Molecular epidemiology of Aleutian mink disease virus in Finland

Anna Knuuttila, Nathalie Uzcátegui, Johanna Kankkonen, Olli Vapalahti, Paula Kinnunen

To cite this version:

Anna Knuuttila, Nathalie Uzcátegui, Johanna Kankkonen, Olli Vapalahti, Paula Kinnunen. Molecular epidemiology of Aleutian mink disease virus in Finland. Veterinary Microbiology, 2008, 133 (3), pp.229. 10.1016/j.vetmic.2008.07.003 . hal-00532451

HAL Id: hal-00532451

https://hal.science/hal-00532451

Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Molecular epidemiology of Aleutian mink disease virus in Finland

Authors: Anna Knuuttila, Nathalie Uzcátegui, Johanna Kankkonen, Olli Vapalahti, Paula Kinnunen

PII:
DOI:
Reference:
To appear in: VETMIC
Received date: 21-1-2008
Revised date:
Accepted date:
VETMIC 4093

29-6-2008
16-7-2008

> S0378-1135(08)00276-9
doi:10.1016/j.vetmic.2008.07.003

Please cite this article as: Knuuttila, A., Uzcátegui, N., Kankkonen, J., Vapalahti, O., Kinnunen, P., Molecular epidemiology of Aleutian mink disease virus in Finland, Veterinary Microbiology (2007), doi:10.1016/j.vetmic.2008.07.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Molecular epidemiology of Aleutian mink disease virus in Finland

Anna Knuuttila ${ }^{\text {a,b,* }}$, Nathalie Uzcátegui ${ }^{\text {b }}$, Johanna Kankkonen ${ }^{\text {c }}$, Olli Vapalahti ${ }^{\text {a,b }}$, Paula Kinnunen ${ }^{\text {a,b }}$
${ }^{a}$ Division of Microbiology and Epidemiology, Faculty of Veterinary Medicine, P.O. Box 66, 00014 University of Helsinki, Finland
${ }^{b}$ Department of Virology, Haartman Institute, P.O. Box 21, 00014 University of Helsinki, Finland ${ }^{c}$ Finnish Fur Breeders' Association (STKL), P.O. Box 92, 65101 Vaasa, Finland * Corresponding author. Address: Division of Microbiology and Epidemiology, Faculty of Veterinary Medicine, P.O. Box 66, 00014 University of Helsinki, Finland. Tel.: +358 50351 1388; fax: +358 9 191 57033; E-mail: anna.knuuttila@helsinki.fi

Abstract

Aleutian mink disease virus (AMDV) is a parvovirus that causes an immune complexmediated disease in minks. To gain a more detailed view of the molecular epidemiology of mink AMDV in Finland, we phylogenetically analysed 14 new Finnish strains from 5 farms and all 40 strains with corresponding sequences available in GenBank. A part of the major non-structural protein (NS1) gene was amplified and analysed phylogenetically. A rooted nucleotide tree was constructed using the maximum parsimony method. The strains described in this study showed $86 \%-100 \%$ nucleotide identity and were nearly identical on each farm. The ratio of synonymous to non-synonymous substitutions was approximately 2.7 , indicating a mild purifying selection. Phylogenetic analysis confirmed that AMDV strains form three groups (IIII), all of which contained Finnish strains. The tree inferred that the three lineages of AMDV have been introduced to Finland independently. The analysis suggested that AMDV strains do not cluster into genotypes based on geographical origin, year of isolation or pathogenicity. Based on these data, the molecular clock is not applicable to AMDV, and within this gene area no recombination was detected.

Keywords: Aleutian mink disease virus; Finland; Molecular epidemiology; NS1; Parvovirus

1. Introduction

Aleutian disease (AD), a potentially fatal immune complex-mediated disease of the mink (Mustela vison), is caused by Aleutian mink disease virus (AMDV). It is common in all mink breeding countries and causes significant economic losses to mink farmers. In addition to farmed and feral American minks, AMDV can also infect and cause disease in other mustelids, raccoons and skunks (Kenyon et al., 1978; Porter et al., 1982; Oie et al., 1996; Mañas et al., 2001; Fournier-Chambrillon et al., 2004).

AMDV is the only member of the genus Amdovirus, subfamily Parvovirinae, family Parvoviridae. It has an approximately 5-kb single-stranded DNA genome (Bloom et al., 1990). The icosahedral non-enveloped virion contains three non-structural (NS1, NS2, putative NS3) and two structural (VP1, VP2) proteins (Bloom et al., 1994; Qiu et al., 2006). NS1 is encoded by ORF1 (Qiu et al., 2006). The NS1 protein of parvoviruses is required for virus replication, regulation of DNA replication and transcription, and it also has several enzymatic activities (reviewed by Christensen et al., 1995). It has been found to be cytotoxic and can induce apoptosis (Vanacker and Rommelaere, 1995; Moffatt et al., 1998). In AMDV, NS1 may also have a role in the restriction of virus replication and pathogenicity (Best et al., 2002). Different strains of AMDV exhibit a high degree of variability in the NS genes (Gottschalck et al., 1994; Olofsson et al., 1999).

