

A compendium of antibiotic-induced transcription profiles reveals broad regulation of virulence genes

E. Melnikow, C. Schoenfeld, V. Spehr, R. Warrass, N. Gunkel, M. Duszenko,

P.M. Selzer, H.J. Ullrich

▶ To cite this version:

E. Melnikow, C. Schoenfeld, V. Spehr, R. Warrass, N. Gunkel, et al.. A compendium of antibiotic-induced transcription profiles reveals broad regulation of virulence genes. Veterinary Microbiology, 2008, 131 (3-4), pp.277. 10.1016/j.vetmic.2008.03.007 . hal-00532407

HAL Id: hal-00532407 https://hal.science/hal-00532407

Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: A compendium of antibiotic-induced transcription profiles reveals broad regulation of *Pasteurella multocida* virulence genes

Authors: E. Melnikow, C. Schoenfeld, V. Spehr, R. Warrass, N. Gunkel, M. Duszenko, P.M. Selzer, H.J. Ullrich

PII:	S0378-1135(08)00110-7
DOI:	doi:10.1016/j.vetmic.2008.03.007
Reference:	VETMIC 3992
To appear in:	VETMIC
Received date:	10-1-2008
Revised date:	17-3-2008
Accepted date:	25-3-2008

Please cite this article as: Melnikow, E., Schoenfeld, C., Spehr, V., Warrass, R., Gunkel, N., Duszenko, M., Selzer, P.M., Ullrich, H.J., A compendium of antibiotic-induced transcription profiles reveals broad regulation of *Pasteurella multocida* virulence genes, *Veterinary Microbiology* (2007), doi:10.1016/j.vetmic.2008.03.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

A compendium of antibiotic-induced transcription profiles reveals

2 broad regulation of *Pasteurella multocida* virulence genes

- 3 E. Melnikow^a, C. Schoenfeld^b, V. Spehr^a, R. Warrass^a, N. Gunkel^a, M. Duszenko^b, P. M. Selzer^a, H. J.
- 4 Ullrich^a*
- ⁵ ^a Intervet Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
- 6 ^b Interfakultäres Institut für Biochemie Universität Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen,
- 7 Germany
- 8 *Corresponding author: phone: ++49-(0)6130-948267, fax: ++49-(0)6130-948517
- 9 joachim.ullrich@intervet.com

10 Abstract

11 The transcriptional responses of Pasteurella multocida to eight antibiotics with known mode of actions 12 (MoAs) and one novel antibiotic compound with an unknown MoA were collected to create a 13 compendium of transcriptional profiles for MoA studies. At minimal inhibitory concentration the three 14 bactericidal compounds enrofloxacin, cefquinome and the novel compound had a minor impact on 15 gene regulation with approximately 1 % of the P. multocida genome affected, whilst the bacteriostatic 16 compounds florfenicol, tilmicosin, rifampin, trimethoprim and brodimoprim regulated 20 % of the 17 genome. Novobiocin was special in that it regulated 40 % of all P. multocida genes. Regulation of 18 target genes was observed for novobiocin, rifampin, florfenicol and tilmicosin and signature genes 19 were identified for most antibiotics. The transcriptional profile induced by the novel compound was 20 unrelated to the compendium profiles suggesting a new MoA. The transcription of many P. multocida 21 virulence factors, particularly genes involved in capsule synthesis and export, LPS synthesis, 22 competence, adherence and iron transport were altered in the presence of antibiotics. Virulence gene 23 transcription was mainly negatively affected, however the opposite effect was also observed in the 24 case of rifampin where the up-regulation of the tad locus involved in tight adherence was seen. 25 Novobiocin and trimethoprim caused a marked reduction in the transcription of capsule genes, which 26 correlated with a concomitant reduction of the capsular layer on the surface of P. multocida. The broad 27 negative impact on virulence gene transcription supports the notion that the therapeutic effect of some 28 antibiotics could be a combination of growth and virulence inhibition. 29

- 30 Keywords: Pasteurella multocida; Antibiotic; Microarray; Virulence
- 31

32 **1. Introduction**

Bacteria respond to antibiotic stress with a transcriptional reflex to counteract the assault on essential processes such as cell wall synthesis, translation, transcription and replication. A very intuitive response to an antibiotic attack is the up-regulation of target gene transcription to compensate the inhibited target molecules. As the inhibition of target proteins causes alterations in the metabolic network of the cell, antibiotic-induced gene regulation is not limited to target genes, but triggers a complex secondary transcriptional response in an attempt to balance stressed physiology. The extent of regulation in response to an antibiotic attack is time- and dose-dependent (Lin et al., 2005; Shaw et

40 al., 2003) and leads to an avalanche of regulatory responses often affecting the transcription of 41 hundreds of genes. Global analysis of transcriptional data showed that antibiotics can leave 42 transcriptional traces that reveal the inhibited target and often the transcriptional profile can be used 43 as a characteristic transcriptional fingerprint for a particular antibiotic, substance class or inhibited 44 target. Examples are ribosomal inhibitors like macrolides, which induce the transcription of ribosomal 45 genes (Ng et al., 2003), or the fluoroquinolones, which induce the transcription of SOS response 46 genes (Gmuender et al., 2001; Kaldalu et al., 2004). When the transcriptional profiles of antibiotics 47 with known MoAs are compiled into a database, a compendium of transcriptional profiles is created, 48 which allows the comparison with transcriptional responses of novel compounds with unknown MoAs. 49 A match in profiles suggests that the novel compound inhibits a target also exploited by a 50 compendium antibiotic, while a distinct profile would therefore point to a new MoA. Compendiums of 51 transcriptional profiles from gram positive and gram negative bacteria have increasingly been used to 52 obtain first indications of the MoAs of novel compounds (Boshoff et al., 2004; Hutter et al., 2004; 53 Freiberg et al., 2005). However, these studies differed with respect to the organisms, the antibiotics, 54 the dose and the duration of treatment, making it difficult to identify common regulatory mechanisms 55 across species. It does appears though, that besides the inhibition of the ribosome and the DNA 56 gyrase, little consistency exists in the transcriptional responses of different bacteria to the same 57 antibiotic class, indicating that to some extent the response to an antibiotic attack is species-specific. 58 Therefore, when querying a compendium the profiles of the compendium antibiotics and the novel 59 compound should have been generated using the same organism. 60 Bovine shipping fever is a severe inflammation of the bovine lung caused primarily by the gram 61 negative bacteria Mannheimia haemolytica and Pasteurella multocida (Mosier, 1997). Despite the 62 success of antibiotic treatment, the disease is far from controlled in feedlots (Duff & Galyean, 2007), 63 warranting the development of more efficient drugs. In order to aid the development of novel 64 compounds to treat shipping fever, we created a compendium of transcriptional profiles in P. multocida 65 to commonly used antibiotics in bovine pneumonia and gueried it with the transcriptional profile of a 66 novel compound with unknown MoA and excellent activity on P. multocida. 67

