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The emergence of human severe acute respiratory syndrome incited renewed interest in animal coronaviruses (CoVs) as potential agents of direct and indirect zoonoses. The reinforced epidemiological surveillance on CoVs has led to the identification of new viruses, genotypes, pathotypes and host variants in animals and humans. In dogs, a CoV associated with mild enteritis, canine coronavirus (CCoV), has been known since 1970s. CoV strains with different biological and genetic properties with respect to classical CCoV strains have been identified in dogs in the last few years, leading to a full reconsideration of the CoV-induced canine diseases. The genetic evolution of dog CoVs is paradigmatic of how CoVs evolve through accumulation of point mutations, insertions or deletions in the viral genome, that led to the emergence of new genotypes (CCoV type I), biotypes (pantropic CCoV) and host variants (canine respiratory coronavirus). This paper is a review of the current literature on the recent genetic evolution of CCoV and emergence of new CoVs in the dog. The significances of the newly acquired information for the canine health status and prophylaxis programmes are also discussed.
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Coronavirus taxonomy and genomic organisation

Coronaviruses (family Coronaviridae, order Nidovirales) are large, single-stranded, positive-sense RNA viruses, which are responsible for enteric and/or respiratory disease in mammals and birds [START_REF] Enjuanes | Virus Taxonomy, Classification and Nomenclature of Viruses[END_REF]. Currently, CoVs are classified into three different antigenic groups, although divergent CoVs have been identified in bats and wild carnivores in recent years, thus suggesting revision of CoV taxonomy [START_REF] Tang | Prevalence and genetic diversity of coronaviruses in bats from China[END_REF][START_REF] Dong | Detection of a novel and highly divergent coronavirus from asian leopard cats and Chinese ferret badgers in Southern China[END_REF]. Phylogenetic relationship of CoVs of the different groups is represented in Fig. 1. Group 1 CoVs include canine coronavirus (CCoV), feline coronaviruses (FCoVs) type I and type II, transmissible gastroenteritis virus (TGEV) of swine, porcine respiratory coronavirus (PRCoV), porcine epidemic diarrhoea virus (PEDV) and human coronaviruses 229E (HCoV-229E) and NL63 (HCoV-NL63). Recently, a ferret coronavirus has been identified as a member of group 1 [START_REF] Wise | Molecular characterization of a novel coronavirus associated with epizootic catarrhal enteritis (ECE) in ferrets[END_REF]. Currently, group 2

CoVs are organised into bovine-like (subgroup 2a) and severe acute respiratory syndrome (SARS)like (subgroup 2b) viruses. Members of subgroup 2a are bovine coronavirus (BCoV), mouse hepatitis virus (MHV), rat coronaviruses, porcine haemagglutinating encephalomyelitis virus (PHEV), human coronavirus (HCoV) OC43, human enteric coronavirus (HECV) 4408 [START_REF] Enjuanes | Virus Taxonomy, Classification and Nomenclature of Viruses[END_REF], and the newly recognised equine coronavirus (ECoV) [START_REF] Guy | Characterization of a coronavirus isolated from a diarrheic foal[END_REF], HCoV-HKU1 [START_REF] Woo | Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia[END_REF] and canine respiratory coronavirus (CRCoV) [START_REF] Erles | Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease[END_REF]. SARS-CoV, initially defined as prototype of a new group 4, has been placed more recently within group 2 CoVs, in a subgroup 2b, together with SARS-like CoVs isolated from bats and wild carnivores [START_REF] Gorbalenya | Severe acute respiratory syndrome coronavirus phylogeny: toward consensus[END_REF][START_REF] Weiss | Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus[END_REF]. Group 3 comprises CoVs of avian origin, whose prototype is represented by avian bronchitis virus, although the turkey coronavirus had been placed previously in antigenic group 2 along with BCoV [START_REF] Dea | Antigenic and genomic relationships among turkey and bovine enteric coronaviruses[END_REF][START_REF] Verbeek | Sequence analysis of the turkey enteric coronavirus nucleocapsid and membrane protein genes: a close genomic relationship with bovine coronavirus[END_REF].