AD has different manifestations - from mild non-progressive to fatal progressive disease in adult minks and acute pneumonia in mink kits - depending on the virus strain and host factors (Hadlow et al., 1983; Bloom et al., 1994). The strains vary
from non-pathogenic (AMDV-G) to highly pathogenic (e.g. AMDV-Utah 1, -United, and -K) (Bloom et al., 1980; Hadlow et al., 1983; Alexandersen 1990; Gottschalck et al., 1994). Aleutian genotype minks with blue-grey coat colour are more susceptible and severely affected than other genotypes (Hadlow et al., 1983; Bloom et al., 1994). The most serious form of AD, known as classical AD, is characterised by viraemia, plasmacytosis, hypergammaglobulinaemia, high anti-AMDV-antibody levels, formation of infectious immune complexes and glomerulonephritis (Hadlow et al., 1983; Bloom et al., 1994).

In Finland, mink farming began in the 1930s. The exact origin of Finnish minks is unclear, but most of the breeding animals were probably initially imported from USA (E. Smeds, personal communication). During the 1940s, Finnish breeders also imported minks from Denmark and Sweden (E. Smeds, personal communication). In general, the main import countries have been Denmark, USA and Canada. From Finland, minks have been exported primarily to Russia, Poland and China (L. Finne, personal communication). Most of the mink farms are situated in Ostrobothnia in Western Finland. In 2006, the seroprevalence of AMDV in Finland was 3\% [measured with counter immunoelectrophoresis (CIE) from 384600 minks].

Published phylogenetic analyses on AMDV are scarce (Gottschalck et al., 1994; Schuierer et al., 1997; Olofsson et al., 1999; Murakami et al., 2001; Shackelton et al., 2007), and most of them include only a few strains (Gottschalck et al., 1994;

Schuierer et al., 1997; Murakami et al., 2001). Furthermore, previous data on Finnish AMDV strains are limited (Olofsson et al., 1999).

The findings of earlier studies on AMDV evolution suggest that mink AMDV strains can be divided into three major groups (Olofsson et al., 1999), and that ferret strains form a group of their own, separated from the mink strains (Murakami et al., 2001). AMDV strains do not seem to group based on virulence, geographical origin or year of isolation (Schuierer et al., 1997; Olofsson et al., 1999). Results also indicate that the tree topology is very similar in phylogenetic trees constructed from different AMDV proteins (Schuierer et al., 1997). A recent study by Shackelton et al. (2007) shows that trees constructed from separate VP2 regions cut at recombination sites have different topologies.

To perform a more extensive analysis on the molecular epidemiology and genetic relationships of AMDV, we studied sequences of new field strains from Finland, and included also previously reported strains from several geographic areas and time periods in the analysis. Our aim was to determine possible correlations with temporal and geographical distribution, transmission routes, pathogenicity, and variance. Since there are a limited number of sequence data available of AMDV field strains from minks, we wanted to include previous Swedish and Finnish reference sequences (Olofsson et al., 1999) in our comparison, therefore using a part of the NS1 gene in the analysis.

2. Materials and methods

2.1. Animals and samples

Minks were obtained from six commercial mink farms (A-F) located in the provinces of Ostrobothnia and Northern Ostrobothnia (Finland) in spring 2005. Seventeen minks were included: three from farms A-E and two from farm F. The farms had AD-
related clinical problems and AMDV antibody-positive minks. Due to the breeding season, it was not possible to test the minks beforehand for antibodies. Hence, animals showing clinical AD symptoms were chosen. Severe AD outbreaks occurred at three farms: D, E and F. Soon after regaining an AMDV-free status, these farms had encountered problems with rapidly spreading virus. Farm F also reported more severe symptoms than previously.

Spleen, liver, mesenteric lymph node and blood samples were collected aseptically. Some typical AD gross lesions could be detected, such as splenomegaly, mesenteric lymphadenopathy and coloration and enlargement of kidneys and liver.

2.2. Detection of antibodies

The antibody response to AMDV infection was measured from serum samples by counter immunoelectrophoresis (CIE), which was performed with a commercial antigen following the manufacturer's instructions (Antigen Laboratory of the Research Foundation of the Danish Fur Breeders' Association, Glostrup, Denmark).

2.3. $\quad \mathrm{PCR}$ and sequencing

From each animal, 100 mg of spleen, liver and mesenteric lymph node (only spleen and liver from minks FIN05/F16 and FIN05/F17) were homogenised and DNA was extracted with a commercial kit, TriPure (Roche, Indianapolis, USA), following the manufacturer's instructions.

A 390-nucleotide fragment of the AMDV NS1 gene was amplified from the isolated DNA by semi-nested PCR using previously described primers (Olofsson et al., 1999).