68 2. Materials and methods

69 Bacterial strains, antibiotics and growth conditions

70 Pasteurella multocida L386 is a serovar A14 bovine isolate provided by Prof. Wieler of the Free 71 University of Berlin. P. multocida L386 was cultured on brain heart infusion (BHI, AES Laboratoire, 72 France) agar plates for 18 h at 37 °C. BHI broth cultures were incubated at 37 °C with rotary aeration 73 at 220 rpm. Bacterial densities were determined by measuring the optical density (OD) at 578 nm. For 74 the microarray experiments growth was done as follows: for each antibiotic a mid-log grown culture 75 was split into 3 x 250 ml Erlenmeyer flasks to an OD₅₇₈ of 0.01 with a final volume of 40 ml BHI. One 76 flask served as non-treated control, the other two for the 10 and 30 min antibiotic-treated time points. 77 The antibiotics were added at minimal inhibitory concentration (1xMIC, Table 1) 10 and 30 min before 78 the untreated culture reached an OD₅₇₈ of ~ 0.5. Cells were harvested for five min at 5.000 g at 4°C 79 and were shock frozen and stored at -80 °C prior to RNA isolation. For each antibiotic and time point 80 at least three replicate cultures were prepared. Novobiocin sodium salt, enrofloxacin, florfenicol, 81 trimethoprim, rifampin and tilmicosin were purchased from Sigma-Aldrich (USA). The cefquinome 82 sulphate and the novel compound from the thiazin class were from Intervet Innovation, Germany. 83 Solutions for these antibiotics were prepared in H₂O. The trimethoprim, brodimoprim (Intervet 84 Innovation, Germany) and rifampin solutions were prepared in DMSO. The tilmicosin solutions were 85 prepared in phosphate buffer pH 7.2. Solutions were filter sterilized and used the same day. The MICs 86 of P. multocida L386 for the different antibiotics (Table 1) were determined using the standard micro-87 broth dilution assay (National Committee for Clinical Laboratory Standards, 2003). See Table 1

88 Microarray experiments & data analysis

89 We used a custom-made Affymetrix antisense microarray containing 97% of the P. multocida Pm70 90 genome and 90 % of the M. haemolytica serovar A1 genome. The oligonucleotides on the microarray 91 were designed such that cross-hybridization was minimal. A total of 33 M. haemolytica gene-specific 92 oligonucleotides (1.2 % of the M. haemolytica genome) showed hybridization to cDNA from P. 93 multocida. The corresponding P. multocida orthologs were excluded from data analysis. Further 94 details concerning the microarray are described by Roehrig et al., 2007. RNA was isolated according 95 to standard protocols using QIAGEN RNeasy Midi columns (QIAGEN, Germany). The cDNA synthesis 96 started from 10 µg of RNA using the Superscript II reverse transcriptase (Invitrogen, USA) according 97 to the manufacturer's protocol. 3 µg of cDNA were fragmented into ~ 200 bp using 1.8 U of DNAse I in 98 a 10 min reaction at 37 °C. Terminal biotin-dUTP labelling was done using the Enzo labelling kit 99 (Enzo, USA). All procedures for hybridization, washing and staining are described at

CCEPTED MANUSCH

100 http://www.affymetrix.com/support/technical/manual/expressionmanual.affx for prokaryotic 101 microarrays. The hybridization signals were normalized using the Affymetrix Microarray Suite 5.0 102 software. A description of the experimental design and all data have been deposited in NCBIs Gene 103 Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO Series 104 accession number GSE10051. Replica quality was assessed by pair-wise comparisons of signal 105 intensities. We adhered to Affymetrix criteria which states that replicates are of good quality when less 106 than 3 % of all transcribed genes differ \geq 2-fold in signal intensity between two replicates. For each 107 treatment and time point at least three replicates fulfilling this requirement were generated to calculate 108 mean values. Statistical analysis and log₂ transformation were done using the Vector Xpression 109 software (Invitrogen, USA). Only genes with a significant difference in transcription between control 110 and antibiotic-treated samples (p=0.1, Mann-Whitney test) and $a \ge 1.5$ fold difference to control were 111

112 Real time PCR

considered regulated.

113 Real-time PCR using an ABI 7000 Sequence Detection System (Applied Biosystems, USA) was 114 performed to confirm the microarray-derived differences in gene transcription for some positive, 115 negative and non-regulated P. multocida genes. Primers (supplementary material, Table S1) were 116 designed using Primer Express 2.0 (Applied Biosystems, USA). The number of target molecules was 117 calculated using a standard curve obtained by real time PCR with titrations of gene-specific standard templates $(10^2 - 10^8)$ template molecules). We used the transcript levels of recA to account for 118 119 pipetting errors. RecA transcription did not alter between antibiotic-treated and control samples, with 120 the exception of enrofloxacin, and has previously been used to calculate transcriptional regulation 121 (Roehrig et al., 2007). TopA was used as a reference gene for the calculation of enrofloxacin-induced 122 transcription because recA was regulated by enrofloxacin. Quantification was done as follows: copy 123 number of the target gene in the antibiotic-treated sample / copy number of the target gene in the 124 control sample divided by the copy number of the reference gene recA in the antibiotic-treated sample 125 / the copy number of the reference gene recA in the control sample. Three individual reactions for 126 target genes and the reference genes were used to calculate mean values.

127

128 Electronmicroscopy

129	The effect of antibiotics on capsule expression was evaluated by electron microscopy. Bacterial
130	cultures were incubated for 3 h starting with an OD_{578} of 0.15 in the presence of 0.5xMIC of
131	novobiocin, enrofloxacin, trimethoprim and florfenicol and without antibiotic for control purposes.
132	Bacteria were prepared for transmission electron microscopy following polycationic ferritin labelling as
133	described by McKerral & Lo (2002). Thin sections were stained with uranyl acetate and the capsular
134	thickness was determined using a Zeiss EM 109 electron microscope. The capsule thickness was
135	determined for ≥ 80 cells for control and antibiotic-treated cells. A Students two-sided t-test for two
136	independent samples was used to test the difference in capsule expression between untreated and
137	treated cells (p < 0.05).

138

139 **3. Results**

140 Generation of a compendium of transcription profiles

141 In order to create a database of P. multocida transcriptional profiles to antibiotic treatment, we 142 selected six commonly and two less commonly used antibiotics to treat bovine pasteurellosis (Table 143 1). The eight antibiotics inhibit processes representing the five most important MoAs: cell wall and 144 folate biosynthesis, DNA replication (DNA gyrase), translation (ribosome) and transcription (RNA 145 polymerase). The transcriptional profile of a new compound from Intervet's antiinfectives program with 146 excellent activity against P. multocida was also recorded. This compound is a heterocycle and a 147 derivative of the thiazin chemical class and will be referred to as thiazin. The cellular target of the 148 thiazin is unknown. We included the novel compound in this study to obtain first indications about its 149 putative MoA by comparing its transcriptional profile with the profiles from eight antibiotics with known 150 MoAs. So far, no bovine P. multocida isolate has been sequenced, precluding the construction of a 151 microarray covering the genome of a strain causing shipping fever. Therefore, we generated a 152 custom-made microarray representing 97% of all genes from an avian P. multocida serovar A strain 153 (May et al., 2001). The microarray was hybridized with the cDNA of a pathogenic bovine serovar A 154 strain. This meant that genes present in the bovine isolate, but absent in the avian isolate that was 155 used to construct the microarray, were missed. Despite the differences between the P. multocida 156 strains it is unlikely that strain-to-strain variations compromised the data. When the microarray was 157 hybridized with labelled genomic DNA from the bovine isolate, 94% of all printed genes from the avian 158 stain were detected; indicating that strain-to-strain variation probably is limited to about 6%. For the 159 antibiotic assault, the bovine P. multocida serovar A strain was treated for 10 and 30 min with 1xMIC

160 (Table 1) of each antibiotic. The eight antibiotics and the novel compounds caused > 1,5 fold

161 regulation of 1468 genes (Table S2 in the supplementary material for log₂(antibiotic-treated/control)

162 ratios for all genes showing regulation \geq 1.5 fold). For a subset of genes the microarray data were

verified by real time PCR. Fig.1 shows that the microarray-derived relative transcription levels

164 correlated well with the relative transcription levels obtained by real time PCR.

