

Coated fatty acids alter virulence properties of Typhimurium and decrease intestinal colonization of pigs

F. Boyen, F. Haesebrouck, A. Vanparys, J. Volf, M. Mahu, F. van Immerseel, I. Rychlik, J. Dewulf, R. Ducatelle, F. Pasmans

▶ To cite this version:

F. Boyen, F. Haesebrouck, A. Vanparys, J. Volf, M. Mahu, et al.. Coated fatty acids alter virulence properties of Typhimurium and decrease intestinal colonization of pigs. Veterinary Microbiology, 2008, 132 (3-4), pp.319. 10.1016/j.vetmic.2008.05.008. hal-00532431

HAL Id: hal-00532431 https://hal.science/hal-00532431v1

Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Coated fatty acids alter virulence properties of *Salmonella* Typhimurium and decrease intestinal colonization of pigs

Authors: F. Boyen, F. Haesebrouck, A. Vanparys, J. Volf, M. Mahu, F. Van Immerseel, I. Rychlik, J. Dewulf, R. Ducatelle, F. Pasmans

PII: S0378-1135(08)00194-6

DOI: doi:10.1016/j.vetmic.2008.05.008

Reference: VETMIC 4042

To appear in: *VETMIC*

Received date: 20-3-2008 Revised date: 8-5-2008 Accepted date: 9-5-2008

Please cite this article as: Boyen, F., Haesebrouck, F., Vanparys, A., Volf, J., Mahu, M., Van Immerseel, F., Rychlik, I., Dewulf, J., Ducatelle, R., Pasmans, F., Coated fatty acids alter virulence properties of *Salmonella* Typhimurium and decrease intestinal colonization of pigs, *Veterinary Microbiology* (2007), doi:10.1016/j.vetmic.2008.05.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Coated latty acids after virulence properties of Salmonella Typnimurium and
2	decrease intestinal colonization of pigs
3	
4	
5	
6	
7 8 9	Boyen F. ^a , Haesebrouck F. ^a , Vanparys A. ^a , Volf J. ^b , Mahu M. ^a , Van Immerseel F. ^a , Rychlik I. ^b , Dewulf J. ^c , Ducatelle R. ^a , Pasmans F. ^a
10	
11	
12	
13	^a Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary
14	Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
15	^b Veterinary Research Institute, 621 32 Brno, Czech Republic
16	^c Department of Reproduction, Obstetrics and Herd Health, Faculty of
17	Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
18	
19	
20	* Corresponding author: Tel. +32 9 2647359; Fax +32 9 2647494;
21	E-mail address: filip.boyen@UGent.be (F. Boyen)

Page 1 of 25

ABSTRACT

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Salmonella Typhimurium infections in pigs are a major source of human foodborne salmonellosis. To reduce the number of infected pigs, acidification of feed or drinking water is a common practice. The aim of the present study was to determine whether some frequently used short- (SCFA) and medium-chain fatty acids (MCFA) are able to alter virulence gene expression and to decrease Salmonella Typhimurium colonization and shedding in pigs using well established and controlled in vitro and in vivo assays. Minimal inhibitory concentrations (MIC) of 4 SCFA (formic acid, acetic acid, propionic acid, butyric acid) and 2 MCFA (caproic and caprylic acid) were determined using 54 porcine Salmonella Typhimurium field strains. MIC values increased at increasing pH values and were 2-8 times lower for MCFA than for SCFA. Expression of virulence gene *fimA* was significantly lower when bacteria were grown in LB-broth supplemented with sub-MIC concentrations of caproic or caprylic acid (2mM). Expression of hild and invasion in porcine intestinal epithelial cells was significantly lower when bacteria were grown in LB-broth containing sub-MIC concentrations of butyric acid or propionic acid (10mM) and caproic or caprylic acid (2mM). When given as feed supplement to pigs experimentally infected with Salmonella Typhimurium, coated butyric acid decreased the levels of faecal shedding and intestinal colonization, but had no influence on the colonization of tonsils, spleen and liver. Uncoated fatty acids, however, did not influence fecal shedding, intestinal or tonsillar colonization in pigs. In conclusion, supplementing feed with certain coated fatty acids, such as butyric acid, may help to reduce the Salmonella load in pigs.