The PCRs were performed in $100-\mu \mathrm{l}$ volumes containing $5 \mu \mathrm{l}$ template DNA for the first and $2 \mu \mathrm{l}$ for the second round, 1 x PCR buffer with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, 0.2 \mathrm{mM}$ dNTP mix, $1.5 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 0.5 \mu \mathrm{M}$ of each primer and 2.5 u Taq polymerase (Fermentas, Burlington, Canada). The first-round amplification mixture was initially incubated at $95^{\circ} \mathrm{C}$ for 10 min , then cycled 35 times through denaturation at $95^{\circ} \mathrm{C}$ for 30 sec , annealing at $56^{\circ} \mathrm{C}$ for 30 sec , and elongation at $72^{\circ} \mathrm{C}$ for 1 min , with a final $10-\mathrm{min}$ elongation step at $72^{\circ} \mathrm{C}$. The second-round amplification was identical to the first round, except that the number of cycles was 30 and the annealing temperature $54^{\circ} \mathrm{C}$. The PCR products were visualised by agarose gel electrophoresis. Each mink's most prominent PCR product from one organ, usually the spleen, was purified with QIAquick PCR Purification kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions. The purified PCR products were sequenced in both directions.

2.4. Sequence analysis

The acquired nucleotide sequences were assembled and translated with BioEdit 7.0.5. (www.mbio.ncsu.edu/BioEdit/bioedit.html) and GeneDoc 2.6.0.2 (Nicholas and Nicholas, 1997). All 40 available AMDV NS1 sequences were collected from the GenBank database (www.ncbi.nlm.nih.gov/entrez) (sequences available in the GenBank at the time of submission). AMDV strains included are presented in Table 1. Identity matrices of both nucleotide and amino acid sequences were constructed by BioEdit 7.0.5. The analysis of synonymous and non-synonymous nucleotide substitutions was calculated by SNAP (Korber, 2000; http://www.hiv.lanl.gov). In this program, the rates of synonymous (ds) vs. non-synonymous (dn) substitutions are
calculated based on the method of Nei and Gojobori (1986) for all pairwise comparisons of sequences in an alignment.

To infer ancestral relationships, the tree was rooted, and human parvovirus B19 (accession no. AY903437) and porcine parvovirus (accession no. DQ499631) were used as outgroups. Multiple sequence alignment (Fig. 1) was performed with ClustalW 1.83 (Thompson et al., 1994) by using default values. The final phylogenetic analysis was carried out by both MEGA 3.1 (Kumar et al., 2004) using the maximum parsimony (MP) method with heuristic close-neighbor interchange search and PAUP* 4.0 (Swofford, 2003) with the maximum likelihood (ML) method. Modeltest 3.7 (Posada and Crandall, 1998) run in PAUP* 4.0 (Swofford, 2003) was used to test for the best nucleotide substitution model for ML. The most appropriate model for AMDV was general time reversible + invariant sites + gamma (GTR+I+G). Bootstrap resampling was performed for each analysis.

Split decomposition analysis was performed with SplitsTree4 (Huson and Bryant, 2006) using the HKY85 method (Hasegawa et al., 1985) for computing distances. Existence of molecular clock was tested with TreePuzzle (Schmidt et al., 2002) using ML with GTR and 25000 puzzling steps. Rate heterogeneity was applied using a uniform rate of nucleotide substitutions, gamma distribution with eight rate categories and mixed model (1 invariable +8 gamma rates). Outgroups and identical sequences were excluded from the analysis.

3. Results

3.1. Serology and PCR

Altogether 13 of 17 minks were AMDV antibody-positive by CIE, and 14 of 17 minks were AMDV DNA-positive by PCR (Table 2). The acquired consensus sequences varied from 343 to 377 bp in length. The sequences were edited to a length of 336 bp corresponding to nucleotide positions 587-922 of the complete sequence of the AMDV-G. GenBank accession numbers are given in Table 1.

3.2. Sequence analysis

The NS1 gene nucleotide sequences of the newly sequenced strains had $86 \%-100 \%$ identity to each other and $87 \%-96 \%$ to AMDV-G (Table 3). At the amino acid level, the strains were $78 \%-100 \%$ identical to each other and $79 \%-93 \%$ to AMDV-G. The most diverged of the newly sequenced strains were FIN05/D11 and /D12 vs. FIN05/B4-6; where the nucleotide identity was 86% and amino acid identity 78%. Strains FIN05/B5 and /B6, and FIN05/E14, /E15 and /F17 were identical. For all sequences, the mean ratio of synonymous to non-synonymous (ds/dn) substitutions was 2.71 (1.01-5.02). Identities and synonymous and non-synonymous substitutions of all AMDV strains and genogroups are depicted in Table 3.

