

Development of a multiplex PCR test for identification of serovars 1, 7, and 12

Øystein Angen, Peter Ahrens, Stine G. Jessing

► To cite this version:

Øystein Angen, Peter Ahrens, Stine G. Jessing. Development of a multiplex PCR test for identification of serovars 1, 7, and 12. Veterinary Microbiology, 2008, 132 (3-4), pp.312. 10.1016/j.vetmic.2008.05.010. hal-00532432

HAL Id: hal-00532432 https://hal.science/hal-00532432

Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Development of a multiplex PCR test for identification of *Actinobacillus pleuropneumoniae* serovars 1, 7, and 12

Authors: Øystein Angen, Peter Ahrens, Stine G. Jessing

PII:	S0378-1135(08)00192-2
DOI:	doi:10.1016/j.vetmic.2008.05.010
Reference:	VETMIC 4040
To appear in:	VETMIC
Received date:	12-3-2008
Revised date:	7-5-2008
Accepted date:	9-5-2008

Please cite this article as: Angen, Ø., Ahrens, P., Jessing, S.G., Development of a multiplex PCR test for identification of *Actinobacillus pleuropneumoniae* serovars 1, 7, and 12, *Veterinary Microbiology* (2007), doi:10.1016/j.vetmic.2008.05.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Development of a multiplex PCR test for identification of 1 Actinobacillus pleuropneumoniae serovars 1, 7, and 12 2 3 Øystein Angen*, Peter Ahrens¹, Stine G. Jessing² 4 National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, DK-1790 5 Copenhagen V, Denmark 6 7 **Running title:** 8 9 Multiplex PCR for A. pleuropneumoniae serovars 1, 7, and 12 10 11 **Correspondent footnote:** 12 * Corresponding author. Phone: +45 72 34 62 01. Fax: +45 72 34 60 01. E-mail: 13 ang@vet.dtu.dk ¹ Present address: State Serum Institut, DK-2300 Copenhagen 14 ² Present address: Center for Systems Microbiology, DTU-BIOSYS, Technical University of 15 Denmark, DK-2800 Lyngby 16

17 ABSTRACT

18 A PCR assay for simultaneous species identification and separation of A. pleuropneumoniae 19 serovars 1, 7 and 12 was developed. Primers specific for genes involved in biosynthesis of 20 the capsular polysaccharides (cps genes) of serovars 1, 7, and 12 were combined with a 21 species-specific PCR test based on the *omlA* gene. The PCR test was evaluated with the 22 serovar reference strains of A. pleuropneumoniae as well as 183 Danish field isolates. For all 23 typable strains, a complete correspondence was found between results obtained with the 24 multiplex PCR test and results from the traditional serotyping methods. Among 8 25 serologically cross-reacting strains designated K1:07, seven isolates produced amplicons of 26 similar sizes as serovar 1 and one isolate produced amplicons of similar sizes as serovar 7. 27 The species specificity of the assay was evaluated using a collection of 126 strains 28 representing 25 different species within the family *Pasteurellaceae* including 45 field strains 29 of the phylogenetically affiliated species Actinobacillus lignieresii. All these isolates tested 30 negative for the cps genes by the multiplex PCR test except for 6 isolates of A. lignieresii. 31 Five of these isolates produced an amplicon identical to the *cps* gene of serovar 7, whereas 32 one isolate produced an amplicon identical to the cps gene of serovar 1. In addition, four 33 isolates of Actinobacillus genomospecies 1 tested positive for the omlA gene but negative for 34 the cps genes. The test represents a convenient and specific method for serotyping A. 35 pleuropneumoniae in diagnostic laboratories.