165 Global transcription analysis

166 A first impression of the similarities and differences of the transcriptional profiles was obtained by 167 clustering the expression profiles into a hierarchical tree (Fig. 2). The transcriptional profiles of the two 168 time points for each antibiotic were most similar and hence located closely together on the hierarchical 169 tree. The two dihydrofolate reductase (DHFR) inhibitors trimethoprim and brodimoprim and the two 170 ribosomal inhibitors tilmicosin and florfenicol each formed single expression clusters, supporting the 171 notion that antibiotics with related MoAs produce similar expression profiles (Hutter et al., 2004). An 172 exception to this rule was observed for the two DNA gyrase inhibitors enrofloxacin and novobiocin, 173 which produced very different expression profiles and thus located apart on the hierarchical tree (Fig. 174 2). The enrofloxacin-induced transcription profile was most similar to the transcription profiles 175 produced for cefquinome and the thiazin despite the differences in chemical structures. The antibiotics 176 differed substantially in their impact on the number of regulated genes. The difference was most 177 evident at the early (10 min) time point when secondary transcriptional responses were less apparent 178 (Table 2). Novobiocin caused a massive alteration in gene transcription with nearly 40% of all P. 179 multocida genes affected. Florfenicol, tilmicosin, rifampin, trimethoprim and brodimoprin changed the 180 transcription of 10 to 20% and enrofloxacin, cefquinome and the thiazin altered the expression in the 181 order of 1 % of all genes. To unveil further global differences between the antibiotics, the early 182 regulated genes were assigned to 14 functional groups (Fig. 3). We limited the analysis to the early 183 time point in order to reduce the influence of secondary responses. The transcription of genes 184 involved in protein fate, transport and binding as well as energy metabolism were affected most 185 markedly by all antibiotics. The functional classification revealed similarities but also striking 186 differences between the antibiotics, even between antibiotics inhibiting the same target; for instance 187 novobiocin and enrofloxacin which both inhibit the DNA gyrase. While novobiocin stimulated the 188 regulation of > 25% of the genes in all functional groups, with an even stronger impact (> 50%) in the 189 functional groups transcription, protein fate and cofactor biosynthesis, enrofloxacin only regulated 190 genes in less than half of the 14 categories and only to 1-4 % (Fig. 3). Likewise, trimethoprim caused

191 two to four fold more regulation than brodimoprim in the functional groups amino acid, cofactor and 192 protein synthesis (Fig. 3). The two ribosomal inhibitors florfenicol and tilmicosin had a similar impact 193 on gene regulation in all but fatty acid and phospholipid metabolism, where florfenicol regulated 6 % 194 whilst tilmicosin regulated 26% of all genes. Rifampin caused regulation in all functional groups to an 195 extent that was surprisingly similar to florfenicol up to the point that both antibiotics regulated the same 196 percentage of genes in the categories cell wall synthesis and fatty acid and phospholipid metabolism 197 (Fig. 3), albeit not the same genes (Table S1 supplementary material). 198 Regulation of target and signature genes 199

The global analysis unveiled substantial differences in gene regulation between antibiotics with similar 200 structure or related MoA. This observation was supported when the regulation of target genes was 201 analysed. Novobiocin induced two to three fold the transcription of genes coding for the DNA gyrase 202 subunits, gyrAB and down-regulated the transcription of the topoisomerase I (topA) and parEC genes 203 coding for the subunits of the topoisomerase IV (Table 3 and Table S2 supplementary material). 204 Transcription of the gene PM0842 downstream of gyrA (PM0841) was also induced by novobiocin 205 (Table S2 supplementary material). PM0842 codes for a regulator with similarity (41% similarity and 206 27 % identity on protein level) to sirB involved in the regulation of Salmonella enterica serovar 207 Typhimurium virulence genes. Novobiocin inhibits the ATPase function of the GyrB subunit of the DNA 208 gyrase by competing with ATP for the ATP binding pocket (Lewis et al., 1996). The down-regulation of 209 35 and the up-regulation of 22 ATPases-encoding genes is in line with the inhibition of ATP binding by 210 novobiocin (Table S2 supplementary material). Many of the regulated genes coded for ABC-type 211 transporters involved in the uptake of nutrients, vitamins and ions. A comparable broad regulation of 212 ATPases was not observed for the other antibiotics and therefore was considered a signature 213 response for novobiocin (Table 3). A significant portion of novobiocin-regulated genes were not 214 regulated by any of the other antibiotics. For instance novobiocin repressed a region on the P. 215 multocida chromosome comprising of seven genes (PM0469-PM0476). Not all of these genes were 216 exclusively regulated by novobiocin, but the early onset after 10 min and the negative direction of 217 regulation was specific for novobiocin (Table 3, Table S2 supplementary material). The region 218 comprises of a putative ABC-type periplasmic transport complex encoded by three genes (PM0470, 219 PM0471, PM0472) and a large ORF (876 amino acids) coding for a potential TRAP-type transporter 220 (PM0473). Enrofloxacin had no influence on gyrAB and parEC target gene transcription (Table 3, 221 Table S2 supplementary material) or on topA transcription. Enrofloxacin blocks the GyrA subunit

222 leading to the stabilization of single stranded DNA ends during DNA unwinding (Walsh, 2002). 223 Indicative of this effect was the induction of nine genes coding for proteins involved in the repair of 224 DNA, like the *lexA* and *impA* repressors, the *recX* regulator and *recA* (Table S2 supplementary 225 material). RecA and impA transcription was not changed in the presence of the other antibiotics, only 226 florfenicol increased *recA* transcription to slightly above the cut-off value at the 30 min time point. 227 Therefore, recA and impA up-regulation was considered indicative of enrofloxacin treatment (Table 3). 228 The ribosomal inhibitors florfenicol and tilmicosin had a very similar impact on transcription. 229 Approximately 55% of all florfenicol- and tilmicosin-regulated genes were regulated by both antibiotics. 230 With respect to the ribosomal target, florfenicol up-regulated 14 ribosomal genes and tilmicosin up-231 regulated 14 and down-regulated one ribosomal genes. Of all other antibiotics, only rifampin had a 232 comparable influence on ribosomal gene transcription, albeit of the 15 rifampin-regulated ribosomal 233 genes the majority (9) were down-regulated. Despite the similarities, some genes were exclusively 234 regulated by either florfenicol or tilmicosin and were not regulated by any of the other antibiotics. For 235 instance florfenicol caused a strong (9 -16 fold) up-regulation of a hypothetical gene of unknown 236 function (PM1129) and tilmicosin caused a strong up-regulation of PM0836, another hypothetical gene 237 of unknown function (Table 3).