3.3. Phylogenetic analysis

A rooted nucleotide tree, constructed by MEGA using the MP method, was found to best explain the evolutionary history of AMDV (Fig. 2). The topology was essentially the same with ML in PAUP*. However, the MP tree was more fully resolved in the internal nodes near the taxa. Based on the tree topology, the AMDV strains fell into three groups. Because no official genotyping exists for AMDV at the moment (Fauquet et al., 2005), the genogroups were designated as I, II and III.

Finnish AMDV strains were distributed in all groups. However, none of the newly sequenced strains were in group II, which consists completely of Nordic strains. Strains from farm D were placed in group I, thus differing from the other Finnish strains described in this study. Group I strains shared a common ancestor with some of the Swedish strains and with the highly pathogenic United strain. All the other strains described in this study - from farms B, C, E and F - shared a common ancestor and belonged to group III. Also G, SL3, highly pathogenic Utah 1 and two previous Finnish strains were placed in this group. None of the Swedish strains were in this group.

The tree constructed with SplitsTree4 did not show any recombination between the groups of strains within the studied region (data not shown), thus suggesting a treelike evolution. The conflicting evolutionary signals in the data set would have been presented as a network. Furthermore, a clock-like tree was rejected for all of the tested rate heterogeneity models.

4. Discussion

We phylogenetically analysed 54 mink AMDV strains originating from several European countries and USA. The phylogenetic analysis indicated that AMDV strains form three clearly distinct genetic groups. Grouping of the reference strains was consistent with previous analyses (Gottschalck et al., 1994; Schuierer et al., 1997; Olofsson et al., 1999; Murakami et al., 2001).

The geographical origin of the common ancestor of all of the strains and the possible ancestor of the groups I and II warrant further studies. The common ancestor could
originate from USA, Denmark, or even Finland, but due to the North American origin of the species of mink being bred, AMDV has likely been introduced from North America to the rest of the breeding countries and all three genotypes probably already exist there. However, feral origin of AMDV in another mustelid species cannot be excluded.

The tree inferred that AMDV has been introduced to Finland on several different occasions, at least three times, as Finnish strains could be found in all three groups. Regrettably, exact information on Finnish mink imports and exports decades ago is unavailable; thus, the origin of the ancestors of Finnish strains also remains unclear. Hypothetically, the virus was introduced with the imported breeding minks from North America and Denmark or Sweden at the beginning of mink farming during the 1930s and 1940s. More sequence data, especially from North American strains, are needed to compile a clearer picture of the molecular epidemiology of AMDV.

Although group II comprises only Nordic strains, with more sequence data, AMDV strains from other geographical areas would likely also fall into this group.

All of the strains appeared to be viable, as several lineages seemed to evolve simultaneously. No correlation according to the year of isolation or geographical origin was evident. Known pathogenic strains existed in all of the groups, i.e., United in group I, K in group II and Utah 1 in group III. Thus, no clustering according to pathogenicity was detected. Highly pathogenic strains seem to appear spontaneously from different genetic backgrounds; from strains of low pathogenicity and vice versa. AMDV-United seems to be ancestral to farm D strains, which could indicate high
pathogenicity and explain the rapid spread of the virus at the farm. On the other hand, only a few nucleotide changes in a parvovirus may greatly alter its biological characteristics (Parrish, 1999).

The strains described here were nearly identical on one farm; however, strains from one farm can fall into different groups (Olofsson et al., 1999). Gottschalck et al. (1991) reported also that several types of AMDV sequence can be found in one animal. They studied strains that had been passaged in mink several times; thus, crosscontamination with other strains is possible. In our study, there was no indication of infection of one animal with multiple strains, as no minor or alternative variants could be seen in the sequence chromatogram data. However, this was not verified by cloning.

Earlier studies (Gottschalck et al., 1994; Schuierer et al., 1997; Olofsson et al., 1999) have implied that AMDV has a replication bias towards amino acid changes. Gottschalck et al. (1994) reported that the ds/dn ratio for AMDV NS1 is around one, suggesting that there might be positive selection for variation. However, they analysed only four strains. Here we found the ratio to be slightly higher, approximately 2.7, indicating mild purifying selection. Lukashov and Goudsmit (2001) also suggested a ds/dn ratio of over one for AMDV. Ds/dn ratios of ORF1 reported for other parvoviruses are higher, from four to eight (Lukashov and Goudsmit, 2001).

Another question is whether the virus is evolving slowly or rapidly. Gottschalck et al. (1994) calculated, based on the estimated rate of retained nucleotide sequence substitution per year, that AMDV-G and -K have separated 700, and -G and -Utah 1

50 evolutionary years ago, concluding that the observed heterogeneity is due to the long evolutionary history of the virus rather than the result of a high mutation rate. Our data indicated that a molecular clock is not applicable for AMDV, thus a constant rate of evolution cannot be applied and such calculations are unreliable.