36 **1. Introduction**

37

38	Actinobacillus pleuropneumoniae is an encapsulated respiratory pathogen of swine and the
39	causative agent of porcine pleuropneumonia (Gottschalk and Taylor, 2006). At present, 15
40	different serovars and two biotypes have been described (Fodor et al., 1989; Perry et al.,
41	1990; Nielsen et al., 1997; Blackall et al., 2003), the presence and prevalence of which varies
42	among countries. The serovar specificity is predominantly due to structural differences in the
43	capsular polysaccharides (Perry et al., 1990). Studies indicate considerable difference in
44	virulence between serovars (Dom and Haesebrouck, 1992; Jacobsen et al., 1996).
45	
46	A number of different assays have been developed for serotyping of A. pleuropneumoniae,
47	but cross-reactions between serovars are often seen in serological assays (Mittal, 1990; Mittal
48	and Bourdon, 1991). Definitive typing of such isolates has been achieved by using more time
49	consuming procedures as immunodiffusion or indirect hemagglutination (Nielsen and
50	O'Connor, 1984). During the last years, the genes involved in biosynthesis of the capsular
51	polysaccharides (cps genes) have been described for a number of serovars (Lo et al., 1998;
52	Jessing et al., 2003, 2008; Schuchert et al., 2004; Zhou et al., 2008a, 2008b). PCR assays
53	based on the cps genes have proved useful for determining the serovar of A.
54	pleuropneumoniae isolates. Until now, multiplex PCR tests have been described for serovars
55	2, 5, and 6 (Jessing et al., 2003), and serovars 3, 6, and 8 (Zhou et al., 2008b).
56	
57	We have recently described the cps genes of serovars 1, 7, and 12 (Jessing et al., 2008). In the
58	present work, a multiplex PCR based on oligonucleotide primers specific for the cps region of
59	serovars 1, 7, and 12 combined with primers previously used for species-specific PCR
60	amplification of the omlA gene is described (Gram and Ahrens, 1998; Jessing et al., 2003).

- 61 The specificity of the multiplex PCR test was examined and compared with results obtained
- 62 from traditional serological typing methods.
- 63

64 **2. Materials and methods**

65 2.1. Bacterial strains and growth conditions

All strains used for this study are listed in Table 1 and 2. In addition to reference strains

- 67 representing serovars 1 to 15, a total of 183 Danish field isolates of A. pleuropneumoniae
- isolated from lungs, representing serovars 1 (n = 28), 2 (n = 5), 5 (n = 5), 6 (n = 5), 7 (n = 42),

69 8 (n=5), 12 (n = 72), K1:O7 (n=8), K2:O7 (n=5), and NT (n=8) were included in the study. In

- addition, 126 strains representing 25 related species were used to evaluate the species
- 71 specificity of the multiplex PCR test. All V-factor dependent strains were grown on PPLO
- 72 agar (Difco, Detroit Mich.), whereas all other strains were grown on Columbia agar

rd supplemented with 5% bovine blood. All strains were incubated at 37°C over night in

74 atmospheric air.

75

76 2.2 Serotyping of A. pleuropneumoniae

All the Danish field isolates of *A. pleuropneumoniae* were serotyped using a latex

agglutination test (Giese et al., 1993). Each isolate was tested with latex particles coated with

79 polyclonal antibodies produced against whole cells of reference strains of A.

80 pleuropneumoniae representing serovars 1 through 15 (Table 1). Of the 183 Danish field

81 isolates of *A. pleuropneumoniae*, 99 strains could be serotyped by latex agglutination test

- 82 using polyclonal antibodies to whole cells. The remaining 84 isolates showed cross-reactions
- 83 between two or more serovars in the latex agglutination test. The serovars of 76 of these
- 84 isolates were identified by immunodiffusion or indirect haemagglutination (Nielsen and
- 85 O'Connor, 1984). For 8 strains the serovar could not be determined by any of these methods.

JUSCRIP TED) CCE

86

87	2.3 Oligonucleotide primers for PCR
88	The sequences for the oligonucleotide primers used in this study are listed in Table 3. Four
89	different pairs of primers were used in the multiplex PCR test. Serovar specific primers were
90	designed from the cps genes of serovars 1, 7, and 12 (Jessing et al., 2008). These three serovar
91	specific PCR tests were combined with primers used in a previously published species-
92	specific PCR test based on amplification of the omlA gene (Gram and Ahrens, 1998). DNA
93	primers designed in this study were selected by using the DNASIS sequence analysis program
94	(Hitachi Software Engineering Co., Ltd.)
95	
96	2.4 Preparation of samples for PCR
97	Lysates of pure cultures were prepared for all strains used in this study. A 10 μ l loopful of an
98	over night culture was taken from the surface of an agar plate and suspended in 200 μ l sterile
99	water. The suspension was boiled for 10 min and the debris was pelleted at 13,000g for 2 min.
100	A 180 μ l sample of the supernatant was kept for analysis. The lysates were used undiluted as
101	DNA template in the PCR.
102	
103	2.5 PCR amplification
104	PCR was performed in a total volume of 50 µl containing 10 mM Tris-HCl (pH 8.3); 1.5 mM
105	MgCl ₂ ; 50 mM KCl; 0.005% Tween 20; 0.005% Nonidet P-40 detergent; 100 µM (each)
106	dATP, dCTP, dGTP, and dTTP and 0.5 unit Taq polymerase (Perkin-Elmer). Primers (Table