The 5′ two-thirds of the 27.6-31-kb CoV genome consists of two overlapping open reading frames (ORFs) that encode non-structural proteins including the viral RNA-dependent RNA polymerase and proteases. Another one-third nucleotide sequences from the 3′ end contain ORFs encoding for A c c e p t e d M a n u s c r i p t 4 the major structural spike, envelope, membrane, and nucleocapsid proteins. The trimeric spike (S) protein, the main inducer of virus-neutralising antibodies [START_REF] Gebauer | Residues involved in the formation of the antigenic sites of the S protein of transmissible gastroenteritis coronavirus[END_REF], forms characteristic viral peplomers which mediate viral attachment to specific cell receptors and fusion between the envelope and plasma membrane [START_REF] Enjuanes | Virus Taxonomy, Classification and Nomenclature of Viruses[END_REF]. The small membrane (E) protein, recently recognised as a structural component of the coronavirions, is thought to be important for viral envelope assembling [START_REF] Vennema | Nucleocapsid-independent assembly of coronavirus-like particles by coexpression of viral envelope protein genes[END_REF]. The membrane (M) protein, the most abundant structural component, is a type III glycoprotein consisting of a short amino-terminal ectodomain, a triple-spanning transmembrane domain, and a long carboxyl-terminal inner domain [START_REF] Rottier | The coronavirus membrane protein[END_REF]. Antibodies to the M protein of MHV can neutralise viral infectivity, but only in the presence of complement [START_REF] Collins | Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion[END_REF]. The nucleocapsid (N) protein is a highly basic phosphoprotein that modulates viral RNA synthesis, binds to the viral RNA and forms a helical nucleocapsid [START_REF] Enjuanes | Virus Taxonomy, Classification and Nomenclature of Viruses[END_REF]. Additional ORFs encoding non-structural proteins have been recognised in CoV genomes and their number, nucleotide sequence and gene order can vary remarkably among different CoVs [START_REF] Boursnell | Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus[END_REF][START_REF] Lee | The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase[END_REF][START_REF] Herold | Molecular analysis of the human coronavirus (strain 229E) genome[END_REF][START_REF] Eleouet | Complete genomic sequence of the transmissible gastroenteritis virus[END_REF]. The functions of such genes are in most cases unknown and most of them are not essential for virus replication but may play a part in virulence and host range [START_REF] Yamanaka | Nucleotide sequence of the inter-structural gene region of feline infectious peritonitis virus[END_REF][START_REF] Haijema | Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis[END_REF]. Group 2 CoV genomes contain an additional structural protein (HE) with haemagglutinin-esterase activity, which shares up to 30% amino acid identity to the analogous protein of influenza C viruses [START_REF] Enjuanes | Virus Taxonomy, Classification and Nomenclature of Viruses[END_REF].

Canine enteric coronavirus (CCoV)

History and pathobiology

The first report on CCoV infection is dated 1971, when Binn and colleagues first isolated a coronavirus (strain 1-71) from dogs with acute enteritis in a canine military unit in Germany [START_REF] Binn | Recovery and characterization of a coronavirus from military dogs with diarrhea[END_REF]. The experimental administration of strain 1-71 to young dogs was able to reproduce the gastroenteric disease [START_REF] Keenan | Intestinal infection of neonatal dogs with canine coronavirus 1-71: studies by virologic, histologic, histochemical, and immunofluorescent techniques[END_REF]. Since then, several CCoV outbreaks have been A c c e p t e d M a n u s c r i p t 5 reported worldwide, showing that CCoV is an important enteropathogen of the dog. Serological and virological investigations have demonstrated that CCoV is widespread in dog population, mainly in kennels and animal shelters [START_REF] Carmichael | Infectious canine enteritis caused by corona-like virus: current status and request for information[END_REF][START_REF] Rimmelzwaan | The use of enzyme-linked immunosorbent assay systems for serology and antigen detection in parvovirus, coronavirus and rotavirus infections in dogs in The Netherlands[END_REF][START_REF] Tennant | Studies on the epizootiology of canine coronavirus[END_REF][START_REF] Möstl | Verbreitung und Bedeutung von Coronavirusinfektionen in heimischen Hundepopulationen[END_REF][START_REF] Bandai | Canine coronavirus infections in Japan: virological and epidemiological aspects[END_REF]Naylor et al., 2001b;[START_REF] Yeşilbağ | Canine coronavirus infection in Turkish dog population[END_REF][START_REF] Schulz | Comparison of the prevalence of enteric viruses in healthy dogs and those with acute haemorrhagic diarrhoea by electron microscopy[END_REF]. CCoV infection is characterised by high morbidity and low mortality, as well as by a typical faecal-oral route of transmission [START_REF] Tennant | Canine coronavirus infection in the dog following oronasal inoculation[END_REF]. CCoV is shed at high titres with the faeces of the infected dogs and its infection is restricted to the alimentary tract, leading to the onset of clinical signs typical of the gastroenteric involvement including loss of appetite, vomiting, fluid diarrhoea dehydration and, only occasionally, death. Usually, systemic disease is not observed during CCoV infection, although the virus has been isolated from several tissues (tonsils, lungs and liver) of pups infected experimentally [START_REF] Tennant | Canine coronavirus infection in the dog following oronasal inoculation[END_REF]. Fatal disease commonly occurs as a consequence of mixed infections with CCoV together with canine parvovirus type 2 (CPV-2) [START_REF] Decaro | First detection of canine parvovirus type 2c in pups with haemorrhagic enteritis in Spain[END_REF](Decaro et al., , 2007b)), canine adenovirus type 1 (Decaro et al., 2007a) or canine distemper virus (Decaro et al., 2004a).

