Establishing the spread of bluetongue virus at the end of the 2006 epidemic in Belgium

E. Méroc, C. Faes, C. Herr, B. Verheyden, T. Vanbinst, F. Vandenbussche, J. Hooyberghs, M. Aerts, K. de Clercq, K. Mintiens, et al.

- To cite this version:

E. Méroc, C. Faes, C. Herr, B. Verheyden, T. Vanbinst, et al.. Establishing the spread of bluetongue virus at the end of the 2006 epidemic in Belgium. Veterinary Microbiology, 2008, 131 (1-2), pp. 133. 10.1016/j.vetmic.2008.03.012 . hal-00532409

HAL Id: hal-00532409

https://hal.science/hal-00532409

Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Establishing the spread of bluetongue virus at the end of the 2006 epidemic in Belgium

Authors: E. Méroc, C. Faes, C. Herr, B. Verheyden, T. Vanbinst, F. Vandenbussche, J. Hooyberghs, M. Aerts, K. De
 Clercq, K. Mintiens, C. Staubach

PII:
S0378-1135(08)00108-9
DOI:
Reference:
doi:10.1016/j.vetmic.2008.03.012
VETMIC 3990
To appear in: VETMIC
Received date: 18-9-2007
Revised date: 14-3-2008
Accepted date: 18-3-2008
Please cite this article as: Méroc, E., Faes, C., Herr, C., Verheyden, B., Vanbinst, T., Vandenbussche, F., Hooyberghs, J., Aerts, M., De Clercq, K., Mintiens, K., Staubach, C., Establishing the spread of bluetongue virus at the end of the 2006 epidemic in Belgium, Veterinary Microbiology (2007), doi:10.1016/j.vetmic.2008.03.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Establishing the spread of bluetongue virus at the end of the 2006 epidemic in Belgium

E. Méroc ${ }^{1}$, C. Faes 2, C. Herr ${ }^{1}$, B. Verheyden ${ }^{1}$, T. Vanbinst ${ }^{3}$, F. Vandenbussche ${ }^{3}$, J. Hooyberghs ${ }^{4}$, M. Aerts ${ }^{2}$, K. De Clercq ${ }^{3,}$ K. Mintiens ${ }^{1,}$ C. Staubach ${ }^{5}$

1. Veterinary and Agrochemical Research Centre, Co-ordination Centre for Veterinary Diagnostics, Groeselenberg 99, B-1180 Brussels, Belgium.
2. Hasselt University, Center for Statistics, Agoralaan Block D, B-3590 Diepenbeek, Belgium
3. Veterinary and Agrochemical Research Centre, Department of Virology, Groeselenberg 99, B-1180 Brussels, Belgium.
4. Federal Agency for the Safety of the Food Chain, Directorate General of Control Policy. S. Bolivarlaan 30, B-1000 Brussels, Belgium.
5. Friedrich-Loeffler-Institut, Institute of Epidemiology, Seestr. 55, D-16868 Wusterhausen, Germany.

Correspondence address:
E. Méroc

Veterinary and Agrochemical Research Centre
Co-ordination Centre for Veterinary Diagnostics
Groeselenberg 99, B-1180 Brussels, Belgium
Tel: $\quad+3223790461$
Fax: +3223790670

E-mail: esmer@var.fgov.be

Abstract

Bluetongue (BT) was notified for the first time in several Northern European countries in August 2006. The first reported outbreaks of BT were confirmed in herds located near the place where Belgium, The Netherlands and Germany share borders. The disease was rapidly and widely disseminated throughout Belgium in both sheep and cattle herds. During the epidemic, case-reporting by the Veterinary Authorities relied almost exclusively on the identification of herds with confirmed clinical infected ruminants. A cross-sectional serological survey targeting all Belgian ruminants was then undertaken during the vector-free season. The first objective of this study was to provide unbiased estimates of BT-seroprevalence for different regions of Belgium. Since under-reporting was suspected during the epidemic, a second goal was to compare the final dispersion of the virus based on the seroprevalence estimates to the dispersion of the confirmed clinical cases which were notified in Belgium, in order to estimate the accuracy of the case-detection based on clinical suspicion. True within-herd seroprevalence was estimated based on a logisticnormal regression model with prior specification on the diagnostic test's sensitivity and specificity. The model was fitted in a Bayesian framework. Herd seroprevalence was estimated using a logistic regression model. To study the linear correlation between the BT winter screening data and the case-herds data, the linear predicted values for the herd prevalence were compared and the Pearson correlation coefficient was estimated. The overall herd and true within-herd seroprevalences were estimated at 83.3 (79.2-87.0) and 23.8 (20.1-28.1) per cent, respectively. BT seropositivity was shown to be widely but unevenly distributed throughout Belgium, with a gradient decreasing towards the south and the west of the country. The analysis has shown
there was a strong correlation between the outbreak data and the data from the survey ($\mathrm{r}=0.73, \mathrm{p}<0.0001$). The case detection system based on clinical suspicion underestimated the real impact of the epidemic, but indicated an accurate spatial distribution of the virus at the end of the epidemic.