238 The two DHFR inhibitors trimethoprim and brodimoprim are identical except that the 4-methoxy group 239 of the benzyl ring of trimethoprim is substituted by bromine in brodimoprim. Despite the structural 240 relatedness only 40 % of all 506 trimethoprim- and brodimoprim-regulated genes were regulated by 241 both antibiotics. The transcription of the dihydrofolate reductase-encoding (folA) target gene was not 242 influenced by both DFHR inhibitors (Table 3), nor did any of the other antibiotics influence folA 243 transcription. Trimethoprim weakly induced folP coding for the dihydropteroate synthase target of the 244 sulfonamides (Table S2 supplementary material), but otherwise trimethoprim and brodimoprin exerted 245 no transcriptional impact on the folic acid biosynthesis pathway. Regulation of signature genes was 246 also observed for both DHFR inhibitors (Table 3). Trimethoprim up-regulated the transcription of 247 PM1190, coding for a putative zinc-dependent protease, brodimoprim specifically up-regulated a 248 hypothetical gene of unknown function (PM1127). 249 The RNA polymerase inhibitor rifampin inhibits the activity of the RNA polymerase by binding to the 250 β subunit of the pentameric $\alpha_2\beta\beta'\omega$ RNA polymerase core complex (Walsh, 2002). Rifampin

- 251 moderately up-regulated the expression of the β and β ' subunits encoded by the *rpoB* and *rpoC* genes,
- respectively (Table 3), but had no influence on the expression of the α and ω subunits encoded by the

253 rpoA and rpoZ genes, respectively. Consistent with its influence on transcription, rifampin altered the 254 transcription of genes influencing sigma factor expression. The σ^{70} sigma factor encoded by *rpoD* 255 gene was induced approximately two fold concomitant to an increase in transcription of two genes 256 involved in the regulation of σ^{70} , the anti-sigma factor B antagonist (PM0178) and the putative sigma 257 factor regulatory gene (PM0092, Table S2 supplementary material). Transcription of rpoE coding for 258 the σ^{E} factor was down-regulated approximately two fold at 30 min, which coincided with the 259 simultaneous down-regulation of the σ^{E} regulatory protein encoded by resB (Table S2 supplementary 260 material). Most of the rifampin-specific genes were up-regulated and coded for hypothetical proteins of 261 unknown function, e.g. the putative operon PM1679-1682 (Table 3). 262 Of all antibiotics, cefquinome had the smallest influence on gene transcription with only seven 263 regulated genes at the 10 min time point and another 70 genes at the 30 min time point (Table S2 264 supplementary material). None of the six putative penicillin-binding target protein-encoding genes 265 were regulated and no cefquinome-specific signature gene meeting the minimum signature gene 266 requirements of \geq two fold regulation at both time points was identified (Table 3). The low impact on 267 global gene regulation was accompanied by a small impact on the magnitude of regulation. The most 268 strongly cefquinome-regulated gene was mglB coding for a periplasmic sugar transporter with a two 269 fold increase and PM1895, coding for a hypothetical protein, with an approximately three fold 270 decrease in expression (Table S2 supplementary material). The weak impact of cefquinome on P. 271 multocida gene regulation was further illustrated by the short duration of regulation. Only one gene, 272 hbpA coding for the heme binding protein A, was negatively regulated at both time points, all other 273 regulated genes were only affected either at 10 min or at 30 min. 274 Similar to the other bactericidal compounds enrofloxacin and cefquinome, the thiazin with an unknown 275 MoA exerted only a minor impact on gene regulation. Just 27 genes were regulated at 10 min of which 276 all were repressed except artM which is involved in arginine transport (Table S2 supplementary 277 material). Unlike for all other antibiotics, the thiazin did not induce a broad secondary response, just 278 four genes were regulated at 30 min. The four late genes differed from the early regulated genes, 279 indicating that the thiazin effect on transcription diminished quickly. With the exception of artM, all 280 other thiazin-regulated genes were also regulated by one or several of the other antibiotics and 281 belonged predominantly to the highly regulated functional groups energy metabolism and transport 282 and binding. Conclusively, the transcriptional response to thiazin treatment did not provide indications 283 of the inhibited target(s).

284 *Regulation of drug transporters*

285 Many bacteria respond to antibiotic treatment with the induction of resistance-conferring genes. P. 286 multocida Pm70 contains a number of resistance-conferring genes on the chromosome which are 287 present on the microarray (plasmid-located resistance genes are absent on the microarray). The 288 ability of P. multocida to respond to antibiotic treatment through the regulation of drug transporters 289 was seen in the cases of novobiocin, florfenicol and tilmicosin where the acrAB genes involved in the 290 extrusion of antibiotics were induced (Ma et al., 1993) (Table S2 supplementary material). A putative 291 tetR-like regulator (PM1135) of acrAB transcription was also induced by novobiocin. The AcrAB 292 proteins form a pore together with To/C, which was not regulated. A hypothetical gene (PM1581) with 293 weak homology to marC of E. coli (25% protein identity) was induced by the two ribosomal and the 294 two DHFR inhibitors (Table S2 supplementary material). MarC codes for an integral membrane protein 295 of the multidrug-resistance (MDR) family of transporters (Alekshun & Levy, 1999). Other genes 296 belonging to a cluster of orthologous groups (COG0697) involved in drug transport were up-regulated 297 by florfenicol, tilmicosin, trimethoprim and brodimoprim (Table S2 supplementary material). 298 Interestingly, the bactericidal antibiotics enrofloxacin, cefquinome and the thiazin did not alter any of 299 the P. multocida chromosomally located resistance-associated genes presented on the microarray. 300 Regulation of virulence genes 301 The transcription of many of the known and putative P. multocida virulence factors was influenced in 302 the presence of the antibiotics. The bacteriostatic antibiotics with a strong impact on global gene 303 regulation (Table 2) affected virulence gene transcription much more than the bactericidal antibiotics 304 cefquinome, enrofloxacin and the thiazin, which hardly influenced virulence gene regulation. Table 4 305 summarizes the impact on virulence gene transcription by the six bacteriostatic antibiotics. The 306 virulence factors were selected from the P. multocida genome annotation by May et al. (2001) and 307 Ewers et al. (2004). Virulence gene transcription was predominately negatively affected, e.g. tilmicosin 308 down-regulated 32 and up-regulated seven virulence genes. Only rifampin up-regulated more 309 virulence genes (24) than down-regulated (10). The synthesis and transport of capsular 310 polysaccharides and LPS, the transport of iron, adherence and competence were the most strongly 311 affected virulence factors. With respect to iron transport, the genes coding for the critical tonB exbBD 312 system providing the energy for many iron transport systems (Braun, 1995) was intermediately (2-7 313 fold) repressed by all bacterostatic antibiotics (Table 4). Furthermore, the ferric-binding protein fbpA, 314 the hugZ gene involved in heme detoxification and the afuABC genes involved in ferric transport were