CCoV genotypes

Genetic analysis of several CCoVs detected in pups with diarrhoea in Italy revealed a number of point mutations affecting a fragment of the M gene, which has led to the designation of these atypical CCoVs as FCoV-like CCoVs [START_REF] Pratelli | Variation of the sequence in the gene encoding for transmembrane protein M of canine coronavirus (CCV)[END_REF]. A genetic drift to FCoV type II was also observed in the sequence of CCoVs detected in the faeces of two naturally infected pups during the late stages of long-term viral shedding [START_REF] Pratelli | M gene evolution of canine coronavirus in naturally infected dogs[END_REF]. Subsequently, extensive sequence analysis on multiple regions of the viral genome, including ORF1a, ORF1b and ORF5, of several CCoV positive faecal samples provided strong evidence for the existence of two separate genetic clusters of CCoV. The first cluster includes CCoVs intermingled with reference CCoV strains, such as Insavc-1 and K378, while the second cluster segregates separately from CCoVs and, presumably, represents a genetic outlier referred to as FCoV-like CCoV (Pratelli et al., 2003b).

A c c e p t e d M a n u s c r i p t 6 Finally, the nucleotide sequence of a region encompassing about 80% of the S gene of one of these FCoV-like CCoVs (strain Elmo/02) was determined (Pratelli et al., 2003a). Phylogenetic analysis on the inferred amino acid sequence (Fig. 1) clearly showed that strain Elmo/02 segregates with FCoVs type I (~ 81% identity) rather than reference CCoVs and FCoVs type II (~ 54% identity).

On the basis of the significant genetic similarity between Elmo/02 and FCoVs type I, this strain has been designated as the prototype of the newly recognized CCoV type I, whereas reference CCoVs have been referred to as CCoV type II (Pratelli et al., 2003a). Unlike group 1 CoVs, CCoV type I shares with members of groups 2 and 3 a potential cleavage site in the S protein (Pratelli et al., 2003a). Moreover, the genome of this genotype contains an additional ORF, 624 nt in length, which has not been detected in CCoV type II and other group 1 CoVs (Lorusso et al., 2007, Fig. 2).

Computer-aided analysis of this additional ORF, which was referred to as ORF3, showed that the putative encoded protein is 207 aa long, has a predicted molecular weight of about 24 kDa and an isoelectric point of 7.02. Analysis of hydrophobic profile showed a neutral median hydrophaty pattern with a highly hydrophobic region localised at the N-terminus due to the presence of a leucin-and isoleucin-rich region. This region also contains a signal peptide with the aa cleavage site at position 15 (12VAAKD16). This finding and the observation that no transmembrane region was found suggest that the protein is secreted from the infected cells.

CCoV type I is distinguishable from CCoV type II by means of conventional RT-PCR assays, which are able to amplify selectively fragments of the ORF2 and ORF5, but that genotype has not been adapted to grow in vitro (Pratelli et al., 2004a). Recently, TaqMan-based real-time RT-PCR assays have been established for detection and quantification of CCoV RNA in the faeces of dogs with diarrhoea (Decaro et al., 2004b) and for discrimination between the two CCoV genotypes [START_REF] Decaro | Genotype-specific fluorogenic RT-PCR assays for the detection and quantitation of canine coronavirus type I and type II RNA in faecal samples of dogs[END_REF]. Extensive molecular analysis of faecal samples collected from the Italian dog population revealed that CCoV infection in dogs is frequently characterised by the simultaneous presence of both genotypes [START_REF] Decaro | Genotype-specific fluorogenic RT-PCR assays for the detection and quantitation of canine coronavirus type I and type II RNA in faecal samples of dogs[END_REF]. The significance of the simultaneous infection by both CCoV genotypes has to be determined, particularly with respect to the pathobiology of CCoV Epidemiological investigations revealed that CCoV type I is now widespread in dogs in Turkey [START_REF] Yeşilbağ | Canine coronavirus infection in Turkish dog population[END_REF], Austria [START_REF] Benetka | M gene analysis of atypical strains of feline and canine coronavirus circulating in an Austrian animal shelter[END_REF] and China [START_REF] Wang | Detection of canine coronaviruses genotype I and II in raised Canidae animals in China[END_REF]. In Austria, CCoV type I-like M sequences were reported in cats [START_REF] Benetka | M gene analysis of atypical strains of feline and canine coronavirus circulating in an Austrian animal shelter[END_REF]. In China, both CCoV genotypes were also found in the faeces of healthy foxes and raccoon dogs, showing high genetic relatedness with Italian canine isolates in the M gene [START_REF] Ma | Two genotypes of Canine coronavirus simultaneously detected in the fecal samples of healthy foxes and raccoon dogs[END_REF][START_REF] Wang | Detection of canine coronaviruses genotype I and II in raised Canidae animals in China[END_REF]. As for the pathogenic potential of CCoV type I, the limited data available so far account for its involvement in canine acute gastroenteritis as reported for CCoV type II. In fact, type I CCoVs were detected in the faeces of dogs with diarrhoea after natural or experimental infection [START_REF] Decaro | Genotype-specific fluorogenic RT-PCR assays for the detection and quantitation of canine coronavirus type I and type II RNA in faecal samples of dogs[END_REF]. Moreover, long-term viral shedding, up to 6 months, was reported in dogs naturally infected [START_REF] Pratelli | M gene evolution of canine coronavirus in naturally infected dogs[END_REF].