Keywords

Bluetongue; Survey; Seroprevalence; Correlation; Belgium; Epidemics

1. Introduction

Bluetongue (BT), a vector-borne viral disease, is transmitted in ruminant populations almost exclusively by several species of biting midges of the genus Culicoides (Diptera: Ceratopogonidae) (Cêtre-Sossah et al., 2004; Pili et al., 2006). BT virus (BTV) is a species of the genus Orbivirus within the Reoviridae family. To date, 24 distinct BTV-serotypes have been identified (Gorman, 1990; Takamatsu et al., 2003). BT can cause spectacular outbreaks and has an adverse impact on worldwide trade due to restrictions on the source of animals (Green et al., 2005; FAO, 2006). It thus appears on the list of diseases notifiable to the World Organisation for Animal Health (OIE). Influenced by several factors such as geographical location, the incidence of clinical disease is highly variable. BT disease is uncommon in many areas where BTV is endemic (MacLachlan, 2004). The virus is traditionally known to be distributed around the world in countries lying in the tropics and subtropics, although it may extend further north like in parts of Western North America and Xinjiang, China (Dulac et al., 1989; Gibbs et al., 1994; Qin et al., 1996). The virus has been documented as far as $45^{\circ} \mathrm{N}$ in Southern Europe (Caporale et al., 2004).

In August 2006, very unexpectedly, BT was for the first time notified in The Netherlands, Belgium and Germany. (OIE Animal Health Department, 2006; Toussaint et al., 2006). Later on during the epidemic, related cases were also reported in France and Luxembourg. The virus incriminated was identified as BTV-serotype 8 (CRL, 2006; Toussaint et al., 2007a), which prior to this epidemic had only occurred in Africa, Central America, Malaysia, and India/Pakistan (Herniman et al., 1980; Hassan, 1992; Mo et al., 1994; Daniels et al., 2004; Gerdes, 2004). Although the possible routes of introduction were investigated, the exact origin remains unknown (Mintiens et al., 2007). Based on the data from the early stages of the epidemic, the rate of the local spread was estimated to be around $15 \mathrm{~km} /$ week, partially reflecting the rapid extension of BTV in Northern Europe (Gerbier et al., 2007).

In Belgium, the first 11 ever reported BT outbreaks were confirmed in the near East-border part of the country on the 19th of August 2006, in both sheep and cattle herds (Toussaint et al., 2007b). Despite the measures implemented banning animal movement, the disease was rapidly and widely disseminated throughout the Belgian territory. By December 2006, a total of 695 herds or flocks were declared "case herds" of which 297 were cattle herds. During the epidemic, case-reporting by the Belgian Veterinary Authorities relied almost exclusively on the identification of herds with confirmed clinical infected ruminants. Laboratory diagnoses were mostly used for confirmation of BTV infections in ruminants reported with BT-like clinical signs. Therefore under-reporting was suspected.

During the winter of $2006 / 2007$, it was assumed that climatic conditions were unfavourable for further propagation of BTV. The last cases of the epidemic in Belgium were reported by the Veterinary Authorities on 15 December 2006. A serological and virological cross-sectional survey (BT winter screening) targeting all

Belgian ruminants was undertaken in January-February 2007 in order to establish the true final dispersion of the virus across the country. The first objective of the study was to provide unbiased estimates of BT-seroprevalence for different regions of Belgium. A second objective was to compare the final dispersion of the virus based on the seroprevalence estimates to the dispersion of the confirmed clinical cases which were notified in Belgium, in order to estimate the accuracy of the casedetection based on clinical surveillance. This paper presents the descriptive epidemiology of the BT winter screening 2007.

2. Material and Methods

2.1 Sampling design for the BT winter screening

The study population of the winter screening consisted of dairy cattle of more than two years old which were housed in dairy farms with on-farm delivery of dairy products. Cattle were sampled because of expected higher prevalence in this species compared to sheep (Ward et al., 1994). Only dairy cattle were considered for sampling since serologically negative animals that were to be identified by the BT winter screening would participate afterwards in a longitudinal BT sentinel animals monitoring programme (logistically dairy animals are sampled more easily). The sampling frame was provided by the list of 1245 diary herds with on-farm delivery of dairy product previously identified for the official Belgian Leucois-Brucellosis winter screening. In this programme, all animals of more than two years were sampled.

Since no prior information on the herd prevalence was available, the number of herds to be sampled was based on an expected prevalence of 50 per cent (maximal variance), a desired absolute precision of 5 per cent and 95 per cent confidence level. Since at the time of sample size's selection, no information was available on the
diagnostic test's sensitivity and specificity, these were assumed to be perfect. A sample of 384 herds was set to be selected (Cannon and Roe, 1982). A one-stage cluster sampling design was performed with stratification of the herds by province and proportional allocation according to province surface.

2.2 Diagnostic methods

Samples were collected by the official farm veterinarians and conditioned to serum samples at the regional laboratories of 'Dierengezondheidszorg Vlaanderen' and the 'Association Régionale de Santé et d'Identification Animales'. The serum samples were assayed using a commercially available competitive ELISA (c-ELISA) kit (ID Screen® Blue Tongue Competition for detection of anti-VP7 antibodies; ID.VET, Montpellier, France) which was carried out according to the OIE Manual of Standards (OIE, 2004) and to the procedure described by the manufacturer. Results were expressed as percentage negativity (PN) compared to the negative kit control and cutoff settings considered were those provided by the manufacturer. Samples which presented a PN less or equal to 35 per cent, between 35 and 45 per cent, and greater than 45 per cent were considered as positive, doubtful and negative, respectively. Doubtful results were classified positive in the data analysis. Using RT-qPCR as reference test during the epidemic, the diagnostic sensitivity and specificity of the c ELISA was estimated at 87.4 per cent $(95 \% \mathrm{CI}: 83.5-90.4)$ and 99.0 per cent $(95 \% \mathrm{CI}$: 97.2-99.6), respectively (Vandenbussche et al., 2007).