315 repressed by novobiocin, florfenicol and tilmicosin. Transcription of the iron regulator fur was weakly 316 induced by novobiocin. P. multocida expresses two forms of a filamentous hemagglutinin, PfhB1 and 317 PfhB2 involved in adherence. The transcription of both pfhB genes was moderately down-regulated by 318 novobiocin, florfenicol and tilmicosin. Secretion of the haemagglutinins is mediated by the *IspB1* and 319 IpsB2 gene products. LspB1 transcription was down-regulated by novobiocin and tilmicosin. The 320 tadABCDEF locus involved in tight adherence (Tomich et al., 2007) was up-regulated by rifampicin. 321 The broad induction of the tad locus was specific for rifampin, all other antibiotics had no or only a 322 minor impact on *tad* regulation. Transcription of the competence locus involved in DNA uptake was 323 negatively affected by several antibiotics. The P. multocida competence genes are organized in a 324 comABCD operon and two genes (comM, comF) located elsewhere on the chromosome. 325 Trimethoprim down-regulated the expression of the *comABCD* operon at both time points, tilmicosin 326 only at 30 min. Novobiocin strongly repressed *comM* and to a lesser extend *comF* transcription. The 327 P. multocida LPS is a major virulence factor in sepsis (Harper et al, 2007a; 2007b). The transcription 328 of 16 genes involved in the synthesis and modification of LPS was positively and negatively altered. 329 For instance, novobiocin down-regulated the galE gene coding for the galactose epimerase involved in 330 the synthesis of the LPS chore and O-chain. Conversely, glpQ was up-regulated by novobiocin. GlpQ 331 is responsible for the transfer of choline to the LPS, which is important for P. multocida virulence 332 (Harper et al., 2007a). P. multocida contains 18 genes involved in the metabolism and transfer of sialic 333 acids. Sialic acid uptake and metabolism could play a role in P. multocida virulence by providing 334 carbohydrate nutrient and for decorating LPS with the help of sialyltransferases for immune evasion 335 (Steenbergen et al., 2005). The two divergently transcribed sialic acid operons harbouring the genes 336 necessary for transport (nanP, nanU) and metabolism (nanA, nanK, nanE) of host-derived sialic acid 337 were down-regulated by novobiocin. Amongst the down-regulated genes was also PM1714 coding for 338 a putative regulator of the two operons. Florfenicol and tilmicosin repressed the transcription, whilst 339 rifampin induced the transcription of some genes of the sialic acid locus. Other up-regulated virulence 340 genes were involved in the response to stress conditions, e.g. the catalase-encoding gene hktE and 341 the sodC gene coding for the superoxid dismutase, both were positively regulated by florfenicol, 342 tilmicosin and novobiocin. 343 The capsule of *P. multocida* is an important virulence factor for successful host colonization (Chung et 344 al., 2001). The transcription of nine capsule biosynthesis and transport genes was strongly down-

345 regulated by novobiocin, florfenicol, tilmicosin, trimethoprim and brodimoprim (Table 4). Of all these

¹² Page 12 of 30

346 antibiotics novobiocin affected capsule gene transcription most strongly with a 4-16 fold repression of 347 all capsule genes at both time points, whilst the DHFR inhibitors affected capsule gene transcription 348 predominately at the 30 min time point (Table 4). We were intrigued to verify whether the repression of 349 the capsule genes correlated with a decrease in capsule expression on the surface of P. multocida. P. 350 multocida was grown in absence and presence of antibiotics and capsule expression was quantified 351 by measuring the thickness of the capsular layer by electron microscopy. We assumed that a 352 phenotypic effect would be best visible after several cell divisions; therefore the antibiotic 353 concentration was reduced to 0.5xMIC to permit growth. To account for growth effects on capsule 354 expression, P. multocida was treated with enrofloxacin, which did not alter the transcription of capsule 355 genes (Table S2 supplementary material) and hence was expected not to affect the level of 356 capsulation. Fig. 4 shows the quantification of capsulation from electron microscopic pictures 357 exemplified in Fig. 5. In the absence of antibiotics approximately 65% of P. multocida cells displayed a 358 capsular layer greater 30 nm thickness, about 30 % showed an intermediate level of capsulation (< 30 359 nm) and the rest expressed no or hardly capsulation. Novobiocin caused a significant (p < 0.05) 360 disappearance of thick capsules > 30 nm and a concomitant increase in the fraction of cells with an 361 intermediate level of capsulation (Fig. 4). Trimethoprim also caused a significant decrease in the 362 fraction of cells with high and intermediate levels of capsulation and a concomitant increase of cells 363 with no capsules (Fig. 4). Florfenicol did not significantly (p < 0.05) alter capsule expression as 364 compared to untreated cells, albeit a trend to reduced capsulation was visible. The florfenicol-induced 365 distribution of capsulation resembled that after enrofloxacin treatment, which also did not affect the 366 level of capsulation as compared to untreated cells. Conclusively, a general correlation between 367 antibiotics reducing capsule gene transcription and a phenotypic response on the level of capsulation 368 was not observed.

369

370 **4. Discussion**

Only few of the eight compendium antibiotics with known MoA induced transcription profiles in *P. multocida* indicative of the cellular target. This was the case for the ribosomal inhibitors tilmicosin and florfenicol which caused a strong up-regulation of ribosomal genes, clearly reflecting a compensatory mechanism to ribosomal inhibition. Ribosomal gene regulation is consistent with earlier reports for the ribosomal inhibitors chloramphenicol and erythromycin in Bacillus *subtilis* and *Streptococcus pneumoniae*, respectively (Lin et al., 2005; Ng et al., 2003). The ribosomal target regulation was made

377 apparent by the high number of regulated ribosomal genes, which allowed easy detection amongst the 378 other regulated non-target proteins. Regulation of targets encoded by one or only few genes was less 379 obvious, as was the case for rifampin and novobiocin. Rifampin caused regulation of the rpoBC RNA 380 polymerase subunit-encoding genes and left a specific impact on accessory genes, like the σ^{70} and 381 σ^{E} -encoding *rpoD* and *rpoE* genes and their putative regulators *resB*, PM0092 and PM0178. Induction 382 of rpoB by rifampin has also been observed in E. coli (Shaw et al., 2003). However, the regulation of 383 transcription factors was not specific to rifampin, e.g. novobiocin also caused the up-regulation of the 384 rpoBC RNA polymerase genes and sigma factors. Novobiocin provided indirect evidence to its GyrB 385 target by the regulation of many genes coding for ATPases, mostly ABC-type transporters, some with 386 critical functions in the uptake of vitamins and nutrients. The regulation of the many ATPases by 387 novobiocin is probably associated with its ability to occlude the conserved ATP binding site of the 388 GyrB subunit (Lewis et al., 1996) and therefore may not be an exclusive reaction to novobiocin. The 389 regulation of gyrAB transcription by novobiocin and the lack of regulation by enrofloxacin were similar 390 to what has been observed in *H. influenzae*, with the exception that the gyrA subunit was only induced 391 at high concentrations in *H. influenzae* (Gmuender et al., 2001). The up-regulation of gyrAB by 392 novobiocin was concomitant to a strong down-regulation of the topoisomerase I (topA) and an 393 intermediate down-regulation of topoisomerase IV (parEC). TopA relaxes negatively supercoiled DNA, 394 whilst GyrAB induces negative turns. Thus, the down-regulation of topA transcription could be a 395 compensatory response to the inhibition of GyrAB. Enrofloxacin left a transcriptional trace to its MoA 396 by the induction of SOS response genes. The SOS response was most likely triggered by the 397 stabilization of single stranded DNA during GyrAB inhibition, an effect also observed for 398 fluoroquinolones in other bacteria (Gmuender et al., 2001, Shaw et al., 2003, Kaldalu et al., 2004). No 399 direct or indirect indications on the MoA were obtained from the transcriptional profiles of the DHFR 400 inhibitors trimethoprim and brodimoprim and the inhibitor of cell wall transpeptidases cefquinome. The 401 lack of target gene regulation by cefguinome was not due to a general insensitivity of the penicillin-402 binding target proteins to regulation, as novobiocin, florfenicol and trimethoprim altered the 403 transcription of several of these proteins. A lack of transpeptidase regulation by β -lactams has also 404 been observed in E. coli (Shaw et al., 2003, Kaldalu et al., 2004). 405 It was obvious that the bactericidal drugs enrofloxacin, cefquinome and the thiazin regulated few 406 genes, whilst the bacteriostatic drugs florfenicol, tilmicosin, trimethoprim and brodimoprim had an 407 intermediate and novobiocin a strong impact on global gene regulation. Previous studies with