- 107 3) were added to a final concentration of 0.1 μ M except for Ap12F/Ap12R where 0.3 μ M was
- 108 used. To each reaction, one µl undiluted template DNA was added. Finally, mineral oil was
- 109 added to prevent evaporation. The PCR reactions were performed in a Biometra Trio
- thermocycler using 0.5 ml tubes. DNA was amplified for 33 cycles using the following 110

111	settings: denaturation at 94°C for 1 min, annealing at 63°C for 1 min and extension at 72°C
112	for 1 min. Twelve μ l of each reaction was analysed by electrophoresis in a 2% agarose gel.
113	The PCR products were stained with ethidium bromide (10 μ g/ml) and visualized under UV
114	light.
115	
116	2.6 Sequencing of PCR products
117	Sequencing of PCR products was done with an ABI377 automatic sequencer using the Prism
118	BigDye terminator cycle sequencing kit (Applied Biosystems, Foster city, CA). Sequences
119	were compared using DNASIS (Hitachi Software Engineering Co, Ltd.) and homology
120	searches of the GenBank databases were performed using the BLAST server at the National
121	Center for Biotechnology Information.
122	
123	3. Results and discussion
124	The multiplex PCR was optimized using the serovar reference strains. Primers Ap1F and
125	Ap1R were designed to produce a 754 bp PCR fragment from serovar 1, primers Ap7F and
126	Ap7R a 396 bp PCR fragment from serovar 7, whereas the primer pair Ap12F and Ap12F
127	amplified a 559 bp fragment from serovar 12. These three primer pairs were combined with a
128	species-specific PCR test producing a 950 bp amplicon from all A. pleuropneumonae strains
129	(Gram and Ahrens, 1998).
130	
131	The serovar specificity of the multiplex PCR was determined by applying the test to a
132	collection of 199 A. pleuropneumoniae isolates, including the serovar reference strains (Table
133	1). For all A. pleuropneumoniae strains the species-specific fragment of 950 bp was
134	amplified. For strains belonging to serovars 1, 7, and 12 an additional serovar specific
135	fragment of the expected size was amplified (Figure 1). All Danish field isolates of A.

136	pleuropneumoniae typed as serovars 1, 7, or 12 with one of the traditional serotyping methods
137	were allocated to the same serovar in the multiplex PCR test. Eight strains that in all
138	serological tests showed cross-reactions to both serovar 1 and 7, were designated K1:O7
139	(Gottschalk et al., 2000). Seven of these strains produced an amplicon of similar size as
140	serovar 7 strains and one isolate produced an amplicon of similar size as serovar 1. A recently
141	published investigation on the genetic diversity of A. pleuropneumoniae using AFLP
142	(Kokotovic and Angen, 2007) showed that these 8 strains represent two genetically distinct
143	subpopulations within the species.
144	
145	The species specificity of the PCR assay was evaluated with reference strains representing 25
146	different species within the family Pasteurellaceae (Table 2). The species-specific primers
147	did not amplify the A. pleuropneumoniae-specific amplicon of 950 bp, except for four isolates
148	belonging to Actinobacillus genomospecies 1. These strains have been isolated from horses
149	(Christensen et al., 2002) and represent the only described example until now where the
150	omlA-based PCR gives an amplicon for strains belonging to other species than A.
151	pleuropneumoniae and is not likely to cause any problem in a diagnostic laboratory.
152	
153	The serovar-specific primers did not amplify any product from any of the 126 heterologous
154	strains tested in this study except for 6 strains belonging to A. lignieresii. One of these strains
155	produced an amplicon of similar size as serovar 1 and five isolates produced amplicons of
156	similar sizes as serovar 7. The amplicons were sequenced and were found to be identical to
157	the corresponding cps genes of serovars 1 and 7, respectively. A. lignieresii is
158	phylogenetically the most affiliated species to A. pleuropneumoniae as determined by
159	comparison of the 16S rRNA sequences (Dewhirst et al., 1992). Serological cross-reactions
160	between these two species have earlier been reported for serovar 4 and 7 (Lebrun et al., 1999).