Virulent/divergent strains

Analogously to other CoVs, CCoV can mutate readily and new potentially virulent or genetically divergent strains have been reported in the last few years. Sequence analysis of the S gene sequences showed that some CCoV type II reference and field strains are more closely related to TGEV than to FCoV [START_REF] Wesseling | Nucleotide sequence and expression of the spike (S) gene of canine coronavirus and comparison with the S proteins of feline and porcine coronaviruses[END_REF][START_REF] Horsburgh | Cloning, sequencing and expression of the S protein gene from two geographically distinct strains of canine coronavirus[END_REF][START_REF] Wesley | The S gene of canine coronavirus, strain UCD-1, is more closely related to the S gene of transmissible gastroenteritis virus than to that of feline infectious peritonitis virus[END_REF]. Naylor et al. (2001a) identified a virulent strain (UWSMN-1) from an outbreak of fatal gastroenteritis in a breeding colony in Australia, that appeared to be divergent from type II CCoVs circulating in other countries. Sequence analysis of short genomic fragments showed nucleotide identities to reference type II CCoVs up to 96.1%, 86.1% and 93.0% in ORF1b and in 5' and 3' ends of the spike gene, respectively. Moreover, by phylogenetic analysis, strain UWSMN-1 was found to cluster separately from typical canine and feline CoVs, indicating a gradual accumulation of mutations throughout its genome rather than recombination events between CCoV and FCoV (Naylor et al., 2001a;2002). [START_REF] Sanchez-Morgado | Molecular characterization of a virulent canine coronavirus BGF strain[END_REF]. The strain, isolate BGF10, was characterised at molecular level, displaying an exceptionally long non-structural protein 3b (250 amino acids, Fig. 2) and a highly divergent N-terminus of the M protein.

Two cases of fatal CoV disease in pups without evidence of co-infection by CPV-2 were reported by [START_REF] Evermann | Canine coronavirus-associated puppy mortality without evidence of concurrent canine parvovirus infection[END_REF]. CCoV infection was demonstrated by immunohistochemistry on gut sections and electron microscopy of intestinal contents. Histopathology showed moderate depletion and necrosis of lymphoid tissues, including thymus, spleen, lymph nodes and gut-associated lymphoid tissues, in both pups. However, the authors did not conduct the genetic characterisation of the CCoV strains detected, thus preventing any possible speculations on the molecular mechanisms responsible for the exceptional strain virulence.

Further CCoV strains with high virulence were associated to a fatal outbreak of canine gastroenteritis in Sweden [START_REF] Escutenaire | Characterization of divergent and atypical canine coronaviruses from Sweden[END_REF]. The identification of different CCoVs was highly suggestive of strains already circulating in the Swedish dog population rather than of new emerging or imported variants. Importantly, some Swedish strains displayed an S gene with the 5' and 3' ends closely related to CCoV type I and type II, respectively, thus indicating their possible origin from recombination events between the two CCoV genotypes.

Canine pantropic coronavirus

In 2005, a highly virulent variant of CCoV type II (strain CB/05) was reported in Italy which caused a systemic disease followed by a fatal outcome in pups [START_REF] Buonavoglia | Canine coronavirus highly pathogenic for dogs[END_REF]. Clinical signs consisted of fever (39.5-40°C), lethargy, loss of appetite, vomiting, haemorrhagic diarrhoea, severe leukopenia and neurological signs (ataxia, seizures) followed by death within 2 days after the onset of the symptoms. Necropsy examination revealed severe gross lesions in lungs, liver, spleen, and kidneys. Virological and bacteriological investigations on the parenchymatous organs failed to detect common canine pathogens, whereas CCoV type I and type II were identified in the intestinal RNA was also detected at high titres in lungs, spleen, liver, kidney and brain. A CCoV type II strain (CB/05) was isolated on A-72 cells from all the examined tissues but brain. Immunohistochemistry using a CCoV-specific monoclonal antibody detected CCoV antigen in all tissues. Sequence analysis of the 3' genome end of the pantropic CCoV strain, including ORFs 2 (S gene), 3a, 3b, 3c, 4 (E gene), 5 (M gene), 6 (N gene), 7a and 7b, showed that strain CB/05 has a high degree of amino acid identity to the cognate ORFs of CCoV type II, although the S protein displayed the highest identity to FCoV type II strain 79-1683. A genetic marker was identified in the CB/05 genome, consisting of a 38-nt deletion in ORF3b which was responsible for a predicted truncated nonstructural protein 3b (Decaro et al., 2007d, Fig. 2).

Experimental infection of seronegative pups with strain CB/05 reproduced the disease with occurrence of severe clinical signs, including pyrexia, anorexia, depression, vomiting, diarrhoea and leukopenia (Decaro et al., 2008a). A different clinical course was observed according to the age of the infected pups. The older dogs, 6 months of age, slowly recovered from the disease, whereas two out of three 2.5-month-old dogs were sacrificed due to the severity of the CB/05-induced disease.