408 bactericidal and bacteriostatic compounds (Shaw et al., 2003, Kaldalu et al., 2004, Freiberg et al., 409 2005) are difficult to compare with our study because of the differences in antibiotic concentrations, 410 time points and cut-offs for defining regulation. The expression profiling study by Gmuender et al. 411 (2001), which is most closely related to our study, did not report an explicit difference in the number of 412 regulated H. influenzae genes after novobiocin (bacteriostatic) and ciprofloxacin (bactericidal) 413 treatment, therefore this phenomenon may be specific to P. multocida. RNA yield and the transcription 414 levels of control genes were unchanged in the presence or absence of bactericidal compounds, ruling 415 out technical reasons. A principal difference between bacteriostatic and bactericidal compounds is the 416 recently discovered death pathway induced by bactericidal but not by bacteriostatic compounds 417 (Kohanski et al, 2007). The death pathway is triggered by the depletion of NADH and the subsequent 418 liberation of ferrous iron which in turn gives rise in toxic hydroxyl radicals via the Fenton reaction. 419 Depletion of NADH levels by bactericidal compounds was related to the increase in NADH 420 dehydrogenase I expression compared to cells treated with the bacteriostatic drug spectinomycin 421 (Kohanski et al, 2007). In P. multocida this enzyme complex (PM1329-1333) was not regulated by the 422 bactericidal drugs enrofloxacin, cefguinome and the thiazin. As an alternative to an explanation 423 involving the death pathway, the difference in gene regulation between bactericidal and bacteriostatic 424 compounds may be target-dependent. It could be that the inhibition of the DNA gyrase and the 425 transpeptidases by the bactericidal compounds enrofloxacin and cefquinome, respectively, is of lower 426 transcriptional consequence because inhibition of these targets doesn't affect the energy metabolism 427 of the cell as much as the inhibition of the bacteriostatic targets, e.g. the inhibition of folate 428 biosynthesis by trimethoprim. 429 The observed antibiotic effects on virulence gene transcription and expression adds to a growing body 430 of evidence indicating that antibiotics block virulence gene expression. Examples are the effect of 431 azithromycin on Pseudomonas aeruginosa quorum sensing and biofilm formation (Nalca et al., 2006) 432 and the down-regulation of invasion and flagellar genes in Salmonella typhimurium by polymyxin 433 (Bader et al., 2003), However, the inverse effect on virulence, the stimulation of biofilm formation and 434 type III secretion expression by antibiotics has also been observed (Linares et al., 2006). In our study 435 the antibiotics repressed virulence gene transcription with the exception of rifampin. Many of the 436 regulated virulence genes, like the competence genes, the capsule genes and the tad genes involved 437 in tight adherence, are located in operons, explaining their coordinated regulation. The transcription of 438 some major virulence factors was negatively affected; for example: iron transport, adhesion,

439 competence, LPS biosynthesis and capsule biosynthesis and export. However, a cautionary note must 440 be raised concerning a generalized conclusion based only on in vitro transcriptional data. First, 441 antibiotic gene regulation was studied in the nutrient-rich environment of bacteriological growth media 442 and not in the complex and challenging environment of the infected host, where many of the virulence 443 genes are regulated differently. Second, the experimental conditions entailed that an antibiotic-444 induced repression of those virulence genes which are not transcribed under standard growth 445 conditions was missed. For instance, many iron transporters are repressed under the iron-replete 446 growth conditions used in this study, but are induced when the bacterium faces iron limitation, as it is 447 the case during an infection. In our study only antibiotic-induced induction, but not repression, of these 448 virulence genes would have been observed. Still, the tonB exbDB system was transcribed enough to 449 detect antibiotic-induced repression even under the iron-replete conditions. Third, the phenotypic 450 impact of antibiotic transcriptional regulation remains uncertain for most genes. A two fold difference in 451 mRNA levels could result in a strong phenotypic effect for some but no phenotypic effect for other 452 virulence genes. We analysed the phenotypic effect on capsule repression and found a relationship 453 between transcriptional down-regulation and a thinning of the capsule on the surface of P. multocida 454 for novobiocin and trimethoprim. However, a general correlation between repression of capsule gene 455 transcription and capsule thickness was not confirmed. Florfenicol did not cause a thinning of the 456 capsular layer although the repression of capsule gene transcription exceeded that of trimethoprim. 457 This result does not exclude a contribution of capsule gene repression to the observed reduction in 458 capsule surface expression, but demands prudence when interpreting transcriptional alterations into 459 phenotypic effects. The depletion of glucuronic acid and N-acetylglucosamine precursor molecules for 460 the hyaluronic acid capsule, caused by secondary effects of novobiocin and trimethoprim on the 461 metabolism of sugar molecules, may also explain the reduction in capsule surface expression. It is 462 interesting that so many bacteriostatic antibiotics affected capsule gene transcription, pointing to a 463 common, MoA-independent regulatory mechanism, affecting either the promotor activity of the capsule 464 operon or capsule mRNA stability. 465 The compendium of antibiotic-induced transcriptional profiles has become a useful basis for MoA 466 predictions in our drug discovery program. Albeit, the very different transcriptional profiles of 467 novobiocin and enrofloxacin which inhibit the same DNA gyrase target illustrate that transcriptional 468 profiling can only be one of many pieces needed to complete the MoA puzzle. At best it can provide a

469 first hypothesis, which must then be verified by biochemical and genetic approaches. Therefore, the

¹⁶ Page 16 of 30

- 470 unique transcriptional profile of the thiazin does not confirm but provides first evidence for a new MoA.
- 471 However, with the rise of cross-resistance to existing antibiotics this information could become an
- 472 important trigger for drug development.
- 473
- 474 **Appendix A.** Supplementary data.
- 475

476 **References**

- 477 Alekshun, M.N., Levy, S.B., 1999. The mar regulon: multiple resistance to antibiotics and other toxic
- 478 chemicals. Trends Microbiol. 7, 410-3.
- 479 Bader, M.W., Navarre, W.W., Shiau, W., Nikaido, H., Frye, J.G., McClelland, M., Fang, F.C., Miller,
- 480 S.I., 2003. Regulation of Salmonella Typhimurium virulence gene expression by cationic antimicrobial
- 481 peptides. Mol. Microbiol. 50, 219-30.
- 482 Boshoff, H.I., Myers, T.G., Copp, B.R., McNeil, M.R., Wilson, M.A., Barry, C.E. 3rd., 2004. The
- 483 transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into
- 484 drug mechanisms of action. J. Biol. Chem. 279, 40174-84.
- 485 Braun, V., 1995. Energy-coupled transport and signal transduction through the gram-negative outer
- 486 membrane via TonB-ExbB-ExbD-dependent receptor proteins. FEMS Microbiol. 16, 295-307.
- 487 Chung, J.Y., Wilkie, I., Boyce, J.D., Townsend, K.M., Frost, A.J., Ghoddusi, M., Adler, B. 2001. Role of
- 488 capsule in the pathogenesis of fowl cholera caused by *Pasteurella multocida* serogroup A. Infect.
- 489 Immun. 69, 2487-92.
- 490 Duff, G.C., Galyean, M.L., 2007. Board-invited review: recent advances in management of highly
- 491 stressed, newly received feedlot cattle. J. Anim. Sci. 85, 823-40.
- 492 Ewers, C., Lubke-Becker, A., Wieler, L.H., 2004. *Pasteurella*: insights into the virulence determinants
- 493 of a heterogenous bacterial type. Berl. Munch. Tierarztl. Wochenschr. 117, 367-86.
- 494 Freiberg, C., Fischer, H.P., Brunner, N.A., 2005. Discovering the mechanism of action of novel
- 495 antibacterial agents through transcriptional profiling of conditional mutants. Antimicrob. Agents.
- 496 Chemother. 49, 749-59.
- 497 Gmuender, H., Kuratli, K., Di Padova, K., Gray, C.P., Keck, W., Evers, S., 2001. Gene expression
- 498 changes triggered by exposure of *Haemophilus influenzae* to novobiocin or ciprofloxacin: combined
- 499 transcription and translation analysis. Genome Res. 11, 28-42.