No recombination of AMDV strains was found, possibly because of the short sequence analysed. Shackelton et al. (2007) recently reported putative recombination regions for AMDV at two nucleotide sites of the VP2 gene. Moreover, recombination has been noted to occur in other parvoviruses (Johansen et al., 1998; Lukashov and Goudsmit, 2001; Shackelton et al., 2007).

Note added in revision: During the submission/revision period, new AMDV NS1 sequences derived from strains from Denmark and the Netherlands have become accessible in GenBank. The Dutch strains form a distal lineage within group I, and the Danish strains cluster within either group II or group III. The latter strains are separate from and form a sister taxon with the other group III strains presented here. Trees added with this data do not alter the clustering of the Finnish strains to the three groups. Overall, a wider genetic variability exists within the Finnish strains than in the Danish and Dutch strains.

5. Conclusions

In this study, phylogenetic analysis was performed on 54 AMDV strains. According to the analysis, the strains formed three groups (I-III), and Finnish strains could be found in all groups, indicating that AMDV has been introduced at least three times to Finland. The strains described in our study were nearly identical on each farm. No
correlation with the year or place of isolation or pathogenicity was detected. Contrary to previous studies, AMDV seemed to be under mild purifying selection. No recombination or molecular clock was verified here.

We analysed partial NS1 sequences, and more sequence data, possibly from several genes, are needed to construct a more fully resolved AMDV tree. More importantly, to gain more data on AMDV evolution, obtaining strains from mink farms from different countries and strains from ferrets and feral mustelids is necessary.

Acknowledgements

We thank Pirjo Aronen (Fur Animal Feed Laboratory) for organising the visits to the mink farms and for helping with sample collection, Majvor Eerola and Mervi Houtsanen (Fur Animal Feed Laboratory) for conducting the CIE tests, the mink farmers for providing the animals for this study, Tarja Sironen for helping with the molecular clock analysis, and Antti Vaheri for reviewing the text. This study was financially supported by STKL (Finnish Fur Breeders' Association) and Tekes (Finnish Funding Agency for Technology and Innovation) grant 1596/31/05.

References

Alexandersen, S., 1990. Pathogenesis of disease caused by Aleutian mink disease parvovirus. Dissertation. The Royal Veterinary and Agricultural University of Copenhagen, Denmark.

Best, S.M., Wolfinbarger, J.B., Bloom, M.E., 2002. Caspase activation is required for permissive replication of Aleutian mink disease parvovirus in vitro. Virology 292, 224-234.

Bloom, M.E., Race, R.E., Wolfinbarger, J.B., 1980. Characterization of Aleutian disease virus as a parvovirus. J. Virol. 35, 836-843.

Bloom, M.E., Alexandersen, S., Garon, C.F., Mori, S., Wei, W., Perryman, S., Wolfinbarger, J.B., 1990. Nucleotide sequence of the 5 '-terminal palindrome of Aleutian mink disease parvovirus and construction of an infectious molecular clone. J. Virol. 64, 3551-3556.

Bloom, M.E., Kanno, H., Mori, S., Wolfinbarger, J.B., 1994. Aleutian mink disease: puzzles and paradigms. Infect. Agents. Dis. 3, 279-301.

Christensen, J., Pedersen, M., Aasted, B., Alexandersen, S., 1995. Purification and characterization of the major non-structural protein (NS-1) of Aleutian mink disease parvovirus. J. Virol. 69, 18021809.

Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., Ball, L.A. (Eds.), 2005. Virus Taxonomy: VIIIth Report of the International Committee on Taxonomy of Viruses. Elsevier, London, pp. 363364.

Fournier-Chambrillon, C., Aasted, B., Perrot, A., Pontier, D., Sauvage, F., Artois, M., Cassiede, J.M., Chauby, X., Dal Molin, A., Simon, C., Fournier, P., 2004. Antibodies to Aleutian mink disease parvovirus in free-ranging European mink (Mustela lutreola) and other small carnivores from southwestern France. J. Wildl. Dis. 40, 394-402.

Gottschalck, E., Alexandersen, S., Cohn, A., Poulsen, L.A., Bloom, M.E., Aasted, B., 1991. Nucleotide sequence analysis of Aleutian mink disease parvovirus shows that multiple virus types are present in infected mink. J. Virol. 65, 4378-4386.

Gottschalck, E., Alexandersen, S., Storgaard, T., Bloom, M.E., Aasted, B., 1994. Sequence comparison of the non-structural genes of four different types of Aleutian mink disease parvovirus indicates an unusual degree of variability. Arch. Virol. 138, 213-231.

Hadlow, W.J., Race, R.E., Kennedy, R.C., 1983. Comparative pathogenicity of four strains of Aleutian disease virus for pastel and sapphire mink. Infect. Immun. 41, 1016-1023.

Hasegawa, M., Kishino, H., Yano, T., 1985. Dating the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160-174.

Huson, D.H., Bryant, D., 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254-267.

