative organism of UTI, as the bacteriuria is considered to be nonsignificant, especially when bacterial counts are low.

S. saprophyticus has also been isolated from 7% of rectal swabs taken from carcasses of cattle and pigs. The micro-organism is a common contaminant of various food samples, especially of raw beef and pork (Raz et al., 2005). In humans, the major reservoir of *S. saprophyticus* is the gastrointestinal tract. The following risk factors have been identified: recent sexual intercourse,
outdoor swimming and meat processing (Huebner et al., 1999). Colonization and infection is more frequent during summer and fall.

Other CNS species, mainly \textit{S. epidermidis}, are occasionally found as causative organisms in UTI (<5\% of UTI in hospital environment). \textit{S. epidermidis} is usually isolated from hospitalized, elderly patients with urinary catheters or other manipulations to the urinary tract (Rupp et al., 1994; Raz et al., 2005).

\subsection*{7.2. Endocarditis}

The incidence and characteristics of CNS endocarditis were studied in a large cohort of patients from the International Collaboration on Endocarditis Merged Database (Chu et al., 2004). CNS accounted for 7\% of cases of definite native valve endocarditis (NVE), excluding endocarditis associated with injection drug use (Chu et al., 2004). Most CNS NVE is caused by \textit{S. epidermidis} (85\%). The remainder is caused by \textit{S. hominis} (6\%), \textit{S. lugdunesis} (5\%), \textit{S. capitis}, \textit{S. caprae} and \textit{S. simulans}. Rates of heart failure and mortality were found to be similar between patients with CNS and \textit{S. aureus} NVE (Chu et al., 2004). Patients with NVE caused by staphylococci were significantly more likely to have health-care associated endocarditis than patients with viridans streptococcal NVE.

In a study from 1999, streptococci are responsible for 48\% of cases of infective endocarditis, \textit{S. aureus} for 23\% and CNS for 6\% (Hoen et al., 2002). These frequencies were also found in a study conducted between 1951 and 1965: \textit{S. epidermidis} was the third most frequent isolated organism (in 10\% of cases) in cases of bacterial endocarditis, after viridans streptococci (47\%) and \textit{S. aureus} (24\%) (Dalton et al., 1967). Injecting heroin users are susceptible to right-sided endocarditis due to \textit{S. epidermidis} (von Eiff et al., 2001).

Characteristics of patients with prosthetic valve endocarditis (PVE) were studied and compared with NVE patients in the International Collaboration on Endocarditis – Prospective Cohort
Study (Wang et al., 2007). Patients with PVE had a higher rate of CNS infection (16.9%) than patients with NVE (8.3%). In literature, higher rates (than in the study by Wang et al., 2007) of CNS in infections of prosthetic valves are found (40-50% of cases) (Huebner et al., 1999; von Eiff et al., 2001).

S. lugdunensis endocarditis has more features of *S. aureus* endocarditis than of CNS endocarditis. The infection is often aggressive, most cases are community-acquired and only a minority of patients (approximately 25%) has prosthetic valves (Poutanen et al., 2001).

7.3. Blood stream infections (BSI)

Almost all cases of bacteremia due to CNS are nosocomial or at least health-care related in origin. Intravascular and cardiovascular devices, such as peripheral and central catheters, vascular grafts, implanted defibrillators and coronary stents, are widely used. Catheter related infections are by far the most common cause of bacteremia due to CNS (Huebner et al., 1999).

Throughout the 1960s and 1970s, Gram-negative organisms were the most common pathogens isolated from patients with nosocomial blood stream infections (BSI) (Wisplinghoff et al., 2004), but in one study (Dalton et al., 1967), between 1951 an 1965, *S. epidermidis* accounted for 23% of positive blood cultures in patients with suspected bacteremia. Second and third most frequent isolated organism was *S. aureus* (12%) and *Corynebacterium* species (12%). The high rates of common skin bacteria (such as *Corynebacterium* species and *S. epidermidis*) in the study by Dalton et al., 1967, raise concern about the clinical significance. The incidence of bacteremia caused by CNS rose between 161% and 754%, respectively in large teaching and small non-teaching hospitals, between 1980 and 1989 (Rupp et al., 1994). During 1986 - 1989 CNS were the most frequently reported cause of BSI, accounting for 27% of BSI (Schaberg et al., 1991).