Key words: Salmonella Typhimurium – pig – SCFA – MCFA – butyric acid

1. INTRODUCTION

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

45

In Europe, Salmonella Typhimurium is by far the dominant serovar isolated from pigs (EFSA, 2006). In most cases, Salmonella Typhimurium will subclinically colonize the pigs, without causing obvious symptoms. These carrier pigs are a vast reservoir of Salmonella and pose a major threat to animal and human health (Boyen et al., 2008a). The battle against nontyphoidal Salmonella infections in pigs requires a strategic implementation of different approaches across the pork production and processing chains (Ojha and Kostrzynska, 2007). In addition to general hygiene and biosecurity measures, the supplementation of feed with acidic compounds has been proposed as a possible tool to combat Salmonella in pigs (Creus et al., 2007). Currently, short-chain fatty acids (SCFA) and medium-chain fatty acids (MCFA) are commonly used in the poultry industry for this purpose (Van Immerseel et al., 2006). Apart from their antimicrobial actions at high concentrations, even low concentrations of SCFA and MCFA can decrease intestinal colonization by Salmonella Enteritidis in poultry, mediated by their influence on virulence gene expression (Van Immerseel et al., 2004; 2005). It was the aim of the present study to evaluate the usefulness of SCFA and MCFA in controlling Salmonella infections in pigs. Minimal inhibitory concentrations (MIC) of 4 SCFA and 2 MCFA for 54 Salmonella Typhimurium strains were determined. The influence of sub-MIC concentrations of these acids on virulence gene expression and invasive capacities of Salmonella Typhimurium was evaluated. Finally, the efficacy of coated as well as uncoated fatty acids in reducing the early colonization of piglets

inoculated with Salmonella Typhimurium was assessed in two in vivo trials.

2. MATERIALS AND METHODS

69

2.1. Bacterial strains

Salmonella Typhimurium strain 112910a (DT 120/ad) was used in all *in vitro* experiments and its invasive nalidixic acid resistant derivative was used in the *in vivo* trial. Strain 112910a was isolated from a pig stool sample and persists in tonsils, intestines and gut-associated lymphoid tissue (GALT) of experimentally infected pigs during at least 28 days (Boyen et al., 2008b).

Fifty-four independent *Salmonella* Typhimurium strains, isolated from pigs in Belgian slaughterhouses and farms, were used to perform minimal inhibitory concentration assays.

2.2. Minimal inhibitory concentrations (MIC) of fatty acids

Minimal inhibitory concentrations (MIC) were determined for SCFA and MCFA at pH 4, 5 and 6, using HCl or NaOH to obtain the different pH values. Formic acid (C₁), acetic acid (C₂), propionic acid (C₃), butyric acid (C₄), caproic acid (C₆) and caprylic acid (C₈) (all products from Sigma, St. Louis, Mo.) were tested after serial twofold dilutions in 96-well microplate in LB broth ranging from 0.0391 mM to 2560 mM. Bacteria were grown for 18 h in 5 ml Luria-Bertani broth (LB) at 37°C. Five μl of this suspension was inoculated in 195 μl medium in each microwell plate. These suspensions were incubated for 20 h at 37°C after which bacterial growth was assessed.

2.3. Construction of the transcriptional fusions

The pCS26 plasmid was used for the construction of transcriptional fusions between the promoter region of fimA and the luxCDABE operon as described before for the hilA promotor region (Van Immerseel et al., 2004). In short, the predicted promoter sequence of fimA was amplified by PCR and cloned into the pCS26 plasmid. Primers for amplifying of fimAused the promoter sequence were NNNNCTCGAGTGGCTATGGTTACCGTAATC primer) (forward and NNNNGGATCCAGGCTGCATTAACCAGTTTACC (reverse primer). Both the pCS26 plasmid and the amplification product containing the promoter sequence were digested and ligated. The ligation mixture was used for electroporation of Salmonella Typhimurium strain 112910a and kanamycin-resistant colonies (selection marker of pCS26) were tested for the promoter-plasmid junction by PCR. The sequence of the promoter-plasmid junction was confirmed by DNA sequencing.

103

104

105

106

107

108

109

110

111

112

113

102

91

92

93

94

95

96

97

98

99

100

101

2.4. Measurement of hilA and fimA expression

Virulence expression was measured using the *luxCDABE* operon in a growing bacterial culture. Since the amount of emitted light depends on the number of plasmids carrying the *luxCDABE* operon (and therefore the number of bacteria present in the well) on one hand and on the actual magnitude of virulence expression on the other hand, it is crucial to use concentrations of fatty acids that do not interfere with bacterial growth. These concentrations were defined earlier in *Salmonella* Enteritidis (Van Immerseel et al., 2004). The absence of antimicrobial effects of the concentrations used in the virulence expression assays on *Salmonella* Typhimurium strain 112910a was evaluated as described before (Van Immerseel et al., 2004). Tested concentration for formic acid (C₁),

acetic acid (C_2) , propionic acid (C_3) and butyric acid (C_4) was 10 mM and for caproic (C_6) , caprylic (C_8) , or capric acid (C_{10}) 2 mM was tested at pH 6.