Johansen, J.N., Christensen, L.S., Zakrzewska, K., Carlsen, K., Hornsleth, A., Azzi, A., 1998. Typing of European strains of parvovirus B19 by restriction endonuclease analyses and sequencing: identification of evolutionary lineages and evidence of recombination of markers from different lineages. Virus Res. 53, 215-223.

Kenyon, A.J., Kenyon, B.J., Hahn, E.C., 1978. Protides of the Mustelidae: immunoresponse of mustelids to Aleutian mink disease virus. Am. J. Vet. Res. 39, 1011-1015.

Korber, B., 2000. HIV signature and sequence variation analysis. In: Rodrigo, A.G. and Learn, G.H. (Eds.), Computational analysis of HIV molecular sequences. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 55-72.

Kumar, S., Tamura, K., Nei, M., 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5, 150-163.

Lukashov, V.V., Goudsmit, J., 2001. Evolutionary relationships among parvoviruses: virus-host coevolution among autonomous primate parvoviruses and links between adeno-associated and avian parvoviruses. J. Virol. 75, 2729-2740.

Mañas, S., Cena, J.C., Ruiz-Olmo, J., Palazon, S., Domingo, M., Wolfinbarger, J.B., Bloom, M.E., 2001. Aleutian mink disease parvovirus in wild riparian carnivores in Spain. J. Wildl. Dis. 37, 138144.

Moffatt, S., Yaegashi, N., Tada, K., Tanaka, N., Sugamura, K., 1998. Human parvovirus B19 nonstructural protein (NS1) induces apoptosis in erythoid lineage cells. J. Virol. 72, 3018-3028.

Murakami, M., Matsuba, C., Une, Y., Nomura, Y., Fujitani, H., 2001. Nucleotide sequence and polymerase chain reaction/restriction fragment length polymorphism analyses of Aleutian disease virus in ferrets in Japan. J. Vet. Diagn. Invest. 13, 337-340.

Nei, M., Gojobori, T., 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3, 418-426.

Nicholas, K.B., Nicholas, H.B.J., 1997. GeneDoc: a tool for editing and annotating multiple sequence alignments. http://www.psc.edu/biomed/genedoc.

Oie, K.L., Durrant, G., Wolfinbarger, J.B., Martin, D., Costello, F., Perryman, S., Hogan, D., Hadlow, W.J., Bloom, M.E., 1996. The relationship between capsid protein (VP2) sequence and pathogenicity of Aleutian mink disease parvovirus (ADV): a possible role for raccoons in the transmission of ADV infections. J. Virol. 70, 852-861.

Olofsson, A., Mittelholzer, C., Treiberg Berndtsson, L., Lind, L., Mejerland, T., Belak, S., 1999. Unusual, high genetic diversity of Aleutian mink disease virus. J. Clin. Microbiol. 37, 4145-4149.

Parrish, C.R., 1999. Host range relationships and the evolution of canine parvovirus. Vet. Microbiol. 69, 29-40.

Posada, D., Crandall, K.A., 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817-818.

Porter, H.G., Porter, D.D., Larsen, A.E., 1982. Aleutian disease in ferrets. Infect. Immun. 36, 379-386.

Qiu, J., Cheng, F., Burger, L.R., Pintel, D., 2006. The transcription profile Aleutian mink disease virus in CRFK cells is generated by alternative processing of pre-mRNAs produced from a single promoter. J. Virol. 80, 654-662.

Schmidt, H.A., Strimmer, K., Vingron, M., von Haeseler, A., 2002. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502-504.

Schuierer, S., Bloom, M.E., Kaaden, O.R., Truyen, U., 1997. Sequence analysis of the lymphotropic Aleutian disease parvovirus ADV-SL3. Arch. Virol. 142, 157-166.

Shackelton, L.A., Hoelzer, K., Parrish, C.R., Holmes, E.C., 2007. Comparative analysis reveals frequent recombination in the parvoviruses. J. Gen. Virol. 88, 3294-3301.

Swofford, D.L., 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), version 4. Sinauer Associates, Sunderland, Massachusetts.

Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22, 4673-4680.

Vanacker, J., Rommelaere, J., 1995. Non-structural proteins of autonomous parvoviruses: from cellular effects to molecular mechanisms. Semin. Virol. 6, 291-297.