The pantropism of the virus was confirmed by the presence of gross lesions in the internal organs of the dead dogs, as well as by the detection of viral RNA in those tissues, including brains, albeit at lower titres with respect to those detected in dogs succumbed to natural infection (Decaro et al., 2007d). Traces of viral RNA were detected in the blood of a single dog, although further unpublished studies have demonstrated that detectable RNemia (viral RNA in white blood cells) can occur easily during CB/05 experimental infection (Decaro et al., unpublished).

In a subsequent experiment, strain CB/05 was proven to be able to infect even dogs with a recent infection caused by an enteric CCoV strain, inducing the occurrence of mild clinical signs (Decaro et al., manuscript in preparation). Although the dogs used in that study had a strong humoral immunity to enteric CCoV at the time of challenge, experimental infection with strain CB/05 was successful in all pups irrespective of the viral dose administered. Exposure to even low amounts of (Decaro et al., 2007d), attributed mainly to the crossprotection induced by antibodies against enteric CCoV. Lymphotropism of the strain CB/05 was clearly demonstrated by the occurrence of moderate lymphopenia in several infected pups.

However, despite the moderate lymphopenia and the presence of the virus in the lymphoid tissues, the viral RNA was not detected in the blood at any time. The association of strain CB/05 to a severe, sometimes fatal, disease of dogs, together with the isolation of the virus from organs with severe lesions, strongly suggests that CCoV has changed its tropism, acquiring the ability to spread from the enteric tract to the internal organs (Decaro et al., 2007d). The molecular basis of the change of virulence and tropism is being investigated through the assessment of a reverse genetics system similar to that established for feline infectious peritonitis virus [START_REF] Haijema | Switching species tropism: an effective way to manipulate the feline coronavirus genome[END_REF].

Canine respiratory coronavirus (CRCoV)

As a consequence of the recent emergence of SARS-CoV and SARS-like viruses [START_REF] Guan | Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China[END_REF], the role of CoVs as aetiological agents of novel diseases in the dog has been investigated. In 2003, a group 2 CoV was identified in the respiratory tract of dogs housed in a rehoming kennel in the United Kingdom with a history of endemic respiratory disease [START_REF] Erles | Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease[END_REF]. The viral RNA was detected by RT-PCR in 32/119 tracheal and 20/119 lung samples, showing the highest prevalence in dogs with mild clinical signs. The virus, referred to as canine respiratory coronavirus (CRCoV), showed a close genetic relatedness to the bovine subgroup in the replicase and spike proteins (Fig. 1). Sequence analysis of the S gene of CRCoV strain T101 revealed a nucleotide identity of 97.3 and 96.9% to the group 2 CoVs BCoV and HCoV-OC43, respectively, suggesting a recent common ancestor for the three viruses and demonstrating the occurrence of repeated hostspecies shifts [START_REF] Vijgen | Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event[END_REF][START_REF] Vijgen | Evolutionary history of the closely related group 2 coronaviruses: porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43[END_REF]). An additional suggestion for the bovine origin of CRCoV A c c e p t e d M a n u s c r i p t 11 was provided by the successful experimental infection of pups with a typical BCoV strain [START_REF] Kaneshima | The infectivity and pathogenicity of a group 2 bovine coronavirus in pups[END_REF]. Conversely, CRCoV was found to be genetically unrelated to CCoV, displaying only a 21.2% amino acid identity to the enteric virus in the S protein [START_REF] Erles | Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease[END_REF].

Unlike the enteric coronaviruses CCoVs type I and II, CRCoV is responsible for mild respiratory signs and is recognised as aetiological agent of canine infectious respiratory disease (CIRD) together with Bordetella bronchiseptica, canine adenoviruses type 1 and type 2, canine parainfluenzavirus, canine herpesvirus, reoviruses and influenza viruses [START_REF] Erles | Longitudinal study of viruses associated with canine infectious respiratory disease[END_REF][START_REF] Buonavoglia | Canine respiratory viruses[END_REF]. Due to the difficult adaptation of CRCoV to the in-vitro growth, preliminary epidemiological surveys were carried out in the United Kingdom, North America, Japan and Italy, by means of serological assays using the strictly genetically and antigenically related BCoV as antigen [START_REF] Erles | Investigation into the causes of canine infectious respiratory disease: antibody responses to canine respiratory coronavirus and canine herpesvirus in two kennelled dog populations[END_REF][START_REF] Priestnall | Serological prevalence of canine respiratory coronavirus[END_REF][START_REF] Kaneshima | The prevalence of a group 2 coronavirus in dogs in Japan[END_REF]Decaro et al., 2007c). Those studies detected seropositivity rates comprised between 17.8% [START_REF] Kaneshima | The prevalence of a group 2 coronavirus in dogs in Japan[END_REF] and 54.7% [START_REF] Erles | Investigation into the causes of canine infectious respiratory disease: antibody responses to canine respiratory coronavirus and canine herpesvirus in two kennelled dog populations[END_REF]. Serological evidence was obtained that CRCoV has been circulating also in other countries, including Ireland and Greece [START_REF] Priestnall | Serological prevalence of canine respiratory coronavirus[END_REF]. Virological evidence for the CRCoV presence was provided for Canada, Japan and Italy.