In a nation wide surveillance study in the USA, performed between 1995 and 2002, CNS accounted for 31% of all nosocomial BSI (Wisplinghoff et al., 2004). The crude mortality of BSI due
to CNS was 25.7% in an intensive care unit (ICU) and 13.8% in a non-ICU ward. In Flanders, Belgium, CNS account for 25.9% of all nosocomial BSI. Forty-eight percent of BSI cases in Flanders were due to catheter related sepsis, 32% to sepsis of unknown origin, and 20% were associated with another infection or an invasive manipulation (Suetens et al., 2002).

CNS are the most common pathogens in catheter-related infections (50-70% of cases). In addition to bacteremia, CNS, mainly *S. epidermidis*, can cause exit-site infections, tunnel infections, infected thrombophlebitis, endocarditis and abscesses (Rupp et al., 1994; Huebner et al., 1999). At the time of removal, 8-40% of all catheters are colonized by CNS (Rupp et al., 1994). Positive blood cultures with CNS can be explained by contamination, true bacteremia or transient benign bacteremia (Rupp et al., 1994). It may be very difficult to distinguish between infection and contamination. As the positive predictive value of a blood culture growing CNS varies from 6 to 12% (Correa et al., 1999), the criteria used for defining true bacteremia influence reported CNS prevalence. The CDC criteria for defining bloodstream infection (Garner et al., 1988) are used in most of the studies. The intensity of surveillance also influences the reported BSI incidence and prevalence of CNS.

There is increasing evidence that the mucosa, rather than skin, is the likely source of CNS bacteremia in cancer patients (Costa et al., 2004; Costa et al., 2006). A recent study showed that among cancer patients with CNS positive blood cultures and an indwelling central venous catheter (CVC), the mucosal sites were the most frequently colonised by CNS (nasal mucosa in 86%, rectal mucosa in 40%). The skin at the CVC site was colonised by CNS in 32% of patients. Among patients with true bacteremia, 6 mucosal isolates and only 1 skin isolate were genetically related to the isolate recovered from blood based on pulsed-field gel electrophoresis (Costa et al., 2006). A review of the literature confirms that CNS colonise mucosal sites including gut, nares and throat and may translocate from mucosal sites to the bloodstream (Costa et al., 2004). This is supported by epidemiological, experimental, clinical and molecular relatedness studies. The assumption that the skin is the primary source of CNS infection has been the reason to try to achieve a reduction of CNS
catheter related bacteremia with skin decontamination and the use of maximum barrier precautions at the time of CVC insertion. However, not all studies show a positive effect of these two interventions (Costa et al., 2004).

7.4. Foreign body-related infections (FBRIs)

Insertion or implantation of medical devices is associated with a risk of bacterial and fungal infections. Medical devices are increasingly used in almost all fields of medicine for diagnostic and/or therapeutic procedures. The contamination of the device occurs most likely by inoculation with only a few micro-organisms from the patient's skin or mucous membranes during implantation or subsequent manipulations (Rupp et al., 1994; von Eiff et al., 2001; von Eiff et al., 2005). The pathogens may also be acquired from the hands of the surgical or clinical staff (von Eiff et al., 2005). Staphylococci, particularly *S. epidermidis*, account for the majority of FBRIs (von Eiff et al., 2005). Most CNS isolates causing foreign body-related infections (FBI) are methicillin resistant.

Neurosurgical devices (ventricular shunts, implantable stimulators, intracranial pressure devices) are frequently used. Of the pathogens isolated from ventriculoperitoneal shunt infections in pediatric patients less than 8 years old, 53% were CNS (Filka et al., 1999). Clinical symptoms can be subtle and nonspecific. (Huebner et al., 1999). In a review of CSF shunt infections, caused by a single pathogen, CNS and *S. aureus* were isolated with equal frequency, i.e. in 23% of cases each (Wang et al., 2004). Others reported that CNS are the most common cause of shunt infections (40-60% of infections) (Rupp et al., 1994). In a retrospective study, pure culture of CNS accounted for 11% of cases of adult bacterial meningitis (Huang et al., 2005). All cases had post-neurosurgical states as underlying condition.

CNS cause 17-56% of episodes of continuous ambulatory peritoneal dialysis-associated peritonitis (Rupp et al., 1994, Monsen et al., 2000). *S. epidermidis* is the predominant species (78%) followed by *S. haemolyticus* (11%) (Monsen et al., 2000). From 1991 to 1998, the incidence of
dialysis-related peritonitis caused by *S. epidermidis* decreased, probably due to the introduction of a new dialysis system. Even so, *S. epidermidis* was still the most common cause of peritonitis in 1998, causing 28% of culture positive cases (Zelenitsky et al., 2000).

Up to 60% of vascular graft infections and 20-40% of prosthetic joint infections are caused by CNS (Rupp et al., 1994).