161 The five A. lignieresii strains that produced amplicons identical to the cps gene sequence of A. 162 pleuropneumoniae serovar 7 were all serologically typable as serovar 7 using latex 163 agglutination. On the other hand, the strain that produced an amplicon identical to the *cps* 164 gene sequence in serovar 1 was serologically untypable. Serological cross-reaction to A. 165 pleuropneumoniae serovar 1 has earlier been reported for strains closely affiliated to A. minor 166 (Gottschalk et al., 2003). Although several investigations have shown that the serovar of A. 167 *pleuropneumoniae* is determined by the *cps* genes carried by the isolates (Lo et al., 1998; 168 Jessing et al., 2003, 2008; Schuchert et al., 2004; Zhou et al., 2008a, 2008b), this shows that 169 these genes can also be found outside the traditionally recognized servors of A. 170 pleuropneumoniae. In this investigation we have found cps genes similar to serovars 1 and 7 171 both in genetically distinct subpopulations within A. pleuropneumoniae as well as in certain 172 strains of A. lignieresii. This could suggest that horizontal transfer has been part of the 173 evolution of A. pleuropneumoniae capsule forming genes. This is supported by the 174 observation that the cps genes have a lower G + C content than the rest of the genome 175 (Jessing et al., 2008). 176

177 In conclusion, the results obtained in this study indicate that the multiplex PCR test is a 178 sensitive, specific, and highly effective diagnostic tool for simultaneous identification and 179 serotyping of A. pleuropneumoniae serovars 1, 7, and 12. If this test is used in combination 180 with the earlier described multiplex PCR test (Jessing et al., 2003; Zhou et al., 2008b), simple 181 and serovar specific tests are now available for A. pleuropneumoniae serovars 1, 2, 3, 5, 6, 7, 182 8, and 12. These tests represent considerable advantage for diagnostic laboratories by 183 providing quick and reliable serotyping of A. pleuropneumoniae isolates and avoiding 184 problems related to conventional serotyping, i.e. variability in typing sera and antigen 185 presentation on cells and the occurrence of serologically cross-reacting strains. Serotyping by

186 PCR also represent a powerful technique for detecting different serovars of A.

- 187 *pleuropneumoniae* from mixed bacterial cultures. It has earlier been applied to detect the
- 188 presence of different A. pleuropneumoniae serovars from swine tonsils (Angen and Jessing,
- 189 2004) and will probably find application in future epidemiological studies and investigations
- 190 of carrier animals (Angen et al., 2008). However, the existence of serovar-specific *cps*
- 191 operons both in genetically distinct subpopulations within the species as well as in other
- 192 affiliated species can in some cases make the interpretation of the PCR results difficult. In
- such cases isolation of the bacterium and further genetic characterization will still be
- 194 necessary.
- 195

196 Acknowledgements

- 197 The authors would like to thank Jannie Jensen and Tamara Plambeck for competent technical
- 198 assistance. The present work was financed by the Danish Agricultural and Veterinary

199 Research Council (grant no. 9702797) and Danish Slaughterhouses Basic Research Found II.

200 Legends to Figures

- 201 Fig. 1. Agarose gel electrophoresis of DNA fragments generated by multiplex PCR using the
- 202 reference strains of serovar 1-15 of *A. pleuropneumoniae* (Table 1). For serovars 2 and 12 an
- 203 additional field strain was included. All strains give rise to a species-specific band of
- approximately 950 bp in addition to serovar specific bands: 754 bp (serovar 1), 396 bp
- 205 (serovar 7) and 559 bp (serovar 12). N = non template control, M = DNA molecular weight
- 206 marker VI (Boehringer Mannheim).