2.3 Case herds

Case herds were mostly herds (cattle or ovine) for which the veterinary practitioner, who has been consulted by the animal owner, identified suspicious clinical cases and
where at least one of those animals was subsequently confirmed positive using a laboratory test (c-ELISA and/or real-time PCR) and then notified to the veterinary authorities (EFSA, 2007). A maximum of three animals were sampled per herd. In addition, herds without clinical signs but with seropositive animals which were then confirmed positive with real-time PCR (Toussaint et al., 2007a) were also included. For example, animals could be detected when tested serologically for certification prior to trade between zones with different BTV-8 status within the country or prior to export. EDTA blood and serum samples were tested at the Belgian National Reference Laboratory (VAR).

2.4 Statistical methods

The estimation of within-herd seroprevalence was based on a logistic-normal regression model. For the BT winter screening data, let Z_{i} be the number of positive tested animals out of N_{i} tested animals from herd i. It was assumed that the number of positive animals followed a binomial distribution:

$$
\begin{equation*}
Z_{i} \sim \operatorname{Bin}\left(N_{i}, p_{i}^{a}\right), \tag{1}
\end{equation*}
$$

with p_{i}^{a} the apparent prevalence. The true prevalence p_{i}^{t}, reflecting the true serological status of the animals, was derived from the following equation (Rogan and Gladen, 1978) taking the sensitivity and specificity of the c-ELISA test into account:

$$
\begin{equation*}
p_{i}^{a}=S e \times p_{i}^{t}+(1-S p) \times\left(1-p_{i}^{t}\right), \tag{2}
\end{equation*}
$$

or,

$$
p_{i}^{t}=\frac{p_{i}^{a}+S p-1}{S e+S p-1}
$$

where $S e$ is the test sensitivity and $S p$ is the test specificity.

To account for possible correlation among the animals from the same herd, the seroprevalence in herd i was modelled as

$$
\begin{equation*}
\operatorname{logit}\left(p_{i}^{t}\right)=\beta+u_{i} \tag{3}
\end{equation*}
$$

with $u_{i} \sim \operatorname{Normal}\left(0, \sigma^{2}\right)$ being the normally distributed random intercepts for each herd. This model is a special form of a generalized linear mixed model as described by Molenberghs and Verbeke (2005). The Intraclass Correlation Coefficient (ICC) given by

$$
I C C=\frac{\sigma^{2}}{\sigma^{2}+\pi^{2} / 3}
$$

was estimated to establish the correlation between the infection status of two animals within a herd. Since the sensitivity and specificity were no fixed or known values, a prior distribution for the sensitivity and specificity was assumed. Thus, model specification was further extended by assuming a beta-distribution for the Se and $S p$ parameters:

$$
\begin{equation*}
\operatorname{Se} \sim \operatorname{beta}\left(a_{1}, b_{1}\right), \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
S p \sim \operatorname{beta}\left(a_{2}, b_{2}\right) \tag{5}
\end{equation*}
$$

where $a_{1}, b_{1}, a_{2}, b_{2}$ were chosen based on literature material (Vandenbussche et al., 2007). In summary, the within-herd seroprevalence estimation was based on a logistic-normal regression model, accounting for the test sensitivity and specificity of the test. The model is given by equations (1) to (5). Because of its hierarchical structure, it was fitted in a Bayesian framework, using WinBUGS software (http://www.winbugs-development.org.uk) Non-informative priors were used for all model parameters. Posterior seroprevalence distributions and 95 per cent central credibility intervals were generated. A density plot of the predicted within-herd
seroprevalence estimates, was produced based on the logistic-normal regression model (1)-(5).

The herd seroprevalence (probability that a herd was infected) was estimated using a logistic regression model:

$$
\begin{align*}
& Y_{i} \sim \operatorname{Bernouilli}\left(p^{h}\right), \tag{6}\\
& \operatorname{Logit}\left(p^{h}\right)=\beta
\end{align*}
$$

where p^{h} is the apparent herd prevalence. This model was extended by allowing different β 's for the different provinces, in order to estimate the province-specific herd seroprevalences. For the purpose of this study, a herd was considered as positive if at least one of the sampled animals had a positive ELISA test result, otherwise it was considered negative.

In both models described above, the design-effect was taken into account by weighting each observation by the inverse of the sampling probability. Provinces which were under-represented in the sample were attributed a higher weight, whereas the over-represented received smaller weight. Herd density data was extracted from the Belgian animal identification and registration system (SANITEL) to provide estimates of the population at risk. A map showing herd density for cattle at municipality level was produced using ArcView GIS 3.2. (ESRI).

A map showing the distribution of within-herd seroprevalence in the country was produced. The true within-herd prevalence estimates of the farms which were sampled were interpolated by Inverse Distance Weighting (IDW) (Shepard, 1968; ESRI, 1996).