A FluoroScan Ascent fluorometer (Labsystems, Helsinki, Finland) was used to quantify light production (luminescence) by *Salmonella* Typhimurium strain 112910a carrying the plasmids containing the *hila-luxCDABE* or *fima-luxCDABE* transcriptional fusions. Bacterial cultures were grown in microplates in 200 µl of LB medium, supplemented with SCFA or MCFA and in nonsupplemented LB medium at 37°C. Light production was measured automatically every 2 min for 20 hours. Total light production (area under the curve) was calculated and was used for statistical analysis. The results of each experiment were divided by the calculated mean value of all results of that experiment to reduce inter-experimental variations. Statistical analysis was performed by an analysis of variance using SPSS version 11.5 software.

2.5. Invasion assays

The porcine intestinal epithelial IPI-2I cell line was used (Kaeffer *et al.*, 1993). Cells were seeded in 24 well plates at a density of approximately 10⁵ cells per well and were allowed to grow to confluency for 48 h. Bacteria were grown for 6 h in LB medium, after which the suspension was diluted 1:1,000 in Dulbecco's modified Eagle's medium with 10% fetal calf serum, supplemented with 10 mM of the individual SCFA or 2 mM of the individual MCFA. After 4 h of incubation at 37°C, the suspensions were centrifuged and resuspended in Dulbecco's modified Eagle's medium with 10% fetal calf serum. The number of CFU/ml was determined by plating six 20-µl samples of a dilution series of the suspensions on brilliant green agar (BGA) plates, after which the plates were incubated

for 20 h at 37°C. The suspensions were kept at 4°C until they were used in the assay. The bacterial suspensions were diluted to a density of 5 x 10⁶ CFU/ml. From these diluted suspensions, 200 μl was transferred to the cells. To synchronize the infection, the inoculated multiwell plates were centrifuged at 365 x g for 5 min. After 25 min incubation at 37 °C under 5% CO₂, the wells were washed and fresh medium supplemented with 50 μg/ml gentamicin (Gibco, Life Technologies, Paisley, Scotland) was added. After an additional 60 min incubation at 37 °C under 5% CO₂, the wells were washed three times. A previously described non-invasive isogenic deletion mutant in *hilA* was used as a control for invasion (Boyen et al., 2006a).

To assess invasion, the cells were lysed with 0.25% deoxycholate (Sigma-Aldrich, Steinheim, Germany) 90 min after inoculation and 10-fold dilutions were plated on BGA plates. The results of each experiment were divided by the calculated mean value of all results of that experiment to reduce inter-experimental variations. Statistical analysis was performed by an analysis of variance using SPSS version 11.5 software.

2.6. *In vivo* trial with supplementation of coated fatty acids

Based on the data obtained from the *in vitro* trials, an *in vivo* experiment using coated butyric acid and caprylic acid was performed. Six-week-old piglets (commercial closed line based on Landrace) were obtained from a serologically negative breeding herd and were negative for *Salmonella* at faecal sampling. They arrived at the facility 14 days before they were inoculated and were divided at random into four groups: three groups of 6 inoculated pigs and one negative control group of 3 pigs. Throughout the experiment,

group 1 and the control group received unsupplemented feed, group 2 feed supplemented with coated butyrate (Greencab, Sanluc International, 2 g/kg feed) and group 3 received feed supplemented with coated caprylic acid (Sanluc International, 3.1 g/kg feed), according to the suppliers recommendations. The piglets were housed in pairs in separate isolation units at 25 °C under natural day-night rhythm with ad libitum access to feed and water. Twelve days after the piglets were given the different feeds, the animals were orally inoculated with approximately 7 x 10⁷ CFU of *Salmonella* Typhimurium in 1 ml Hank's Balanced Salt Solution (HBSS). The inocula for the oral infection models were prepared as described previously (Boyen et al., 2006b).

For 3 consecutive days post-inoculation (pi), the clinical condition of the pigs was monitored (anorexia, lethargy, diarrhoea) and fresh faecal samples were taken from each pig for bacteriological analysis.

On day 4 pi, all piglets of each *Salmonella* inoculated group and 3 control pigs were euthanized. Samples of tonsils, liver, spleen, mesenterial lymph nodes, ileocaecal lymph nodes, colonic lymph nodes, jejunum, ileum, caecum, colon and contents of jejunum, ileum, caecum and colon were taken for bacteriological analysis and were stored at -70 °C until use. The samples were thawed and weighed, 10 % (w/v) suspensions were made in buffered peptone water (BPW; Oxoid, Basingstoke, UK) after which the material was homogenized with a stomacher. The homogenized samples were examined for the presence of the *Salmonella* strain by plating tenfold dilutions on BGA with addition of 20 µg ml⁻¹ nalidixic acid (BGA_{nal}). If negative at direct plating, the samples were pre-enriched overnight in BPW at 37 °C, enriched overnight at 37 °C in tetrathionate broth and then plated on BGA_{nal}. Samples that were negative after direct