In Canada, the CRCoV RNA was identified in archival tissue samples (both collected in 1996) from 2/126 cases of CIRD, but no genetic characterisation of the detected strains was performed [START_REF] Ellis | Detection of coronavirus in cases of tracheobronchitis in dogs: a retrospective study from 1971 to 2003[END_REF]. Further CRCoV strains were detected in the nasal (02/005) and rectal (04-009) swabs of two Japanese dogs [START_REF] Kaneshima | The prevalence of a group 2 coronavirus in dogs in Japan[END_REF]. The nucleotide sequence identity of the Japanese CRCoVs to reference T101 strain was 98.0-99.7% in the HE protein gene. The S gene was analysed only for strain 02/005, showing a 99.1% identity to CRCoV-T101. The Italian survey found the CRCoV RNA in a single lung sample out of 109 tested by RT-PCR, with a 98.0% sequence identity to strain T101 in the S gene (Decaro et al., 2007c).

Although CRCoV has been detected in tissue samples of several dogs by RT-PCR, isolation of the virus on canine cell lines as well as on the human adenocarcinoma cell line HRT-18 was at first unsuccessful [START_REF] Erles | Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease[END_REF][START_REF] Kaneshima | The prevalence of a group 2 coronavirus in dogs in Japan[END_REF]. Only recently, [START_REF] Erles | Isolation and sequence analysis of canine respiratory coronavirus[END_REF] were A c c e p t e d M a n u s c r i p t 12 able to propagate the CRCoV strain 4182 from a canine respiratory sample on HRT-18 cells and to determine the full-length sequence of the 3' end of its genomic RNA (9.8 kb). By sequence analysis, strain 4182 was found to have a genomic organisation similar to BCoV with a close genetic relatedness to the bovine CoV subgroup in the major structural and non-structural proteins, excepting for the ORFs encoding for small non-structural proteins between the S and E genes. In that region, three different ORFs were identified in the BCoV genome, encoding for the nonstructural 4.9-kDa, 4.8-kDA and 12.7-kDa proteins, whereas only two ORFs, which encode for the nonstrucutarl 8.8-kDa and 12.8-kDa proteins, were present in the CRCoV genome. This mutation, due to a 2-nt deletion prior to the stop codon that terminates the 4.9-kDa protein of BCoV leading to the translation of a single 8.8-kDa joint protein, was found in all British CRCoVs but strain G9142.

Despite the multiple reports of CRCoV in different areas of the world, the role of CRCoV in CIRD is not completely clear. Analogously to other canine respiratory pathogens, it is likely that single infections with CRCoV determine only a subclinical or asymptomatic course. However, CRCoV replication in the respiratory epithelium may damage the mucociliar system, leading to the a more severe clinical course of infections caused by other respiratory pathogens [START_REF] Buonavoglia | Canine respiratory viruses[END_REF].

Epilogue

Accumulation of point mutations, as well as small insertions and deletions in coding and noncoding sequences, are the dominant forces in the microevolution of positive-sense RNA viruses, resulting in proliferation of virus strains, serotypes and subtypes [START_REF] Dolja | Evolution of positive-strand RNA viruses[END_REF].

Extremely large (+) RNA virus genomes, such as those of CoVs, are thought to mutate at high frequency as a consequence of high error rates of the RNA polymerase that are predicted to accumulate several base substitutions per round of replication [START_REF] Jarvis | The polymerase in its labyrinth: mechanisms and implications of RNA recombination[END_REF][START_REF] Lai | Coronaviridae: The viruses and their replication[END_REF]. Changes in virulence, tissue tropisms and/or interspecies transmission of CoVs occur through genetic variations in structural and/or non-structural proteins [START_REF] Laude | Porcine respiratory coronavirus: molecular features and virus-host interactions[END_REF] A c c e p t e d M a n u s c r i p t 13 [START_REF] Vennema | Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses[END_REF][START_REF] Guan | Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China[END_REF][START_REF] Rottier | Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein[END_REF][START_REF] Song | Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human[END_REF][START_REF] Vijgen | Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event[END_REF]Decaro et al., 2007d). The ORF2 of PRCoV has a 200-aa deletion in the N-terminus with respect to TGEV, from which it presumably had arisen. Most likely, this deletion is responsible for the change in the viral pathobiology [START_REF] Vaughn | Sequence comparison of porcine respiratory coronavirus isolates reveals heterogeneity in the S, 3, and 3-1 genes[END_REF]. Nevertheless, minor amino acid differences in the sequence of the spike protein have been shown to change the virulence of even very closely related TGEV isolates [START_REF] Sanchez | Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence[END_REF]. The enteric biotype of FCoV, feline enteric coronavirus (FECV), causes persistent infections of the intestinal mucosa that may lead to point mutations in the S gene [START_REF] Rottier | Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein[END_REF] and/or deletions in the group-specific genes 3c, 7b [START_REF] Vennema | Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses[END_REF] or 7a [START_REF] Kennedy | Deletions in the 7a ORF of feline coronavirus associated with an epidemic of feline infectious peritonitis[END_REF]. Those mutations have been suggested to be involved in changes in the tropism of the virus, which may acquire the ability to infect monocytes/macrophages and to cause a systemic, fatal disease of cats known as feline infectious peritonitis (FIP). Similar drastic shifts of tissue tropism have been observed with murine coronaviruses [START_REF] Haspel | Temperature-sensitive mutants of mouse hepatitis virus produce a high incidence of demyelination[END_REF].