- 500 Harper, M., Cox, A., St Michael, F., Parnas, H., Wilkie, I., Blackall, P.J., Adler, B., Boyce, J.D., 2007a.
- 501 Decoration of *Pasteurella multocida* lipopolysaccharide with phosphocholine is important for virulence.
- 502 J. Bacteriol. 20, 7384-91.
- 503 Harper, M., Boyce, J.D., Cox, A.D., St Michael, F., Wilkie, I.W., Blackall, P.J., Adler, B., 2007b.
- 504 *Pasteurella multocida* expresses two lipopolysaccharide glycoforms simultaneously, but only a single
- 505 form is required for virulence: identification of two acceptor-specific heptosyl I transferases. Infect.
- 506 Immun. 8, 3885-93.
- 507 Hutter, B., Schaab, C., Albrecht, S., Borgmann, M., Brunner, N.A., Freiberg, C., Ziegelbauer, K., Rock,
- 508 C.O., Ivanov, I., Loferer, H., 2004. Prediction of mechanisms of action of antibacterial compounds by
- 509 gene expression profiling. Antimicrob. Agents Chemother. 8, 2838-44.
- 510 Kaldalu, N., Mei, R., Lewis, K., 2004. Killing by ampicillin and ofloxacin induces overlapping changes
- 511 in *Escherichia coli* transcription profile. Antimicrob. Agents Chemother. 48, 890-6.
- 512 Kohanski, M.A.,, Dwyer, D.J., Hayete, B., Lawrence, C.A., Collins, J.J., 2007. A common mechanism
- 513 of cellular death induced by bactericidal antibiotics. Cell. 130, 797-810.
- Lewis, R.J., Singh, O.M., Smith, C.V., Skarzynski, T., Maxwell, A., Wonacott, A.J., Wigley, D.B., 1996.
- 515 The nature of inhibition of DNA gyrase by the coumarins and the cyclothialidines revealed by X-ray
- 516 crystallography. EMBO J. 15, 1412-20.
- 517 Lin, J.T., Connelly, M.B., Amolo, C., Otani, S., Yaver, D.S., 2005. Global transcriptional response of
- 518 Bacillus subtilis to treatment with subinhibitory concentrations of antibiotics that inhibit protein
- 519 synthesis. Antimicrob. Agents Chemother. 49, 1915-26.
- 520 Linares, J.F., Gustafsson, I., Baquero, F., Martinez, J.L., 2006. Antibiotics as intermicrobial signaling
- 521 agents instead of weapons. Proc. Natl. Acad. Sci. U S A. 103, 19484-19489.
- 522 Ma, D., Cook, D.N., Alberti, M., Pon, N.G., Nikaido, H., Hearst, J.E., 1993. Molecular cloning and
- 523 characterization of *acrA* and *acrE* genes of *Escherichia coli*. J. Bacteriol. 175, 6299-313.
- 524 May, B.J., Zhang, Q., Li, L.L., Paustian, M.L., Whittam, T.S., Kapur, V., 2001. Complete genomic
- 525 sequence of *Pasteurella multocida*, Pm70. Proc.Natl. Acad. Sci. U S A. 98, 3460-5.
- 526 McKerral, L.J., Lo, R.Y., 2002. Construction and characterization of an acapsular mutant of
- 527 *Mannheimia haemolytica* A1. Infect. Immun. 70, 2622-2629.
- 528 Mosier, D.A., 1997. Bacterial pneumonia. Vet. Clin. North Am. Food Anim. Pract. 13, 483-93.
- 529 National Committee for Clinical Laboratory Standards, 2003. Methods for Dilution Antimicrobial
- 530 Susceptibility Tests for Bacteria that Grow Aerobically; Document M7-A6. NCCLS, Wayne, PA, USA.

- 531 Nalca Y, Jansch L, Bredenbruch F, Geffers R, Buer J, Haussler S., 2006. Quorum-sensing
- 532 antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach.
- 533 Antimicrob. Agents Chemother. 50, 1680-8.
- 534 Ng, W.L., Kazmierczak, K.M., Robertson, G.T., Gilmour, R., Winkler, M.E., 2003. Transcriptional
- 535 regulation and signature patterns revealed by microarray analyses of Streptococcus pneumoniae R6
- 536 challenged with sublethal concentrations of translation inhibitors. J. Bacteriol. 185, 359-70.
- 537 Roehrig, S.C., Tran, H.Q., Spehr, V., Gunkel, N., Selzer, P.M., Ullrich, H.J., 2007. The response of
- 538 Mannheimia haemolytica to iron limitation: implications for the acquisition of iron in the bovine lung.
- 539 Vet. Microbiol. 121, 316-29.
- 540 Shaw, K.J., Miller, N., Liu, X., Lerner, D., Wan, J., Bittner, A., Morrow, B.J., 2003. Comparison of the
- 541 changes in global gene expression of Escherichia coli induced by four bactericidal agents. J. Mol.
- 542 Microbiol. Biotechnol. 5, 105-22.
- 543 Steenbergen, S.M., Lichtensteiger, C.A., Caughlan, R., Garfinkle, J., Fuller, T.E., Vimr, E.R., 2005.
- 544 Sialic Acid metabolism and systemic pasteurellosis. Infect. Immun. 73, 1284-94.
- 545 Tomich, M., Planet, P.J., Figurski, D.H., 2007. The tad locus: postcards from the widespread
- 546 colonization island. Nat. Rev. Microbiol. 5, 363-75.
- 547 Walsh, C., 2002. Antibiotics, Actions, Origins, Resistance. ASM Press. 1752 N Street, N.W.
- 548 Washington, DC, pp. 20036-2904.
- 549

550 Legends to Figures

- 551 Fig. 1. Verification of microarray data by real-time PCR.
- 552 Log₂ ratios (treated/control) were calculated from signals derived from microarray data (ordinate) and
- 553 real time PCR (abscissa). A total of five genes up- and down-regulated by four antibiotics were 554
- analysed. r² denotes the correlation coefficient.
- 555
- 556 Fig. 2. Cluster analysis of transcriptional profiles.
- 557 Hierarchical clustering of relative expression values was performed using the complete linkage cluster
- 558 algorithm and euclidean distance similarity metric which places an emphasis on the magnitude of
- 559 expression values.
- 560
- 561 Fig. 3. Functional categorization of regulated genes.