183	plating but positive after enrichment, were presumed to contain 83 CFU g (detection
184	limit for direct plating). Samples that remained negative were presumed to have 0 CFU g
185	1
186	The data were analysed using a linear mixed effect regression model with animal
187	as random factor using S-Plus 7.0. Differences with a P value \leq 0.05 were considered as
188	significant. Differences with a P value ≤ 0.1 were considered as a trend.
189	The experiments were approved by the ethical committee of the Faculty of Veterinary
190	Medicine, Ghent University (EC 2006/15).
191	
192	2.7. In vivo trial with supplementation of uncoated fatty acids
193	
194	An in vivo experiment with uncoated fatty acids was performed analogous to the
195	trial with coated fatty acids, except for the addition of the feed supplements. Group 1 and
196	the control group received unsupplemented feed, group 2 feed supplemented with
197	uncoated butyric acid (Sanluc International, 1 g/kg feed) and group 3 received feed
198	symplemented with an acted courses acid (Scalus Intermetional, 1.7 c/kg food), according
170	supplemented with uncoated caproic acid (Sanluc International, 1.7 g/kg feed), according
199	to the suppliers recommendations.
199	to the suppliers recommendations.
199 200	to the suppliers recommendations. The data were analysed as described in 2.6. The experiments were approved by the

203	3. RESULTS
204	
205	3.1. Minimal inhibitory concentrations (MIC) of fatty acids
206	The results of the determination of the MIC values of SCFA and MCFA are
207	summarized in Table 1. The MIC of all fatty acids increased at increasing pH-values of
208	the medium and were comparable between the different SCFA and MCFA respectively.
209	In comparison with the MIC of SCFA, MIC values of MCFA were 2 to 8 times lower.
210	
211	3.2. Sub-MIC concentrations of fatty acids modify hilA and fimA expression of
212	Salmonella Typhimurium
213	Using growth curves it was demonstrated that the MCFA did not influence the growth
214	of Salmonella Typhimurium strain 112910a at a concentration of 2 mM, while for the
215	SCFA a concentration of 10 mM was not bacteriostatic at pH 6 (data not shown).
216	Salmonella Typhimurium grown in LB-broth containing sub-MIC concentrations
217	of butyric acid, propionic acid, caproic or caprylic acid showed a significantly (p ≤ 0.05)
218	lower expression of hilA compared to Salmonella Typhimurium grown in LB-broth
219	without acid supplementation. The expression of $fimA$ was significantly (p ≤ 0.05) lower
220	when Salmonella Typhimurium was grown in LB-broth containing caproic or caprylic
221	acid compared to Salmonella Typhimurium grown in LB-broth without acid
222	supplementation (Figure 1). The expression of $fimA$ was significantly (p ≤ 0.05) higher
223	when Salmonella Typhimurium was grown in LB-broth containing acetic acid.
224	

225	3.3. Sub-MIC concentrations of fatty acids influence invasive capacities of
226	Salmonella Typhimurium
227	In the gentamicin protection assay, Salmonella Typhimurium grown in LB-broth
228	containing sub-MIC concentrations of propionic acid, butyric acid, caprylic acid or
229	caproic acid, invaded significantly (p \leq 0.05) less compared to Salmonella Typhimurium
230	grown in LB-broth not containing acids. Formic acid, acetic acid and capric acid did not
231	decrease invasion efficiency ($p > 0.05$) at sub-MIC concentrations (Figure 2).
232	
233	3.4. Feed supplementation with coated fatty acids reduces Salmonella Typhimurium
234	excretion and colonization in pigs
235	The group receiving coated butyric acid showed a strong trend (p = 0.082), of
236	decreased Salmonella shedding at the first 3 days after inoculation. At 2 and 3 days p.i.
237	faecal shedding was approximately 100 times lower in the group fed coated butyric acid
238	compared to the control group. Coated caprylic acid did not significantly ($p = 0.89$)
239	reduce fecal shedding of Salmonella Typhimurium (Figure 3).
240	The Salmonella Typhimurium colonization of the internal organs was determined
241	on day 4 pi. Supplementation of coated butyric acid and coated caprylic acid resulted in a
242	similar colonization of the tonsils, spleen and liver compared to the control group. In both
243	groups the gut samples were colonized to a lower extent, however, the group receiving
244	coated butyric acid showed a trend ($p = 0.095$) towards lower colonization of the
245	intestines and the associated lymph nodes, while this was not statistically significant in

the group receiving coated caprylic acid (p = 0.495) (Figure 4).

	Neither	uncoate	ed bu	ıtyric	acid	nor	uncoate	ed o	caproi	c acid	infl	uenced	the
Salmo	<i>nella</i> exc	retion un	ıtil 3	days p	oi com	pared	to the	cont	rol gr	oup. Su	ppler	nentatio	n of
uncoa	ted buty	ric acid	and	uncoa	ated o	caproi	e acid	did	not	reduce	the	Salmon	ella
coloni	zation of	the inter	nal or	gans (data n	ot sho	wn).						