In order to estimate the accuracy of the case-detection based on clinical surveillance, the linear correlation between the BT winter screening data and the case data was estimated. For both data sets, herd prevalence per municipality was
estimated based on logistic regression models, as in equation (6). In order to account for spatial differences, a flexible smoothing method was used to estimate the spatial trend. It is assumed that

$$
\operatorname{Logit}\left(p^{h}\right)=f(x, y)
$$

where $f(x, y)$ is some unspecified smooth function of the x - and y-coordinates. The method used penalized splines with radial basis function, fitted as a generalized linear mixed model (Eilers et al., 1996; Ruppert, Wand and Carroll, 2003). This method was implemented in the SAS procedure GLIMMIX (9.1.3. SAS, Inc.).

To study the linear correlation between the two datasets, the linear predicted values $f(x, y)$ for herd prevalence, resulting from the logistic regression models applied to the two datasets, were compared and the Pearson correlation coefficient was estimated. For the outbreak data to be comparable with the winter screening data, solely cattle results were used for this part of the analysis. Maps showing the distribution of herd prevalence estimates at municipality level were produced.

Daily meteorological data on the mean temperature were collected at 247 weather stations in The Netherlands, Belgium, Germany and France. The raw temperature values were interpolated between the locations of the weather stations using IDW. A model of the German meteorological service for large scale maps was used to adjust the interpolated temperature values for the correlation between temperature and altitude (Müller-Westermeier, 1995; Ahrens, 2006). In a first step, the raw temperature data were reduced to sea level and interpolated on a grid cell size of 250 m using the IDW algorithm. Finally, the interpolated values were adjusted for the height in the actual topography using altitude data with a resolution of 90 m (NASA SRTM data). Maps of the spatially interpolated mean daily temperature were produced for six dates at monthly intervals.

3. Results

3.1 Bluetongue winter screening

A total of 25,846 cattle from 344 herds were sampled between the first and the $31^{\text {st }}$ of January 2007. An average of 75 animals (standard deviation, 51), ranging from 1 to 370, were sampled per herd. Among those samples, 5008 gave positive results. The overall herd seroprevalence was estimated at 83.3 per cent (95% CI $79.2-87.0$). Province-specific herd seroprevalence estimates are shown in Figure 1. The highest estimates were found in provinces located in the north-east of Belgium, near the place where the epidemic started. The true overall within-herd prevalence was 23.8 per cent (95% CI 20.1-28.1). The spatial distribution of the within-herd prevalence is presented in Figure 2. The highest provincial within-herd prevalence estimates were found in Limburg and Liege provinces. There was a second focus around the city of Ghent in East Flanders province. On the other hand, the lowest within-herd seroprevalence was found in Hainaut province. Figure 3 shows the density plot of within-herd seroprevalence estimates. A large variability in within-herd seroprevalence was observed. However, in most herds, within-herd seroprevalence was between 0 and 20 per cent. The within herd ICC was estimated at 0.41 (95% CI $0.36-0.47$). This shows that correlation between the infectious statuses of two animals within a herd was high. Figure 4 presents herd density at municipality level. High herd densities in 2006 were mainly observed in the western part of the country. Figure 5 shows maps of the spatially interpolated temperature for the 30 June, 30 July, 30 August, 30 September, 30 October and 30 November 2006. Around the possible time of introduction (JuneJuly), the temperature was high in Belgium. The global temperature trend during the BT epidemic consisted of two warm time periods (June-July and End-September)
separated by a cooler period. Local differences in mean temperature were also suggested by the maps.

3.2 Case herds

Between the $18^{\text {th }}$ of August and the $31^{\text {st }}$ of December 2006, a total of 1445 cattle and 893 sheep samples were analysed. The overall BT herd prevalence was estimated at 0.7 per cent $(95 \%$ CI $0.7-0.8)$ for cattle herds and 1.3 per cent $(95 \%$ CI 1.2-1.4) for sheep flocks. Herd prevalence estimates at the provincial level for cattle and sheep are shown in Table 1. Estimates were found to be more or less twice higher for sheep than for cattle. However, the distributions of herd prevalence estimates at the provincial level were found to be similar in the two species.

3.3 Comparison of winter screening and cattle case herd results

Based on the linear predicted values for herd prevalence of the winter screening and the cattle case herd data, the Pearson correlation coefficient was 0.73 and significant (p-value <0.0001). Figure 6 consists of two maps showing the distribution of BT herd prevalence estimates at municipality level based on cattle case-herd and winter screening data. The patterns indicated by the two maps seemed to be similar to each other.