207	References
208	Angen, Ø., Jessing, S.G., 2004. PCR tests for serotype specific identification and
209	detection of Actinobacillus pleuropneumoniae. Proceedings from International Pig Veterinary
210	Society, p. 161, 27 June-1 July 2004, Hamburg.
211	Angen, Ø., Andreassen, M., Nielsen, E.O., Stockmarr, A., Bækbo, P., 2008. Effect of
212	tulathromycin treatment on carrier status of Actinobacillus pleuropneumoniae serotype 2 in
213	swine tonsils. Vet. Rec. In Press.
214	Blackall, P.J., Klaasen, H.L., Van Den Bosch, H., Kuhnert, P., Frey, J., 2002. Proposal
215	of a new serovar of Actinobacillus pleuropneumoniae: serovar 15. Vet. Microbiol. 84, 47-52.
216	Christensen, H., Bisgaard, M., Angen, Ø., Olsen, J.E., 2002. Final classification of
217	Bisgaard taxon 9 as Actinobacillus arthritidis sp. nov. and recognition of a novel
218	genomospecies for equine strains of Actinobacillus lignieresii. Int. J. Syst. Evol. Microbiol.
219	52, 1239-1246.
220	Dewhirst, F.E., Paster, B.J., Olsen, I., Fraser, G.J., 1992. Phylogeny of 54 representative
221	strains of species in the family Pasteurellaceae as determined by comparison of 16S rRNA
222	sequences. J. Bacteriol. 174, 2002-2013.
223	Dom, P., Haesebrouck, F., 1992. Comparative virulence of NAD-dependent and NAD-
224	independent Actinobacillus pleuropneumoniae strains. Zentralbl. Vet. Med. Series B 39, 303-
225	306.

Fodor, L., Varga, J., Molnár, É., Hajtós, I., 1989. Biochemical and serological properties
of *Actinobacillus pleuropneumoniae* biotype 2 strains isolated from swine. Vet. Microbiol.
20, 173-180.

229	Giese,	S.B.,	Stenbaek,	Ε.	Nielsen,	R.,	1993.	Identification	of Actin	10bacillus
-----	--------	-------	-----------	----	----------	-----	-------	----------------	----------	------------

- 230 *pleuropneumoniae* serotype 2 by monoclonal or polyclonal antibodies in latex agglutination
- 231 tests. Acta Vet. Scand. 34, 223-225.
- 232 Gottschalk, M., Lebrun, A., Lacoture, S., Harel, J., Forget, C., Mittal, K.R., 2000.
- 233 Atypical Actinobacillus pleuropneumoniae isolates that share antigenetic determinants with
- both serotypes 1 and 7. J. Vet. Diagn. Invest. 12, 444-449.
- 235 Gottschalk, M., Broes, A., Mittal, K.R., Kobisch, M., Kuhnert, P., Lebrun, A., Frey, J.,
- 236 2003. Non-pathogenic Actinobacillus isolates antigenically and biochemically similar to
- 237 Actinobacillus pleuropneumoniae: a novel species? Vet. Microbiol. 92, 87-101.
- 238 Gottschalk, M., Taylor, D.J., 2006. Actinobacillus pleuropneumoniae,. In: Straw, B.E.,
- 239 Zimmerman, J.J., D'Allaire, S., Taylor, D.J. (Eds.), Diseases of swine, 9th edition. Blackwell
- 240 Publishing, Ames, IA, USA, pp. 563-576.
- 241 Gram, T., Ahrens, P., 1998. Improved diagnostic PCR assay for Actinobacillus
- 242 *pleuropneumoniae* based on the nucleotide sequence of an outer membrane lipoprotein. J.
- 243 Clin. Microbiol. 36, 443-448.
- 244 Jacobsen, M.J., Nielsen, J.P., Nielsen, R., 1996. Comparison of virulence of different
- 245 Actinobacillus pleuropneumoniae serotypes and biotypes using an aerosol infection model.
- 246 Vet. Microbiol. 49, 159-168.
- 247 Jessing, S.G., Angen, Ø., Inzana, T.J., 2003. Evaluation of a multiplex PCR test for
- simultaneous identification and serotyping of Actinobacillus pleuropneumoniae serotypes 2, 5
- and 6. J. Clin. Microbiol. 41, 4095-4100.