4. DISCUSSION

252	
253	

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

251

SCFA and MCFA have a direct antimicrobial activity against Salmonella Typhimurium, even at moderate concentrations. Our results demonstrate increasing MICvalues as the pH-level increases for both SCFA and MCFA. This is in agreement with the findings in propionic acid made by Kwon et al. (1998) and in anaerobic digester conditions for several SCFA (Salsali et al., 2006). Even though the MIC values were comparable between the different SCFA and MCFA respectively, subtle differences can be noted. The MIC values of formic acid for example are highly dependent on pH, showing a large range between the MIC values at pH 4 and pH 6. In contrast, the MIC values of propionic acid are less influenced by changes in pH. When using these acids to inhibit growth of Salmonella in feed or drinking water, the correct combination of acid concentration and pH should be chosen. Despite the relatively low MIC values at low pH, a direct antimicrobial effect of these acids in the intestines is not expected. In order to achieve a direct antimicrobial effect in the porcine gut to combat Salmonella Typhimurium, quite high concentrations of SCFA (> 160 mM at pH 6) and MCFA (≥ 40 mM at pH 6) are needed. Depending on the used feed, concentrations of butyric acid in the porcine caecum contents vary around 10 mmol/kg (≈ 10 mM) (Mikkelson et al., 2004). Therefore, fatty acid concentrations currently used in supplemented feed (10-30 mmol/kg feed) will not be able to increase the intraluminal concentrations to antimicrobial concentrations (≥ 160 mM at pH 6). SCFA and MCFA were shown to have an indirect effect on Salmonella pathogenicity. Even nonbacteriostatic concentrations as low as 2 mM for caproic or caprylic acid and 10 mM for butyric and propionic acid considerably decreased virulence gene expression and

275	epithelial cell invasion by Salmonella Typhimurium. This means that an increase of only
276	a few mM butyric acid in the gut contents could result in reaching the threshold
277	concentration for activation of the indirect effect of the SCFA. Since it has been shown
278	that invasion is important for intestinal colonization and induction of inflammation in
279	pigs (Boyen et al., 2006c; Volf et al., 2007), one could expect that any measure that
280	interferes with this invasion step will decrease the bacterial load in the gut.
281	Because SCFA and MCFA are usually rapidly metabolised by the microbiota of the
282	gut and absorbed by epithelial cells along the gastro-intestinal tract (Van Immerseel et al.,
283	2006; Louis et al., 2007), the supplemented fatty acids should be protected from the
284	intestinal environment until they reach the major sites of colonization by Salmonella,
285	namely the ileum, caecum and colon. In this report, a trend for decreased intestinal
286	Salmonella load and bacterial shedding in pigs was shown using supplemented coated
287	butyric acid, but not using supplemented uncoated butyric acid, as also previously
288	described in poultry (Van Immerseel et al., 2006). Even though caprylic acid showed a
289	stronger effect on invasion in vitro, this positive effect was not reproduced in vivo. This
290	may partially be explained by the fact that the coated butyric acid supplement was an
291	extensively characterized and optimized commercial product, while the caprylic acid
292	supplement was not.
293	It has been shown recently that at pH 7 butyric acid is of nearly no influence on hilA
294	expression (Papezova et al. 2007). In weaned piglets, the pH of caecum and colon, and to
295	a lesser extent the ileum, is readily below 7 (Castillo et al., 2007). This means that
296	theoretically, butyric acid should be able to excert its influence on hilA expression at
297	these sites. Reduced colonization of the distal parts of the intestinal tract may in turn

correlate with the reduced faecal shedding. Under field conditions, a lot of animals are negative for *Salmonella*, while carrier pigs are colonized by small numbers of *Salmonella*, often only detectable after enrichment (Malorny and Hoorfar, 2005). In such conditions, reduction of faecal shedding by one or two logs may have considerable epidemiological consequences on the *Salmonella* status of the uninfected animals in the herd. The obvious effects of these products could have been statistically more significant if larger numbers of animals were used. However, this was practically impossible due to strict biosafety requirements and animal ethics regulations.

In conclusion, to our knowledge, this is the first report demonstrating the effect of SCFA and MCFA on *Salmonella* Typhimurium infections in swine under controlled and well established *in vitro* and *in vivo* conditions. Certain short-chain fatty acids and medium-chain fatty acids decrease virulence gene expression and inhibit invasion in porcine intestinal epithelial cells. Coated butyric acid was effective in decreasing the levels of shedding and colonization of internal organs when given as a feed supplement to pigs.