Adaptation to humans of the recently recognised SARS-associated coronavirus (SARS-CoV) appears to be related to minor genome mutations, consisting of a 29-nt deletion in the genome of a wild-mammal coronavirus, that resulted in the translation of two different ORFs, 10 and 11, instead of the single ORF10 [START_REF] Guan | Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China[END_REF]. There are multiple genetic and antigenic evidence that several subgroup 2a CoVs, such as HCoV-OC43, HECV-4408 and PHEV, have arisen as consequence of trans-species infections caused by BCoV [START_REF] Zhang | Biological and genetic characterization of a hemagglutinating coronavirus isolated from a diarrhoeic child[END_REF][START_REF] Vijgen | Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event[END_REF][START_REF] Vijgen | Evolutionary history of the closely related group 2 coronaviruses: porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43[END_REF][START_REF] Erles | Isolation and sequence analysis of canine respiratory coronavirus[END_REF]. Recently, bovine-like CoVs were identified in wild or domesticated ruminants, including several species of deer, waterbuck antelope [START_REF] Tsunemitsu | Isolation of coronaviruses antigenically indistinguishable from bovine coronavirus from wild ruminants with diarrhea[END_REF], giraffe (Giraffa camelopardalis) [START_REF] Hasoksuz | Biologic, antigenic, and full-length genomic characterization of a bovinelike coronavirus isolated from a giraffe[END_REF], alpaca (Lama pacos) [START_REF] Jin | Analysis of the genome sequence of an alpaca coronavirus[END_REF], sable antelope (Hippotragus niger) (Spiro et al., unpublished) and water buffalo (Bubalus bubalis) (Decaro et al., 2008b) (Fig. 1), but the genetic determinants that may have caused the interspecies transmission from cattle have not been identified so far.

Another important mechanism for CoV genetic evolution is the high-frequency of homologous RNA recombination [START_REF] Lai | Recombination between nonsegmented RNA genomes of murine coronaviruses[END_REF][START_REF] Makino | High-frequency RNA recombination of murine coronavirus[END_REF]. This process is believed to be mediated A c c e p t e d M a n u s c r i p t 14 by a "copy-choice" mechanism [START_REF] Cooper | On the nature of poliovirus genetic recombinants[END_REF][START_REF] Kirkegaard | The mechanism of RNA recombination in poliovirus[END_REF][START_REF] Makino | High-frequency RNA recombination of murine coronavirus[END_REF]. Recombination of CoV genomes has been observed during growth in tissue cultures [START_REF] Lai | Recombination between nonsegmented RNA genomes of murine coronaviruses[END_REF][START_REF] Makino | High-frequency RNA recombination of murine coronavirus[END_REF][START_REF] Sanchez | Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence[END_REF][START_REF] Kuo | Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier[END_REF], in experimentally infected animals [START_REF] Keck | In vivo RNA-RNA recombination of coronavirus in mouse brain[END_REF], and in embryonated eggs [START_REF] Kottier | Experimental evidence of recombination in coronavirus infectious bronchitis virus[END_REF]. There also is evidence for homologous recombination in IBV in the field [START_REF] Jia | A novel variant of infectious bronchitis virus resulting from recombination among three different strains[END_REF]. Recent findings suggest that this mechanism also may be an important factor in the evolution of FCoVs [START_REF] Vennema | A comparison of the genomes of FECVs and FIPVs and what they tell us about the relationships between feline coronaviruses and their evolution[END_REF][START_REF] Herrewegh | Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus[END_REF].

In the few last years, CoVs of the dog have undergone a genetic evolution mainly through accumulation of point mutations and deletions in some genomic regions rather than through recombination events. Changes in the group-specific genes located between ORFs 2 and 4 have been postulated to be responsible for increased virulence of CCoV type II strains [START_REF] Sanchez-Morgado | Molecular characterization of a virulent canine coronavirus BGF strain[END_REF]Decaro et al., 2007d). Point mutations in the S gene have been also suggested to be involved in the emergence of pantropic CCoV (Decaro et al., 2007d). CRCoV emerged likely as host variant of a BCoV strain that was able to spread from cattle to dogs [START_REF] Erles | Isolation and sequence analysis of canine respiratory coronavirus[END_REF]. A different origin could be hypothesised for CCoV type I. Based on the close genetic relatedness to FCoV type I in the S gene, a potential recombinant origin of this CCoV genotype had been suggested (Pratelli et al., 2003a). However, the recent identification of ORF3 in the genome of CCoV type I should lead to reconsider its origin. In fact, since remnants of ORF3 were found in some type II CCoVs, the most likely scenario is that CCoV type II has lost this gene during its evolution, probably because ORF3 is not indispensable for viral replication [START_REF] Lorusso | Identification and biochemical characterisation of a novel protein unique to canine coronavirus type I[END_REF].