250	Jessing, S.G., Ahrens, P., Inzana, T.J., Angen, Ø., 2008. The genetic organisation
251	isolation of the capsule biosynthesis region of Actinobacillus pleuropneumoniae serotypes 1,
252	6, 7, and 12. Vet. Microbiol. In Press, doi:10.1016/j.vetmiv.2007.12.003.
253	Kokotovic, B, Angen, Ø., 2007. Genetic diversity of Actinobacillus pleuropneumoniae
254	assessed by amplified fragment length polymorphism analysis. J. Clin. Microbiol. 45, 3921-
255	3929.
256	Lebrun, A., Lacouture, S., Côté, D., Mittal, K.R., Gottschalk, M., 1999. Identification of
257	Actinobacillus pleuropneumoniae strains of serotypes 7 and 4 using monoclonal antibodies:
258	demonstration of common LPS O-chain epitopes with Actinobacillus lignieresii. Vet.
259	Microbiol. 65, 271-282.
260	Lo, T.M., Ward, C.K., Inzana, T.J., 1998. Detection and identification of Actinobacillus
261	pleuropneumoniae serotype 5 by multiplex PCR. J. Clin. Microbiol. 36, 1704-1710.
262	Mittal, K.R., 1990. Cross-reactions between Actinobacillus (Haemophilus)
263	pleuropneumoniae strains of serotypes 1 and 9. J. Clin. Microbiol. 28, 535-539.
264	Mittal, K.R., Bourdon, S., 1991. Cross-reactivity and antigenic heterogeneity among
265	Actinobacillus pleuropneumoniae strains of serotypes 4 and 7. J. Clin. Microbiol. 29, 1344-
266	1347.
267	Nielsen, R., O'Connor, P.J., 1984. Serological characterization of 8 Haemophilus
268	pleuropneumoniae strains and proposal of a new serotype: serotype 8. Acta Vet. Scand. 25,

269 96-106.

270	Nielsen, R., Andresen, L.O., Plambeck, T., Nielsen, J.P., Krarup, L.T., Jorsal, S.E.,
271 19	997. Serological characterization of Actinobacillus pleuropneumoniae biotype 2 strains
272 is	olated from pigs in two Danish herds. Vet. Microbiol. 54, 35-46.
273	Perry, M.B., Altman, E., Brisson, JR., Beynon, L.M., Richards, J.C., 1990. Structural
274 cł	naracteristics of the antigenic capsular polysaccharides and lipopolysaccharides involved in
275 th	ne serological classification of Actinobacillus (Haemophilus) pleuropneumoniae. Serodiagn.
276 In	nmunother. Inf. Dis. 4, 299-308.
277	Schuchert, J.A., Inzana, T.J., Angen, Ø., Jessing, S.G., 2004. Detection and
278 id	lentification of Actinobacillus pleuropneumoniae serotypes 1, 2, and 8 by multiplex PCR. J.
279 C	lin. Microbiol. 42, 4344-4348.
280	Zhou, L., Jones, S.C.P., Angen, Ø., Bossé, J.T., Nash, J.H.E., Frey, J., Zhou, R., Kroll,
281 J.	S., Rycroft, A.N., Langford, P.R. 2008a. An Actinobacillus pleuropneumoniae serotype 3
282 sp	becific PCR. Vet. Rec. In Press.
283	Zhou, L., Jones, S.C.P., Angen, Ø., Bossé, J.T., Nash, J.H.E., Frey, J., Zhou, R., Chen,
284 Н	.C., Kroll, J.S., Rycroft, A.N., Langford, P.R., 2008b. A multiplex PCR that can distinguish
285 be	etween immunologically cross-reactive serotype 3, 6 and 8 Actinobacillus
286 pl	leuropneumoniae strains. J. Clin. Microbiol. In Press.

CCEPTED NUSCRIP MΔ Ŧ.