ACKNOWLEDGEMENTS

The technical assistance of Gunter Massaer, Rosalie Devloo, Nathalie Van Rijsselberghe and Isabelle Lardon is gratefully appreciated. Feed supplements were kindly provided by Luc Goethals, Sanluc International.

This work was supported by the Institute for the Promotion of Innovation by Science and

Technology in Flanders (IWT Vlaanderen), Brussels, Belgium and the Fonds voor

- Wetenschappelijk Onderzoek (FWO). Ivan Rychlik and Jiri Volf were suported by the
- project MZE0002716201 of the Czech Ministry of Agriculture.

322	REFE	RENCES
323		
324	1.	Althouse, C., Patterson, S., Fedorka-Cray, P., Isaacson, R.E. 2003. Type 1
325		fimbriae of Salmonella enterica serovar Typhimurium bind to enterocytes and
326		contribute to colonization of swine in vivo. Infect. Immun. 71, 6446-6452.
327	2.	Boyen, F., Pasmans, F., Donné, E., Van Immerseel, F., Adriaensen, C.,
328		Hernalsteens, JP., Ducatelle, R., Haesebrouck, F., 2006a. Role of SPI-1 in the
329		interactions of Salmonella Typhimurium with porcine macrophages. Vet
330		Microbiol. 113, 35-44.
331	3.	Boyen, F., Haesebrouck, F., Maes, D., Van Immerseel, F., Ducatelle, R., Pasmans
332		F. 2008a. Non-typhoidal Salmonella infections in pigs: a closer look at
333		epidemiology, pathogenesis and control. Vet. Microbiol. In Press.
334	4.	Boyen, F., Pasmans, F., Donné, E., Van Immerseel, F., Morgan, C., Adriaensen
335		C., Hernalsteens, JP., Wallis, T.S., Ducatelle, R., Haesebrouck, F., 2006b. The
336		fibronectin binding protein ShdA is not a prerequisite for long term fecal shedding
337		of Salmonella Typhimurium in pigs. Vet. Microbiol. 115,284-290.
338	5.	Boyen, F., Pasmans, F., Van Immerseel, F., Donné, E., Morgan, E., Ducatelle, R.,
339		Haesebrouck, F., 2008b. Porcine in vitro and in vivo models to assess the
340		virulence of Salmonella enterica serovar Typhimurium for pigs. Lab. Anim. In
341		Press.
342	6.	Boyen, F., Pasmans, F., Van Immerseel, F., Morgan, E., Adriaensen, C.,
343		Hernalsteens L-P Decostere A Ducatelle R Haesebrouck F 2006c

Salmonella Typhimurium SPI-1 genes promote intestinal but not tonsillar 344 345 colonization in pigs. Microb. Infect. 8, 2899-2907. 346 7. Carnell, S.C., Bowen, A., Morgan, E., Maskell, D.J., Wallis, T.S., Stevens, M.P., 347 2007. Role in virulence and protective efficacy in pigs of Salmonella enterica 348 serovar Typhimurium secreted components identified by signature-tagged 349 mutagenesis. Microbiology. 153, 1940-1952. 350 8. Castillo, M., Martín-Orúe, S.M., Nofrarías, M., Manzanilla, E.G., Gasa, J., 2007. 351 Changes in caecal microbiota and mucosal morphology of weaned pigs. Vet. 352 Microbiol. 124, 239-247. 9. Creus, E., Pérez, J.F., Peralta, B., Baucells, F., Mateu, E., 2007. Effect of acidified 353 feed on the prevalence of Salmonella in market-age pigs. Zoonoses Public Health. 354 355 54, 314-319. 10. Dalton, C.B., Gregory, J., Kirk, M.D., Stafford, R.J., Givney, R., Kraa, E., Gould, 356 357 D., 2004. Foodborne disease outbreaks in Australia, 1995 to 2000. Commun. Dis. 358 Intell. 28, 211-224. 359 11. EFSA. 2006. Opinion of the Scientific Panel on Biological Hazards on the request 360 from the Commission related to "Risk assessment and mitigation options of Salmonella in pig production". The EFSA Journal 341, 1-131. 361 362 12. EFSA. 2008. The Community Summary Report on Trends and Sources of 363 Zoonoses, Zoonotic Agents, Antimicrobial resistance and Foodborne outbreaks in 364 the European Union in 2006. http://www.efsa.europa.eu/EFSA/ 365 13. Gantois, I., Ducatelle, R., Pasmans, F., Haesebrouck, F., Hautefort, I., Thompson,