3. Discussion

Starting from the original focus in the area where Belgium, The Netherlands and Germany share borders, the epidemic gradually disseminated throughout the Northern European countries. The epidemic predominantly spread horizontally along an EastWest axis (EFSA, 2007). In Belgium, until October 2006, case herds were mainly
limited to an area situated in the Eastern part of the country. Early September 2006, the area of chief concern appeared to be the infectious status of the "still free" provinces; therefore, a serological screening was conducted and demonstrated freedom of BTV infection for all the provinces in which no case herd was notified at that time (Vandenbussche et al., 2007). The first case in East Flanders was notified on September 18 and the infection then further continued its spread to the west. At the end of the epidemic, BTV-seropositivity in dairy cattle herds was shown to be widely but unevenly distributed throughout Belgium. Seroprevalence was found to be the highest near the area of first infection with a gradient decreasing towards the south and the west of the country. In The Netherlands, the same distribution was observed, with, in this case, a gradient decreasing towards the Northern part of the country (Elbers et al., 2007). Based on case herd data, Gerbier et al. (2007) identified two spatial clusters of cases in Belgium which centered around the cities of Maastricht (the Netherlands) and Ghent. The authors stated that a gap between the two clusters remained by the end of the epidemic. The results of the present study on the other hand demonstrated a herd seroprevalence gradually decreasing towards the west with no higher level around the Ghent area. The within-herd seroprevalence map (Figure 2) revealed areas around Maastricht and Ghent where the within-herd seroprevalence was high. The highest within-herd seroprevalences were found on farms situated in Liege, Limburg, Flemish and Walloon Brabant provinces most certainly due to the fact that those regions were affected at the beginning of the epidemic. However, further study of specific risk factors such as local temperature, farm management system, and abundance of vector, is needed to better understand the spatial variation in the occurrence of BT and to allow a more efficient control of the infection in the future. The second focus around the city of Ghent could be explained for instance by
the high cattle farm density in this area (Figure 4) which could be a risk factor for within-herd propagation of BT. Visual examination of the temperature maps (Figure 5) suggested that hilly areas were always cooler compared to areas of lower elevation. Those lower temperatures may have had an influence on the life cycle of Culicoides and the replication of BTV in the vectors. The high ICC reflected the important correlation between two animals within a herd with respect to the presence/absence of BTV. A study conducted in Kazakhstan demonstrated also significant clustering at farm level (Lundervold et al., 2003). The authors pinpointed the fact that this effect could be related to local variations in the vector's distribution.

Clinical signs of BT appear as soon as five days post-infection. Therefore, in the early stages of an epidemic, infected animals are more quickly detected by clinical examination than by serology. In Italy, during the 2000-2001 BT-outbreak, serosurveillance only debuted in the decreasing phase of the epidemic curve (Giovannini et al., 2004). In a reporting system such as the one implemented during the course of the outbreak in Belgium, a succession of events has to occur before a case is detected. Theoretically, the reporting of suspect cases allows for a view of the situation for the entire susceptible population which is under owner and veterinary observation. This first relies on the assumption that the infection will produce clinical signs; hence, subclinical cases will go unnoticed (Doherr et al., 2001). BTV has in the past been isolated in several countries without clinical disease being recognised (Gibbs et al., 1994; Mulhern, 1985). Based on the sparse data from whole-herd-sampling during the Northern European epidemic, it has been shown that a high proportion of cattle within a herd could be PCR or seropositive, while not showing any BT-clinical signs. Moreover, owners and veterinarians in Belgium had never previously experienced this exotic disease; therefore clinical signs were unfamiliar to them (Elbers et al., 2007).

Also, owners may have been reluctant to report cases for fear of consequent loss of trade. The winter screening revealed indeed a higher prevalence than demonstrated by the reporting of clinical cases. Results demonstrated a high level of exposure to BTV in the dairy herds. The results confirm the fact that BTV spreads very quickly in an immunologically naïve ruminant population. The first Italian epidemic of BT in 2000 in Sardinia has demonstrated a rate of spread of 30 km per week and 80% of the island had been infected. Both in Sardinia and Sicilia, serological surveillance detected virus circulation to be wider than shown by clinical surveillance (Calistri et al., 2004; Giovannini et al., 2004). Serological screening demonstrated a BT animalprevalence levels ranging from 3.23 to 61.11% in Albania after recent first infection (Di Ventura , 2004). In the present study, the obtained Pearson correlation coefficient showed that the spatial distributions of the virus indicated by the two datasets (Figure 6) were very similar. However, there is was large scale-difference in estimated prevalences. The case detection system based on clinical suspicion underestimated the real impact of the epidemic, but indicated an accurate spatial distribution of the virus at the end of the epidemic.

In theory, each individual within the target population, namely the Belgian ruminant population, should have had an equal chance of being selected for sampling. For accessibility matters, only dairy herds with on-farm delivery of dairy product were considered in the sampling frame. Moreover, solely animals older than 24 months were sampled. Sub sampling presents an opportunity for selection bias which must be accounted for when willing to extrapolate the results to the target population. From the outbreak data, BT herd prevalence level in sheep was higher than in cattle. Ovine BTV infection cases might have been easier to detect since this species is commonly known to be more prone to develop the clinical form of the disease (Gibbs et al.,
1994). However, the particularity of this BTV-8 epidemic was that the virus was able to induce severe clinical signs in cattle (Thiry et al., 2006). Moreover, the results of the confirmation analyses showed that clinical signs observed in cattle were more specific than those observed in sheep (Toussaint et al., 2007b). In general, seroprevalence is known to be higher in cattle than in small ruminant populations (Ward et al., 1994; Di Ventura et al., 2004). On the other hand, a study conducted on the Indian sub-continent, demonstrated a higher seroprevalence in sheep than in cattle, with 45.71% and 33.4%, respectively (Sreenivasulu et al., 2004). Those findings demonstrate differences which can occur when sampling a particular species instead of another. In the same way, many studies have concluded that older cattle were more likely to be positive to BTV antibodies than younger cattle, related to a greater opportunity for repeated exposure to the virus (Uhaa et al., 1990; Ward et al., 1994; Lundervold et al., 2003). Factors such as breed specific genetics or management methods differ a lot between a beef and a dairy cattle herd; hence, the level of prevalence may not follow identical patterns. Moreover, the "on-farm delivery of diary products" characteristic of selected herds may be associated for instance to a more artisanal agriculture which may indirectly have consequences on disease control. An analysis performed by Green et al. in the United States (2005), has not proven herd type to be a significant risk factor. However, this conclusion may depend on local conditions and consequently differ for Belgian cattle.