Table 1. 287

288 Actinobacillus pleuropneumoniae reference strains and field isolates used for evaluation of

the PCR test			
Actinobacillus	Strain	No. of strains	Amplicon size (bp) ^a
pleuropneumoniae	designation		
Reference strains			
Serovar 1	Shope 4074 ^T	1	950 + 754
Serovar 2	S 1536	1	950
Serovar 3	S 1421	1	950
Serovar 4	M62	1	950
Serovar 5A	K17	1	950
Serovar 5B	L20	1	950
Serovar 6	Femø	1	950
Serovar 7	WF83	1	950 + 396
Serovar 8	405	1	950
Serovar 9	CVJ 13261	1	950
Serovar 10	D 13039	1	950
Serovar 11	56153	1	950
Serovar 12	8329	1	950 + 559
Serovar 13 (biovar 2)	N-273	1	950
Serovar 14 (biovar 2)	3906	1	950
Serovar 15	HS143	1	950
Danish fields strains			
Serovar 1		$28(16)^{b}$	950 + 754
Serovar 2		5	950
Serovar 5		5	950
Serovar 6		5	950
Serovar 7		42 (32)	950 + 396
Serovar 8		5	950
Serovar 12		72 (15)	950 + 559
Serovar K2:O7		5	950
Serovar K1:O7		7	950 + 754
Serovar K1:O7		1	950 + 396
Non typable (NT)		8	950

290

^a Amplicon sizes calculated from gene sequences of reference serovar strains. ^b The values in parentheses indicate the number of strains cross-reacting by latex 291

292

293 agglutination.

294

295

296

297

10 CICIE

298 Table 2.

299 Genetically affiliated strains used for testing the species specificity of the multiplex PCR test

Species	Strain designation
Actinobacillus lignieresii ^a	ATCC $49236^{T} + 45$ field strains
Actinobacillus urea	NCTC 10219 ^T , P1144
Actinobacillus capsulatus	NCTC 11408 ^T , P1364
Actinobacillus hominis	NCTC 11529 ^T , P1336
Actinobacillus equuli	NCTC 8529 ^T , P1284
Actinobacillus suis	CCM 5586 ^T , P1143
Actinobacillus rossii	ATCC 27072 ^T
Actinobacillus genomospecies 1 ^b	CCUG 22229, CCUG 22230, CCUG 22231,
	CCUG 37052, T354/87, C5309b
Actinobacillus minor	NM 305 ^T , T1, T5, T7, 595, JF2280 ^c
Actinobacillus porcinus	NM 319 ^T
Actinobacillus indolicus	$46 \text{ KC2}^{\text{T}}$
Pasteurella multocida	NCTC 10320, 5, 25, HIM 746-6, F104
Pasteurella canis	CCUG 12400^{T}
Pasteurella aerogenes	ATCC 27883 ^T
Pasteurella stomatis	CCUG 17979 ^T
Pasteurella mairii	CCUG 27189 ^T
Pasteurella langaa	CCUG 15566 ^T
Pasteurella sp. B	CCUG 19794
Mannheimia haemolytica	NCTC 9380 ^T
Mannheimia varigena	CCUG $38462^{T} + 37$ field strains
Aggregatibacter actinomycetemcomitans	CCUG 13277 ^T
Haemophilus parasuis	NCTC 4557 ^T
Haemophius paraphrophilus	3718
Haemophius segnis	CCUG 10787 ^T
Haemophilus parainfluenzae	CCUG 12836 ^T

300

301

 ^a Five isolates of *A. lignieresii* produced an amplicon identical to *A. pleuropneumoniae* serovar 7 and one isolate produced an amplicon identical to serovar 1.
 ^b Four isolates of *Actinobacillus* genomospecies 1 produced an amplicon of approximately 302 950 bp 303

^c Reference strain of "Actinobacillus porcitonsillarum" 304

305

- 306 Table 3
- 307 Primers used in multiplex PCR test for simultaneous identification and serotyping of A.
- 308 *pleuropneumoniae* serovars 1, 7, and 12.

Received the second sec

Primer	Function	Sequence 3'-5'	Amplicon size (bp)
HPF	omlA-gene	AAG GTT GAT ATG TCC GCA CC	950
HPR	omlA-gene	CAC CGA TTA CGC CTT GCC A	550
Ap1F	cps-region serovar 1	GGG CAA GCC TCT GCT CGT AA	754
Ap1R	cps-region serovar 1	GAA AGA ACC AAG CTC CTG CAA T	/34
Ap7F	cps-region serovar 7	GGT GAC TGG CGT ACG CCA AA	204
Ap7R	cps-region serovar 7	GGG CTG CAG ACT GAC GTA A	390
Ap12F	cps-region serovar 12	GGT TCT CCA GAT GAC TCT GAA A	550
Ap12R	cps-region serovar 12	GCT ATT GGA TGA AGA TGA CTC AT	559

309

310

Figure 1