A., Hinton, J.C., Van Immerseel, F., 2006. Butyrate specifically down-regulates

367 Salmonella pathogenicity island 1 gene expression. Appl. Environ. Microbiol. 72, 368 946-949. 369 14. Kaeffer, B., Bottreau, E., Velge, P., Pardon, P., 1993. Epithelioid and fibroblastic cell lines derived from the ileum of an adult histocompatible miniature boar (d/d 370 371 haplotype) and immortalized by SV40 plasmid. Eur. J. Cell. Biol. 62, 152-162. 15. Kwon, Y.M., Ricke, S.C., 1998. Survival of a Salmonella Typhimurium poultry 372 373 isolate in the presence of propionic acid under aerobic and anaerobic conditions. 374 Anaerobe. 4, 251-256. 375 16. Louis, P., Scott, K.P., Duncan, S.H., Flint, H.J., 2007. Understanding the effects 376 of diet on bacterial metabolism in the large intestine. J. Appl. Microbiol. 102, 377 1197-1208. 378 17. Malorny, B., Hoorfar, J., 2005. Toward standardization of diagnostic PCR testing 379 of fecal samples: lessons from the detection of salmonellae in pigs. J. Clin. Microbiol. 43, 3033-3037. 380 381 18. Mikkelsen, L.L., Naughton, P.J., Hedemann, M.S., Jensen, B.B., 2004. Effects of 382 physical properties of feed on microbial ecology and survival of Salmonella 383 enterica serovar Typhimurium in the pig gastrointestinal tract. J. Appl. Microbiol. 384 70, 3485-3492. 19. Ojha, S., Kostrzynska, M., 2007. Approaches for reducing Salmonella in pork 385 386 production. J. Food Prot. 70, 2676-2694. 387 20. Papezova, K., Gregorova, D., Jonuschies, J., Rychlik, I., 2007. Ordered 388 expression of virulence genes in Salmonella enterica serovar typhimurium. Folia 389 Microbiol. (Praha). 52, 107-114.

390	21. Salsali, H.R., Parker, W.J., Sattar, S.A., 2006. Impact of concentration,
391	temperature, and pH on inactivation of Salmonella spp. by volatile fatty acids in
392	anaerobic digestion. Can. J. Microbiol. 52, 279-286.
393	22. Van Immerseel, F., Boyen, F., Gantois, I., Timbermont, L., Bohez, L., Pasmans,
394	F., Haesebrouck, F., Ducatelle, R., 2005. Supplementation of coated butyric acid
395	in the feed reduces colonization and shedding of Salmonella in poultry. Poult Sci.
396	84: 1851-1856.
397	23. Van Immerseel, F., De Buck, J., Boyen, F., Bohez, L., Pasmans, F., Volf, J.,
398	Sevcik, M., Rychlik, I., Haesebrouck, F., Ducatelle, R., 2004. Medium-chain fatty
399	acids decrease colonization and invasion through hilA suppression shortly after
400	infection of chickens with Salmonella enterica serovar Enteritidis. Appl. Environ.
401	Microbiol. 70, 3582-3587.
402	24. Van Immerseel, F., Russell, J.B., Flythe, M.D., Gantois, I., Timbermont, L.,
403	Pasmans, F., Haesebrouck, F., Ducatelle, R., 2006. The use of organic acids to
404	combat Salmonella in poultry: a mechanistic explanation of the efficacy. Avian
405	Pathol. 35: 182-188.
406	25. Volf, J., Boyen, F., Faldyna, M., Pavlova, B., Navratilova, J., Rychlik, I., 2007.
407	Cytokine Response of Porcine Cell Lines to Salmonella enterica serovar
408	Typhimurium and its hilA and ssrA mutants. Zoonoses Public Health. 54, 286-
409	293.
410	

Tables and figures

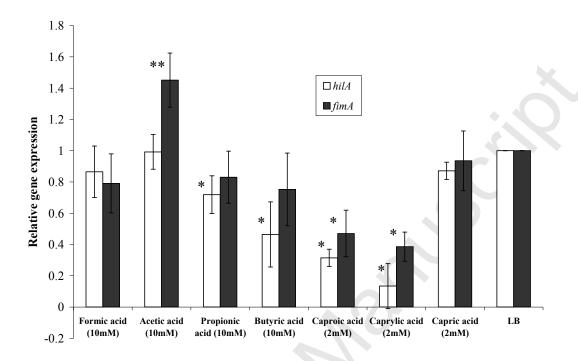


Figure 1: Relative gene expression (average +/- SD) of fimA and hilA of Salmonella Typhimurium strain 112910a grown in LB broth with sub-MIC concentrations of different fatty acids relative to Salmonella Typhimurium strain 112910a grown in unsupplemented LB broth at 37°C for 20 hours, using hilA-luxCDABE or fimA-luxCDABE transcriptional fusions. One or 2 asterisks refer to significantly lower or respectively higher gene expression relative to that of the Salmonella Typhimurium strain 112910a grown in unsupplemented LB broth ($p \le 0.05$).