The only indication a positive serological result gives is that the tested animal was at one point infected with the virus. Due to resistance in host population, future outbreaks would probably occur more silently in herds which were already infected during the 2006 epidemic. In this case, the genuine dissemination of the virus would
certainly be much more extensive than the distribution of suspected cases (Purse et al., 2006).

4. Conclusion

These findings currently provide the best information available on the unprecedented occurrence of BT in Belgium and emphasized the rapid and nonconfined spread of the virus in a susceptible ruminant population. Local variations in estimated prevalence should be further investigated to help identify particular risk factors and be able to better control future outbreaks. The results of the winter screening were also used to set up a sentinel program in the country. This study showed that the case detection system based on clinical suspicion underestimated the real impact of the epidemic, but provided an accurate indication of the spatial distribution of the virus at the end of the epidemic.

Acknowledgements

This study is part of a contract research programme funded by the Belgian Federal Public Service of Health, Food Chain Safety, and Environment, the Belgian Fund for Health and Quality of Animals and Derived Products, and The Belgian Federal Agency for the Safety of the Food Chain. Partners in this programme are Avia-Gis (Zoersel, Belgium), the Gembloux Agricultural University (Gembloux, Belgium), the Institute for Tropical Medicine (Antwerp, Belgium), Liège University (Liège, Belgium), the Veterinary and Agrochemical Research Centre (Brussels, Belgium), and the Walloon Agricultural Research Centre (Gembloux, Belgium).

The authors gratefully acknowledge all the persons which have contributed to the collection of data for their cooperation in this study and Kathrin Teske for her technical assistance to produce the temperature maps.

References

Ahrens, C.D. 2006. Meteorology today. An introduction to weather, climate and the environment. Thomson Learning, Stamford, CT.

Calistri, P., Giovannini, A., Conte, A., Nannini, D., Santucci, U., Patta, C., Rolesu, S., Caporale, V., 2004, Bluetongue in Italy: Part I. Veterinaria Italiana. 40, 243251.

Cannon, R.M., Roe, R.T., 1982, Livestock Disease Surveys: A field manual for veterinarians. Australian Bureau of Animal Health, Canberra.

Caporale, V., MacLachlan, N.J., Pearson, J.E., Schudel, A., 2004, Introduction Third International Symposium on Bluetongue. Veterinaria Italiana 40, 29-30.

Cêtre-Sossah, C., Baldet, T., Delécolle, J.-C., Mathieu, B., Perrin, A., Grillet, C., Albina, E., 2004, Molecular detection of Culicoides spp. and Culicoides imicola, the principal vector of bluetongue (BT) and African horse sickness (AHS) in Africa and Europe. Veterinary Research 35, 325-337.

CRL, European Commission Reference Laboratory, 2006, Bluetongue virus in the Netherlands identified as serotype 8 by Institute for Animal Health, Promed, August 28. Accessed at www.promedmail.org, archive no.: 20060828.2448

Daniels, P.W., Sendow, I., Pritchard, L.I., Sukarsih, Eaton, B.T., 2004, Regional overview of bluetongue viruses in South-East Asia: viruses, vectors and surveillance. Veterinaria Italiana 40, 94-100.

Di Ventura, M., Tittarelli, M., Semproni, G., Bonfini, B., Savini, G., Conte, A., Lika, A., 2004, Serological surveillance of bluetongue virus in cattle, sheep and goats in Albania. Veterinaria Italiana 40, 101-104.

Doherr, M.G., Audigé, L., 2001, Monitoring and surveillance for rare health-related events: a review from the veterinary perspective. Philosophical Transactions of the Royal Society B 356, 1097-1106.

Dulac, G.C., Dubuc, C., Myers, D.J., Afshar, A., Taylor, E.A., 1989. Incursion of Bluetongue virus type 11 and Epizootic Haemorrhagic disease of deer type 2 for 2 consecutive years in the Okanagan valley. Canadian Veterinary Journal 30, 351 .

Eilers, P.H.C. and Marx, B.D., 1996. Flexible smoothing with B-splines and penalties (with discussion). Statistical Science, 89, 89-121.

EFSA, 2007.Report on Epidemiological analysis of the 2006 bluetongue virus serotype 8 epidemic in north-western Europe: provisional findings through 31 January 2007.European Food Safety Authority. Accessed at: $\underline{\mathrm{http}: / / w w w . e f s a . e u r o p a . e u / e n / i n ~ f o c u s / b l u e t o n g u e / b l u e t o n g u e ~ r e p o r t ~ s 8 . h t m l ~}$ Elbers, A.R.W., Backx, A., Méroc, E., Gerbier, G., Staubach, C., Hendrickx, G., van der Speck, A., Mintiens, K., 2007, Nature and severity of disease in sheep and cattle herds during the Bluetongue virus serotype 8 epidemic in 2006 in northwestern Europe. Preventive Veterinary Medicine (accepted).