CNS are also associated with low grade foreign body infections such as aseptic loosening of hip or other joint prostheses, or fibrous capsular contracture syndrome after mammmary augmentation with silicone prostheses (von Eiff et al., 2001).

7.5. Surgical site infection

S. aureus is the most common pathogen isolated from surgical site infections (SSI) (20%), followed by CNS (14%) and *Enterococcus* species (12%) (CDC, 1996). In a secondary care hospital, CNS were the third (10%) most frequently isolated micro-organism, after *S. aureus* (21%) and *Streptococcus* species (11.2%) (Cantlon et al., 2006). Outbreaks of SSI originating from operating room personnel have been reported, but probably most infections are indogenous (Huebner et al., 1999). Sternal osteomyelitis following median sternotomy is caused predominantly by CNS (Rupp et al., 1994).

7.6. Endophthalmitis

CNS are by far the most common pathogens isolated from vitreous biopsies in cases of endophthalmitis. In a review of 67 cases of endophthalmitis, 31% of the culture positive biopsies (only 44%) yielded CNS as pathogen (Karacal et al., 2007). Most cases of endophthalmitis were postoperative (73.5%), mainly after cataract surgery. Other cases were associated with endogenous origin (13%), post-intravitreal injection (6%), keratitis (4%) and post-traumatic (3%). Post-traumatic
endophthalmitis, a complication of a penetrating eye injury, is caused by CNS in 28% of cases (Abu El-Asrar et al., 1999).

7.7. Mastitis

CNS are rarely associated with mastitis in humans. In lactation mastitis, the agents most frequently cultured from milk are *S. aureus* and CNS (Barbosa-Cesnik et al., 2003). In non lactational breast abscesses, CNS are rarely isolated as sole pathogen. Some cases of non lactational breast abscesses, especially with *S. lugdunensis* have been published in literature (Asnis et al., 2003). *S. aureus* and anaerobes are the most common organisms to cause breast abscesses (Surani et al., 1993).

8. Conclusions and Outlook

CNS are a group of micro-organisms that are increasingly implicated as a cause of significant infection. The infection rate has been correlated with the increase in the use of invasive and indwelling medical devices and the growing number of immunocompromised patients. Community acquired, primary CNS infections are rare, except for *S. saprophyticus* UTI, NVE and *S. lugdunensis* infections. The increase of CNS infections is particularly high in bacteraemia. CNS are now a major cause of nosocomial or health care related infections. The consequences of these infections are substantial, both in morbidity and mortality and in financial costs. Clonal spread of CNS clusters within and even between hospitals has been demonstrated. This is of major concern as CNS are often multi-drug resistant and can serve as a reservoir of resistance genes. Implementation of infection control measures similar to those used for MRSA may be necessary to prevent further spread of methicillin and multi-drug resistant CNS.
Conflict of Interest

None of the authors (A. Piette, G. Verschraegen) has a financial or personal relationship with other people or organizations that could inappropriately influence or bias the paper entitled “Role of coagulase-negative staphylococci in human disease”.

References

Table 1

<table>
<thead>
<tr>
<th>Species Distribution (%)</th>
<th>Sample Origin</th>
<th>Identification Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA 1983 (1)</td>
<td>USA 1993 (2)</td>
<td>Denmark 1996 (3)</td>
</tr>
<tr>
<td>S. epidermidis</td>
<td>75</td>
<td>65</td>
</tr>
<tr>
<td>S. haemolyticus</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>S. hominis</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>S. simulans</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>S. capitis</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>S. saprophyticus</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S. warneri</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>S. lugdunensis</td>
<td>3</td>
<td><1</td>
</tr>
<tr>
<td>S. caprae</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>S. cohnii</td>
<td><1</td>
<td>1</td>
</tr>
<tr>
<td>S. auricularis</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>S. schleiferi</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>S. xylosis</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>S. pasteuri</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Sample Origin</td>
<td>CS</td>
<td>BSI</td>
</tr>
<tr>
<td>Identification Method</td>
<td>SP</td>
<td>Vitek1</td>
</tr>
<tr>
<td></td>
<td>SP</td>
<td>DNA</td>
</tr>
<tr>
<td></td>
<td>DNA Microscan</td>
<td>sodA</td>
</tr>
<tr>
<td></td>
<td>BJI</td>
<td>CS</td>
</tr>
<tr>
<td></td>
<td>CS</td>
<td>BSI</td>
</tr>
<tr>
<td></td>
<td>BSI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SP Vitek2</td>
<td>API</td>
</tr>
<tr>
<td></td>
<td>SP sodA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BSI</td>
<td></td>
</tr>
</tbody>
</table>