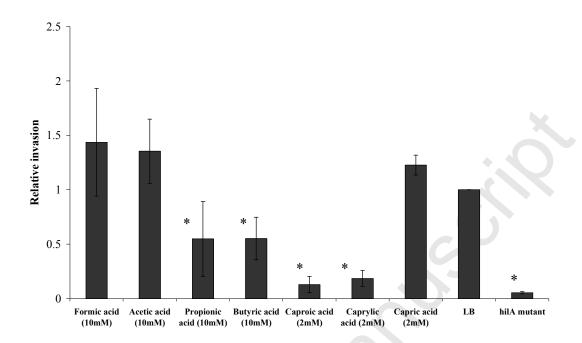


Figure 2: Relative invasion (average +/- SD) in IPI-2I cells of *Salmonella* Typhimurium grown in LB broth, supplemented with sub-MIC concentrations of different fatty acids for 4 h at 37°C in relation to *Salmonella* Typhimurium grown in unsupplemented LB broth. A *hilA* mutant strain was used as internal control. An asterisk refers to significantly lower invasion relative to the *Salmonella* Typhimurium strain 112910a grown in unsupplemented LB broth $(p \le 0.05)$.

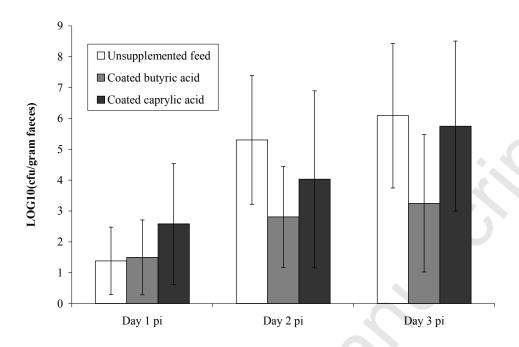


Figure 3: The mean (+/- SD) log(10) cfu gram⁻¹ faeces *Salmonella* of piglets fed on a diet supplemented with either coated butyric or caprylic acid or unsupplemented after oral inoculation with 10⁷ cfu of *Salmonella* Typhimurium strain 112910a.

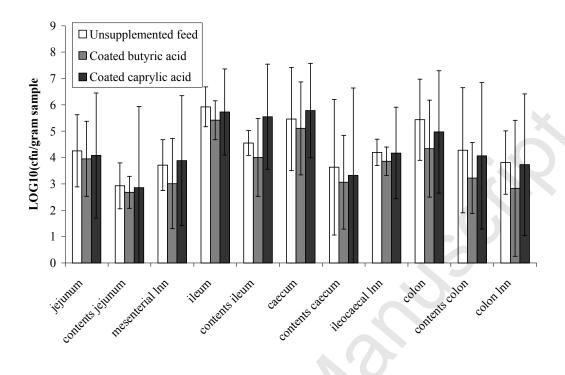


Fig. 4: The mean (+/- SD) log(10) cfu gram⁻¹ sample *Salmonella* of piglets fed on a diet supplemented with either coated butyric or caprylic acid or unsupplemented 4 days after oral inoculation with 10⁷ cfu of *Salmonella* Typhimurium strain 112910a.

Table 1: Overview of the MIC values of formic acid, acetic acid, propionic acid, butyric acid, caproic acid and caprylic acid tested at pH 4, 5 and 6, using 54 porcine *Salmonella* Typhimurium strains.

			number	of strai	ns with a	a MIC o	f (mM)				
	0.625	1.25	2.5	5	10	20	40	80	160	320	640
Formic acid											
pH4	-	9	45	-	-	-	-	-	-	(-	
pH5	-	-	-	-	-	-	54	-	-	-	-
pH6	-	-	-	-	-	-	-	-	- (54	-
Acetic acid											
pH4	-	-	-	54	-	-	-	-	6-	-	-
pH5	-	-	-	-	-	3	51	-	- /	-	-
pH6	-	-	-	-	-	-	-	-	1	48	5
)		
Propionic acid											
pH4	-	-	-	22	32	-		-	-	-	-
pH5	-	-	-	-	-	20	34	-	-	-	-
рН6	-	-	-	-	-	-		1	49	4	-
Butyric acid											
pH4	1	3	1	49	-	-	_	-	-	-	-
pH5	-	-	-	-	8	46	-	-	-	-	-
pH6	-	-	-	-	-	-	-	-	53	1	-
Caproic acid											
pH4	-	3	51	-	-	-	-	-	-	-	-
pH5	-	-	-	-	54	-	-	-	-	-	-
рН6	-	-	-	-	-	-	7	47	-	-	-
Caprylic acid		_				_		_			
pH4	-	51	2	1	-	-	-	-	-	-	-
pH5	-	-	-	1	43	10	-	-	-	-	-
pH6	-	-	-	/ -	-	-	47	7	-	-	-