Consequently, an ancestral carnivore CoV could be thought to have generated both CCoV genotypes and FCoV type I as well.

The emergence of new CCoV genotypes and pathotypes in dogs poses intriguing questions on the need for the development of specific vaccines prepared with the new virulent strains. Previous studies demonstrated that inactivated vaccines currently used against enteric CCoV are poorly A c c e p t e d M a n u s c r i p t 15 effective, whereas an experimental modified-live virus (MLV) vaccine administered oronasally was able to induce complete protection from disease as well as from infection (Pratelli et al., 2004c).

Preliminary data indicated that there is poor cross-reaction between CCoV types I and II at serological level (Pratelli et al., 2004b) and that even the MLV vaccine does not prevent infection of dogs after challenge with a CCoV type I strain (Buonavoglia et al., unpublished). However, the lack of cell substrates supporting the in-vitro growth of CCoV type I hinders the development of homologous vaccines prepared with the traditional technology, thus requiring innovative and expensive systems, such as those used for production of recombinant vaccines. Moreover, considering that strong immunity induced by natural infection with enteric CCoV was not able to protect pups from challenge with pantropic CCoV (Decaro et al., manuscript in preparation), the efficacy of currently used vaccines prepared with enteric CCoV strains is likely to be much poorer against pantropic CB/05-like viruses. As for CRCoV, experimental vaccines should be developed only if a clear pathogenic role in the occurrence of CIRD is demonstrated by future studies. 

  failure to isolate CCoV type I on cell cultures hinders the acquisition of key information on its pathogenic role in dogs.

  A c c e p t e d M a n u s c r i p t 8 An epizootic outbreak caused by a hypervirulent strain of CCoV type II occurred in a beagle colony in the United Kingdom

  pups by genotype-specific real-time RT-PCR assays. Unexpectedly, CCoV type II

  similar infectivity on seropositive animals, since dogs inoculated with different viral loads displayed the same duration of the viral shedding and not so very different viral titres in the faeces. The duration of viral shedding was shorter and the clinical signs milder with respect to previous observations in seronegative dogs

Further

  investigations would provide new insights into the molecular mechanisms responsible for the change in viral pathobiology and into the pathogenic and immunological aspects of the canine CoVs. At the same time, enduring epidemiological surveillance will help a timely identification in dogs of further CoV strains with different genetic and biological properties and a more in-depth comprehension of the pathogenic potential of these animal CoVs.
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 1 Figure legends. Fig. 1. Phylogenetic relationship of the S proteins of animal and human coronaviruses. The tree was generated by the neighbor-joining method in the Mega3 program (Kumar et al., 2004). For phylogenetic tree construction, the following CoV strains were used (GenBank accession numbers are reported in parentheses): group 1: canine coronavirus type II (CCoVII) Insavc1 (D13096), CCoVII-BGF10 (AY342160), CCoVII-CB/05 (DQ112226), canine coronavirus type I (CCoVI) Elmo/02 (AY307020), CCoVI-23/03 (AY307021), feline coronavirus type II (FCoVII) 79-1146 (NC_007025), FCoVII-79-1683 (X80799), feline coronavirus type I (FCoVI) KU-2 (D32044), FCoVI-Black (AB088223), FCoVI-UCD1 (AB088222), transmissible gastroenteritis virus (TGEV) Purdue (NC_002306), Chinese ferret badger coronavirus (CFBCoV) CFB/GD/DM95/03 (EF192156), human coronavirus (HCoV) NL63 (NC_005831); group 2: human severe acute respiratory syndrome coronavirus (SARS-CoV) Tor2 (NC 004718), BCoV-Mebus (U00735), giraffe coronavirus (GiCoV) US/OH3/2003 (EF424623), alpaca coronavirus (ACoV) (DQ915164), sable antelope coronavirus (SACoV) US/OH1/2003 (EF424621), bubaline coronavirus (BuCoV) 179/07-11 (EU019216), canine respiratory coronavirus (CRCoV) 4182 (DQ682406), HCoV-OC43 ATCC VR-759 (NC_005147), human enteric coronavirus (HECoV) 4408 (L07748), porcine haemagglutinating encephalomyelitis virus (PHEV) VW572 (DQ011855), mouse hepatitis virus (MHV) A59 (AY700211), rat sialodacryoadenitis virus (SDAV) 681 (AF207551), HCoV-HKU1 (NC_006577), equine coronavirus (ECoV) NC99 (NC 010327); group 3: avian infectious bronchitis virus (IBV) Beaudette (NP 040831); turkey coronavirus (TCoV) G1 (AY342357). Coronaviruses of dogs are grey shaded. A statistical support was provided by bootstrapping over 1,000 replicates. The scale bar indicates the estimated numbers of amino acid substitutions per site.
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 2 Fig. 2. Schematic representation of the genomes of CCoVs and FCoVs depicting the genetic differences among the CCoV genotypes/biotypes. Genes encoding for structural and non-structural proteins are shown in grey and white, respectively. ORF sizes are not drawn to scale. The arrows
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