412 Tables
413 Table 1.
414 AMDV strains included in the phylogenetic analysis ($\mathrm{n}=54$).

Strain	Isolation year	Country and region	Reference	GenBank accession no.
FIN05 ${ }^{\text {a }}$ B4 ${ }^{\text {b }}$	2005	Finland, Nykarleby	This publication	Will be added upon acceptance
FIN05/B5	2005	Finland, Nykarleby	This publication	-
FIN05/B6	2005	Finland, Nykarleby	This publication	-
FIN05/C7	2005	Finland, Sundby	This publication	
FIN05/C8	2005	Finland, Sundby	This publication	
FIN05/C9	2005	Finland, Sundby	This publication	-
FiN05/D10	2005	Finland, Yppäri	This publication	
FIN05/D11	2005	Finland, Yppäri	This publication	-
FIN05/D12	2005	Finland, Yppäri	This publication	-
FIN05/E13	2005	Finland, Hirvlax	This publication	-
FIN05/E14	2005	Finland, Hirvlax	This publication	-
FIN05/E15	2005	Finland, Hirvlax	This publication	-
FIN05/F16	2005	Finland, Hirvlax	This publication	-
FIN05/F17	2005	Finland, Hirvlax	This publication	-
A1	1995	Sweden, Blekinge	Olofsson et al. (1999)	AF107626
A2	1995	Sweden, Blekinge	Olofsson et al. (1999)	AF107627
B1	1995	Sweden, Blekinge	Olofsson et al. (1999)	AF107628
B2	1995	Sweden, Blekinge	Olofsson et al. (1999)	AF107629
B3	1995	Sweden, Blekinge	Olofsson et al. (1999)	AF107630
C1	1995	Sweden, Blekinge	Olofsson et al. (1999)	AF107631
D1	1995	Sweden, Blekinge	Olofsson et al. (1999)	AF107632
D2	1995	Sweden, Blekinge	Olofsson et al. (1999)	AF107633
E1	1995	Sweden, Blekinge	Olofsson et al. (1999)	AF107634
E2	1995	Sweden, Blekinge	Olofsson et al. (1999)	AF107635
F1	1995	Sweden, Blekinge	Olofsson et al. (1999)	AF107636
F2	1995	Sweden, Blekinge	Olofsson et al. (1999)	AF107637
F3	1995	Sweden, Blekinge	Olofsson et al. (1999)	AF107638

G1	1995	Sweden, Blekinge	Olofsson et al. (1999)	AF107639
H1	1995	Sweden, Blekinge	Olofsson et al. (1999)	AF107640
H2	1995	Sweden, Blekinge	Olofsson et al. (1999)	AF107641
H3	1995	Sweden, Blekinge	Olofsson et al. (1999)	AF107642
I1	1995	Sweden, Blekinge	Olofsson et al. (1999)	AF107643
I2	1995	Sweden, Blekinge	Olofsson et al. (1999)	AF107644
J1	1996	Sweden, Halland	Olofsson et al. (1999)	AF107645
K1	1995	Sweden, Skaraborg	Olofsson et al. (1999)	AF107646
K2	1995	Sweden, Skaraborg	Olofsson et al. (1999)	AF107647
L1	1995	Sweden, Skaraborg	Olofsson et al. (1999)	AF107648
L2	1995	Sweden, Skaraborg	Olofsson et al. (1999)	AF107649
M1	1995	Sweden, Skaraborg	Olofsson et al. (1999)	AF107650
M2	1995	Sweden, Skaraborg	Olofsson et al. (1999)	AF107651
N1	1997	Sweden, Skåne	Olofsson et al. (1999)	AF107652
N2	1997	Sweden, Skåne	Olofsson et al. (1999)	AF107653
N3	1997	Sweden, Skåne	Olofsson et al. (1999)	AF107654
O1	1997	Sweden, Älvsborg	Olofsson et al. (1999)	AF107655
O2	1997	Sweden, Älvsborg	Olofsson et al. (1999)	AF107656
P1	1997	Finland, Vaasa	Olofsson et al. (1999)	AF107657
Q1	1996	Finland, Vaasa	Olofsson et al. (1999)	AF107658
R1	1997	Finland, Vaasa	Olofsson et al. (1999)	AF107659
R2	1997	Finland, Vaasa	Olofsson et al. (1999)	AF107660
AMVD-G ${ }^{\text {c }}$	Late 1970s	USA	Bloom et al. (1980, 1990)	M20036
AMDV-Utah 1	1963	USA, Utah	Gottschalck et al. (1994)	X77083
AMDV-United	$\mathrm{n} / \mathrm{a}^{\text {d }}$	USA, n/a	Gottschalck et al. (1994)	X77085
AMDV-K	1982	Denmark, n/a	Gottschalck et al. (1994)	X77084
AMDV-SL3	Early 1980s	Germany, n / a	Schuierer et al. (1997)	X97629

[^0]Table 2.
AMDV-antibody and AMDV-DNA findings of the studied minks ${ }^{\text {a }}$ ($\mathrm{n}=17$).

Mink		CIE	PCR		
		Spleen	Mesenteric lymph node	Liver	
FIN05/A1b	-	-	-	-	
FIN05/A2	-	-	-	-	
FIN05/A3	-	-	-	-	
FIN05/B4	+	+	+	+	
FIN05/B5	+	+	+	+	
FIN05/B6	+	+	+	+	
FIN05/C7	+	+	-	+	
FIN05/C8	+	-	+	-	
FIN05/C9	-	+	+	+	
FIN05/D10	+	+	+	+	
FIN05/D11	+	-	+	+	
FIN05/D12	+	+	+	+	
FIN05/E13	+	+	+	+	
FIN05/E14	+	+	+	+	
FIN05/E15	+	+	n / a^{c}	+	
FIN05/F16	+	+	+	+	
FIN05/F17	+	+		+	

[^1]Table 3.
AMDV NS1 (336-bp) mean sequence identities and substitutions. Range is indicated in parentheses.