ESRI, 1996, ArcView Spatial Analyst, advanced spatial analysis using raster and vector data. Environmental Systems Research Institute Inc, Redlands, CA, 81111

FAO, Animal Production and Health Division, 2006, Animal Health, disease cards, Bluetongue. Accessed at:
http://www.fao.org/ag/againfo/subjects/fr/health/diseasescards/bluetongue.html

Gerbier, G., Baldet, T., Tran, A., Hendrickx, G., Guis, H., Mintiens K., Ellbers, A., Staubach, C., 2007, Modelling local dispersal of bluetongue serotype 8 using Random walk. Preventive Veterinary Medicine (accepted).

Gerdes, G.H., 2004, A south African overview of the virus, vectors, surveillance and unique features of bluetongue. Veterinary Italiana 40, 39-42.

Gibbs, E.P.J., Greiner, E.C., 1994, The epidemiology of Bluetongue. Comparative Immunlogy, Microbiology and Infectious Diseases 17, 207-220.

Giovannini, A., Calistri, P., Conte, A., Savini, L., Nannini, D., Patta, C., Santucci, U., Caporale, V., 2004, Bluetongue virus surveillance in a newly infected area. Veterinary Italiana 40 (3), 188-197.

Gorman B.M., 1990. The Bluetongue viruses. Current Topics in Microbiology and Immunlogy 162, 1-19.

Green, A.L., Dargatz, D.A., Schmidtmann, E.T., Herrero, M.V., Seitzinger, A.H., Ostlund, E.N., Wagner, B.A., Moser, K.M., Wineland, N.E., Walton, T.E., 2005, Risk factors associated with herd-level exposure of cattle in Nebraska, North Dakota, and South Dakota to bluetongue virus. American Journal of Veterinary Research 66, 853-860.

Hassan, A., 1992. Epidemiology of bluetongue virus infection in Malaysia. In: Walton, T.E., Osburn, B.I. (Eds.), Bluetongue, African horse sickness \& Related Orbiviruses. CRC Press, Boca Raton, pp. 155-161

Herniman, K.A., Gumm, I.D., Owen, L., Taylor, W.P., Sellers, R.F., 1980, Distribution of Bluetongue viruses and antibodies in some countries of the eastern hemisphere. Bulletin Office of International Epizootics 92, 581-586.

Lundervold, M., Milner-Gulland, E.J., O'Callaghan, C.J., Hamblin, C., 2003, First evidence of bluetongue virus in Kazakhstan. Veterinary Microbiology 92, 281-287.

MacLachlan, N.J., 2004, Bluetongue: pathogenesis and duration of viraemia. Veterinary Italiana 40 (4), 462-467.

Mintiens, K., Méroc, E., Mellor, P.S., Staubach, C., Gerbier, G., Elbers, A., Hendrickx, G., De Clercq, K., Deluyker, H., 2007, Possible routes of introduction of bluetongue serotype 8 virus into the epicentre of the 2006 epidemic in north-western Europe. Preventive Veterinary Medicine (accepted).

Mo, C.L., Thompson, L.H., Homan, E.J., Oviedo, M.T., Greiner, E.C., Gonzales, J., Saenz, M.R., 1994, Bluetongue virus isolations from vectors and ruminants in Central America and the Caribbean. American Journal of Veterinary Research 55, 211-215.

Molenberghs, G. and Verbeke, G., 2005. Models for Discrete Longitudinal Data. pringer Series in Statistics. New York: Springer.

Mulhern, F.J., 1985, Economic impact of bluetongue and related orbiviruses: Western Hemisphere. Progress in Clinical and Biological Research. 178, 21-25.

Müller-Westermeier, G., 1995. Numerische Verfahren zur Erstellung klimatologischer Karten. Selbstverlag des Deutschen Wetterdienstes, Offenbach, 55

OIE, 2004, Manuel of Standards for Diagnostic Tests and Vaccines. Office Internationale des Epizooties 2004 Chapitre 2.1.9. Bluetongue.

OIE Animal Health Department, 2006. Bluetongue - Netherlands, Belgium, GermanyOIE. ProMed. August 21, 2006. Accessed at http://www.promedmail.org, archive no.: 20060821.2353 .

Pili, E., Ciucce, S., Culurgioni, J., Figus, V., Pinna, G., Marchi, A., 2006, Distribution and Abundance of Bluetongue Vectors in Sardinia: Comparison of Field Data with Prediction Maps. Journal of Veterinary Medicine B. 53, 312-316.

Purse, B.V., Baylis, M., McCormick, B.J.J., Rogers, D.J., 2006, Hindsight and foresight on the spread of bluetongue virus in Europe. Prepared for the Foresight Project Detection and Identification of Infectious Diseases. Department of Trade and Industry, UK.

Qin, Q., Tai, Z., Wang, L., Luo, Z., Hu, J., Lin, H., 1996. Bluetongue epidemiological survey and virus isolation in Xinjiang, China. In: St. George, T.D., Kegao, P. (Eds.), Bluetongue disease in Southeast Asia and Pacific, 1996, Proceedings of the First South-East Asia and Pacific Regional Bluetongue Symposium., ACIAR Proceedings (Australia) 66, 67-71.