(1) Gill et al. (2) Kleeman et al. (3) Jarløv et al. (4) Kawamura et al. (5) Del' Alamo et al. (6) Cuevas et al. (7) Sivadon et al. (8) Singhal et al. (9) Chaudhury et al. (10) Gatermann et al. (11) Koksal et al.; CS: clinical specimens, BJI: bone and joint infections; SP: standard procedures (based on Kloos and Schleifer), Vitek1: Vitek GP card (Biomérieux), sodA: sodA sequencing, DNA: DNA-DNA hybridization, Microsc: Microscan positive combo panel type 6 (DADE MicroScan Inc., Sacramento, CA), Vitek2: Vitek ID 32 Staph (Biomérieux), API: API ID 32 Staph (Biomérieux)
Table 2

Percentage susceptibility of CNS in different studies (in heading country and publication date); MR: % susceptibility in methicillin resistant strains, MS: % susceptibility in methicillin susceptible strains

<table>
<thead>
<tr>
<th>% susceptibility</th>
<th>Spain 2002 (1)</th>
<th>UK, Ireland 2004 (2)</th>
<th>Asia-Pacific region 2007 (3)</th>
<th>USA 2007 (4)</th>
<th>Europe, Asia, Australia, Latin America 2007 (5)</th>
<th>Turkey 2007 (6)</th>
<th>Europe, Turkey, Israel 2007 (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>methicillin/oxacillin</td>
<td>39</td>
<td>24</td>
<td>15,2</td>
<td>23,1</td>
<td>25,7</td>
<td>32,5</td>
<td>28</td>
</tr>
<tr>
<td>penicillin</td>
<td>21</td>
<td>0</td>
<td>24.5</td>
<td>12.1</td>
<td>15.3</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>ceftriaxone</td>
<td>51.1</td>
<td>47.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ciprofloxacin</td>
<td>40.8</td>
<td>81.6</td>
<td>42.2</td>
<td>46.5</td>
<td>33</td>
<td>77</td>
<td>27.8</td>
</tr>
<tr>
<td>levofloxacin</td>
<td>50.2</td>
<td>89.1</td>
<td>42.3</td>
<td>47.5</td>
<td>28.1</td>
<td>87.3</td>
<td></td>
</tr>
<tr>
<td>cotrimoxazole</td>
<td>60.8</td>
<td>89.1</td>
<td>61.9</td>
<td>59.3</td>
<td>32</td>
<td>62</td>
<td>52.6</td>
</tr>
<tr>
<td>gentamicin</td>
<td>72</td>
<td>25.7</td>
<td>78.6</td>
<td>71.3</td>
<td>57.7</td>
<td>10</td>
<td>83</td>
</tr>
<tr>
<td>tetracycline</td>
<td>39.2</td>
<td>67.3</td>
<td>83.5</td>
<td>89.1</td>
<td>86.9</td>
<td>83.7</td>
<td>40</td>
</tr>
<tr>
<td>erythromycin</td>
<td>37</td>
<td>27.3</td>
<td>62.2</td>
<td>31.8</td>
<td>78.3</td>
<td>28.8</td>
<td>33.8</td>
</tr>
<tr>
<td>clindamycin</td>
<td>66</td>
<td>69.1</td>
<td>93.9</td>
<td>68.6</td>
<td>95.7</td>
<td>59.9</td>
<td>60.7</td>
</tr>
<tr>
<td>chloramphenicol</td>
<td>91</td>
<td>87.1</td>
<td>91.3</td>
<td>44</td>
<td>87</td>
<td>86.6</td>
<td>97.4</td>
</tr>
<tr>
<td>fusidic acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rifampicin</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85.3</td>
<td>96.1</td>
</tr>
<tr>
<td>teicoplanin</td>
<td>100</td>
<td>65</td>
<td>77.6</td>
<td>96.1</td>
<td>89.1</td>
<td>99.3</td>
<td>99.3</td>
</tr>
<tr>
<td>vancomycin</td>
<td>100</td>
<td>99.7</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>linezolid</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>98.4</td>
<td>99.5</td>
<td></td>
</tr>
<tr>
<td>quinupristin/dalfopristin</td>
<td>100</td>
<td>99.6</td>
<td>100</td>
<td>99.3</td>
<td>99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>daptomycin</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Cuevas et al. (2) Reynolds et al. (3) Biedenbach et al. (4) Jones et al., 2007a (5) Jones et al., 2007b (6) Koksal et al. (7) Sader et al.