	Nucleotide identities	Amino acid identities	Synonymous substitutions (ds)	Non- synonymous substitutions (dn)	Synonymous to non-synonymous substitutions $(\mathrm{ds} / \mathrm{dn})$
All strains	$89 \%(81-100 \%)$	$83 \%(70-100 \%)$	$0.17(0.07-0.37)$	$0.06(0.03-0.09)$	$2.71(1.01-5.02)$
Group I strains	$95 \%(90-100 \%)$	$91 \%(80-100 \%)$	$0.05(0.00-0.14)$	$0.02(0.00-0.06)$	$3.08(0.82-13.95)$
Group II strains	$93 \%(87-100 \%)$	$89 \%(79-100 \%)$	$0.11(0.06-0.19)$	$0.04(0.02-0.06)$	$3.02(2.39-3.84)$
Group III strains	$97 \%(94-100 \%)$	$94 \%(88-100 \%)$	$0.03(0.00-0.10)$	$0.01(0.00-0.04)$	$2.86(2.14-3.61)$

When calculating ds, dn and $\mathrm{ds} / \mathrm{dn}$, all strains were compared with the consensus of all sequences, and strains within one group
were compared with the consensus sequence of each group. Identical sequences were excluded from the analysis. Identities were calculated by pairwise comparisons.

Figure captions

Fig. 1. Alignment of nucleotide sequences of a 336-bp fragment of the NS1 gene of 54 AMDV strains. Only the nucleotides different from the consensus sequence are shown.

Fig. 2. Phylogenetic tree of 54 AMDV strains based on alignment of the 336nucleotide fragment of an AMDV NS1 gene. The tree was constructed with MEGA using maximum parsimony. Country of origin is stated in parentheses. The strains fell into three groups, indicated with Roman numerals I-III. Finnish strains are circled. Numbers at nodes indicate bootstrap values. Only values greater than 50% are shown (1000 replications). The scale for genetic distance is provided below. See Table 1 for strain designations.

Fig. 1.

TGTTGCTTAGGTTACTTTGATAAGAATGAAGATCCTAAGGATGTTCAAAAATCCTTAGGTTGGTTTCTTAAAAAATTAAATAAAGACCTA

		*	200	*	220	*	240	*	260	*	
F1	:										270
F3	:										270
C1	:								.T.		270
E1	:										270
H1	:								.T.		270
H3	:								.T.		270
F2	:								.T.		270
B1	:								.T.		270
B3	:								.T.		270
N2	:										270
N3	:								.T.		270
N1	:								. T		270
E2	:								.T.		270
D2	:								.T.		270
H2	:								.t.		270
I1	:								.T.		270
L1	:								. T .		270
L2	:								.t.		270
FIN05/D10	:							.	.t.		270
FIN05/D11	:								.T.		270
FIN05/D12	:								. ${ }^{\text {T. }}$		270
I2	:							.	. ATC		270
United	:								T.		270

R1

FIN05/E14
FINO5/E15 FIN05/F17 FIN05/B5

 FINO5/C9 FIN05/C7 K
O1 Q1
P1
P1
K1
K1
K2
K2
D1
M1
M2
O
O
O
A2
B2
B2

B3
N2
N3
N1
E2
D2
H2
I1
L1
L2 FIN05/D10 FIN05/D11 FIN05/D12 I2 United A1 G1 SL3

G Utah 1

R2
FIN05/B4 R1
FIN05/E14
FTN05/E15
FTN05/F17 FIN05/B5 FIN05/B6 FIN05/E13 FIN05/F16
FIN05/C8 FIN05/C9 FIN05/C7 K

Q1
P1
K1
K2
K2
D1
D1
M1
M1
M2
M2
01
02
A2
B2

CTGTTTAACAAAGATAAGATAAATAAAGAAGGTATGGATGGTTACTATGCTGCTGGTAACGGTGGC

Figure 2

[^0]: ${ }^{\text {a }}$ Sequences described in this study are indicated with FIN05
 ${ }^{\mathrm{b}}$ Farm and number of the animal
 ${ }^{\text {c }}$ Cell culture adapted clone of AMDV-Utah 1
 ${ }^{\mathrm{d}}$ Data not available

[^1]: $\overline{{ }^{a}}$ Antibodies were tested by counter immunoelectrophoresis and DNA by semi-nested NS1 PCR
 ${ }^{\mathrm{b}}$ Farm and number of the animal
 ${ }^{\text {c }}$ Data not available