Rogan, W.J., Gladen, B., 1978, Estimating prevalence from the results of a screening test. American Journal of Epidemiology 107, 71-76.

Ruppert, D., Wand, M. P. and Carroll, R.J.,2003. Semiparametric Regression. Cambridge University Press.

Shepard, D., 1968. A two-dimensional interpolation function for irregularity-spaced data. In Proc. $23^{\text {rd }}$ National Conference ACM, 517-524.

Sreenivasulu, D., Subba Rao, M.V., Reddy, Y.N., Gard, G.P., 2004, Overview of bluetongue disease, viruses, vectors, surveillance and unique features: the Indian sub-continent and adjacent regions. Veterinary Italiana 40, 73-77.

Takamatsu, H., Mellor, P.S., Mertens, P.P.C., Kirkham, P.A., Burroughs, J.N., Parkhouse, R.M.E., 2003. A possible overwintering mechanism for bluetongue virus in the absence of the insect vector. Journal of General Virology. 84, 227235.

Thiry, E., Saegerman, C., Guyot, H., Kirten, P., Losson, B., Rollin, F., Bodmer, M., Czaplicki, G., Toussaint, J.F., De Clercq, K., Dochy, J.M., Dufey, J., Gilleman, J.L., Messeman, K., 2006. Bluetongue in Northern Europe. Veterinary Record 159, 327.

Toussaint, J.F., Vandenbussche, F., Mast, J., Demeestere, L., Goris, N., Van Dessel, W., Vanopdenbosch, E., Kerkhofs, P., Zientara, S., Sailleau, C., Czaplicki, G., Depoorter, G., Dochy, J.M., De Clercq, K., 2006. Bluetongue in Northern Europe. Veterinary Record 159, 327.

Toussaint, J.F., Sailleau, C., Bréard, E., Zientara, S., De Clercq, K., 2007a. Bluetongue virus detection by two real-time RT-qPCRs targeting two different genomic segments. Journal Virology Methods 140, 115-123.

Toussaint, J.F., Sailleau, C., Mast, J., Houdart, P., Czaplicki, G., Demeestere, L., VandenBussche, F., van Dessel, W., Goris, N., Bréard, E., Bounaadja, L., Thiry, E., Zientara, S., De Clercq, K., 2007b, Bluetongue in Belgium, 2006. Emerging Infectious Diseases Journal Journal 13, Number 4. Accessed at:http://www.cdc.gov/eid/content/13/14/614.htm.

Uhaa, I.J., Riemann, H.P., Thurmond, M.C., Franti, C.E., 1990, A seroepidemiological study on bluetongue virus in dairy cattle in the central valley of California. Veterinary Research Communications 14, 99-112.

Vandenbussche, F., Vanbinst, T., Verheyden, B., Van Dessel, W., Demeestere, L., De Poorter, G., Houdart, P., Bertels, G., Praet, N., Berkvens, D., Mintiens, K.,

Goris, N., De Clerq, K., 2007, Evaluation of antibody-ELISA and real time RT-PCR for the diagnosis and profiling of bluetongue virus serotype 8 during the epidemic in Belgium in 2006. Veterinary Microbiology (in press).

Ward, M.P., Carpenter, T.E., Osburn, B.I., 1994, Host factors affecting seroprevalence of bluetongue virus infections of cattle. American Journal of Veterinary Research 55, 916-920.

Table 1. Bluetongue herd prevalence (\%) and associated $95 \% \mathrm{CI}$ in Belgian cattle and sheep population based on the 2006 case herd data

Province	Herd-prevalence (\%) (95\%CI)	
cattle	sheep	
Antwerp	$0.7(0.5-1.0)$	$1.5(1.1-2.0)$
East Flanders	$1.5(1.3-1.8)$	$2.2(1.9-2.5)$
Flemish Brabant	$0.8(0.5-1.2)$	$1.2(0.9-1.6)$
Hainaut	$0.1(0.0-0.3)$	$0.1(0.0-0.3)$
Liege	$1.6(1.3-2.1)$	$1.5(1.1-2.2)$
Limburg	$1(0.7-1.4)$	$3.2(2.5-4.0)$
Luxembourg	$0.2(0.1-0.4)$	$0.1(0.0-0.5)$
Namur	$0.3(0.2-0.7)$	$0.5(0.3-0.9)$
Walloon Brabant	$1(0.5-2.1)$	$0.3(0.1-1.2)$
West Flanders	$0.1(0.1-0.2)$	$0.4(0.3-0.7)$

Appendix: figures

Figure 1. Bluetongue herd seroprevalence (\%) and associated CI95\% at the provincial level in Belgian dairy cattle based on the winter screening data, January 2007

Figure 2. Distribution of within-herd seroprevalence (\%) in Belgian dairy cattle based on the winter screening data, January 2007

Figure 3. Density plot of the farm-specific within-herd seroprevalence estimates based on the winter screening data

Figure 4. Cattle herd density at the municipality level in Belgium, 2006.
Figure 5. Maps of the spatially interpolated temperature in Belgium on the (a.)
30 June (b.) 30 July (c.) 30 August (d.) 30 September (e.) 30 October and (f.) 30
November 2006

Figure 6. Bluetongue herd prevalence at the municipality level in Belgian dairy cattle based on (a.) the 2006 case herd data and on (b.) the winter screening data.

a

c

e

b

d

f