The regulated genes 10 min after addition of the antibiotics were assigned to 14 functional groups according to the annotation by May et al. (2001). The functional groups differed strongly in the number of genes. Thus, the antibiotic impact was illustrated by presenting the percentage of regulated genes per group.

566

567 Fig. 4. The effect of antibiotics on capsule expression.

568 *P. multocida* was grown to mid-log phase in the presence and absence of antibiotics at 0.5xMIC 569 concentrations (Table 1). Cells were stained with cationized ferritin, fixed and processed for electron 570 microscopy. The abscissa indicates the percentage of cells with > 30 nm (left bars), < 30 nm (middle 571 bars) capsule thickness and no capsule (right bars). Experiments were done in triplicate. A * indicates 572 a significant (p < 0.05, Students t-test) difference on the level of capsulation between untreated control 573 cells and antibiotic-treated cells.

574

575 Fig. 5. Surface expression of capsule polysaccharides in the presence of antibiotics.

576 *P. multocida* was grown to mid-log phase in the presence and absence of antibiotics at 0.5xMIC 577 concentrations. Cells were stained with cationized ferritin, fixed and processed for electron 578 microscopy. Non-treated control (A), novobiocin (B), florfenicol (C), trimethoprim (D). The bars indicate 579 200 nm.

Fig. 1

SCRIP ACCE P

Fig. 2

Fig. 3

محمو

Fig. 4

Fig. 5

Table 1

ACCEPTED MANUSCRIPT

Antibiotic (substance class)	MIC (µg/ml)	MoA description
Enrofloxacin (quinolone)	0.016	inhibits the gyrA subunit of the DNA gyrase
Novobiocin (coumarin)	4.0	inhibits the ATPase function of the <i>gyrB</i> subunit of the DNA gyrase
Florfenicol (chloramphenicol)	0.5	blocks ribosome function by binding to the 50s subunit
Tilmicosin (macrolide)	4.0	blocks ribosome function by binding to the 50s subunit
Trimethoprim (diaminopyrimidine)	0.5	inhibits the dihydrofolate reductase (folate biosynthesis)
Brodimoprim (diaminopyrimidine)	0.25	inhibits the dihydrofolate reductase (folate biosynthesis)
Rifampin (rifamycin)	0.5	stalls transcription by inhibiting the $\beta\mbox{-subunit}$ of the RNA polymerase
Cefquinome (β-lactam)	0.063	inhibits transpeptidases involved in peptidoglycan synthesis
Thiazin	0.031	unknown

Table 1. MIC values for P. multocida serotype A bovine isolate

Page 26 of 30

	up	down	% genome
Novobiocin	293	490	39,2
Florfenicol	189	185	18,7
Tilmicosin	168	235	20,2
Trimethoprim	160	176	16,8
Brodimoprim	113	119	11,6
Rifampin	234	131	18,3
Cefquinome	1	6	0,4
Enrofloxacin	10	11	1,1
Thiazin	1	26	1,3

Table 2	• The	number	of	regulated	aenes	at 1	0 min
		number	UI.	regulateu	yenes	αι ι	U IIIIII

¢

Antibiotic	Target genes	Signature* genes
Novobiocin	gyrAB ↑	ABC-type transporters ↓↑ PM0469-0476 ↓
Enrofloxacin	gyrAB, parEC $ ightarrow$	recA ↑ impA ↑
Florfenicol	ribosomal genes ↑	PM1129 ↑
Tilmicosin	ribosomal genes ↑	PM0836 ↑
Trimethoprim	folA \rightarrow	PM1190 ↑
Brodimoprim	folA \rightarrow	PM1127 ↑
Rifampin	rpoBC ↑	PM1679-1682
Cefquinome	ponAB, dacAB, pbp2, ftsl $ ightarrow$	none
Thiazin	unknown	none

* signature genes were regulated > 2 fold at both time points. Expression values

are presented in Table S2. Arrows indicate up-, down- and no regulation.

Table 4.	The impact	of antibiotics on F	2. <i>multocida</i> virulenc	e gene regulation
	ino impuor		. manoonaa manomo	o gono rogalation

Gene Name*	Description	Novobiocin		Florfenicol		Tilmicosin		Rifampin		Trimethop.		Brodimop.		Locus
		10'	30'	10'	30'	10'	30'	10'	30'	10'	30'	10'	30'	
ohyB	Capsule biosyn.	-2,9	-2,1								-1,1		-0,7	PM07
ohyA	Capsule biosyn.	-3,5	-3,1		-1,5	-0,6	-1,3			-0,6	-1,2		-1,2	PM07
iyaE	Capsule biosyn.	-4,3	-3,7	-0,8	-1,9	-1,2	-2,4				-1,2		-1,3	PM07
nyaC	Capsule biosyn.	-3,3	-3,2	-1,0	-2,7	-1,6	-3,7				-1,2		-1,5	PM07
iyaB	Capsule biosyn.	-3,0	-2,6	-0,9	-2,2	-2,5	-4,6	0,7	0,9	-0,7	-1,0	-1,0	-1,8	PM07
iexD	Capsule transport	-2,8	-2,8	-1,3	-3,2	-2,2	-5,1	0,8		-1,0	-1,2		-2,2	PM07
iexC	Capsule transport	-2,3	-2,6	-2,0	-3,8	-3,1	-4,8	~ ~		-1,6	-1,7	-0,9	-1,8	PIM07
IEXE	Capsule transport	-3,2	-3,0	-2,5	-3,9	-2,8	-4,8	0,6		-1,3	-1,4	0.7	-1,9	PIVI07
iexA	Capsule transport	-2,1	-2,3	-1,7	-2,5	-1,7	-3,1	2.1	27	-1,0	-1,2	-0,7	-1,4	PIVIU/
/2a /7h								2,1	2,1					DM10
vbB	Iron transport	-2.5	-20	-23	-2.5	-20	_1 0	_1 1	_1 ∕I	15		-2.1	_1 3	DM11
xhD	Iron transport	-2,5	-2,0	-2,3	-2,5	-2,0	-2.0	-0.8	-0.9	-1.5	-0.7	-2,1	-1,3	PM11
nB	Iron transport	-1.2	-1.3	-1.6	-1.6	-1.2	-1.3	-0,0	-0,5	-0.9	-0,7	-1,0	-1,2	PM11
nB	Iron transport	1,2	1,0	1,0	1,0	1,2	1,0			-1.1	-0.9	1,2		PMOC
Aqd	Iron transport			-1.5	-1.3	-1.1	-0.7	0.6		-1.6	-,-	-1.2		PM00
uqX	Iron metabolism			, -	, -	-1,6	-1,9	- , -		-1.0		-1,3	-0,8	PM02
μqΖ	Iron metabolism	-1,5		-2,2	-2,2	-1,7	-1.8			-1.6		-1,3	- , -	PM02
gĎA	Iron transport	,		,	,	,	,		0,7			,		PM03
ur	Iron regulation	0,7	0,7											PM03
ſeA	Iron transport	-1,2				-0,6								PM04
iemK	HemK protein						0,6							PM05
lfuA	Iron transport	-0,6		-0,7	-1,7	-0,9	-1,4							PM09
lfuB	Iron transport				-1,1		-1,5			-0,7	-1,1			PM09
lfuB	Iron tranport								1,8	0,9	0,9			PM14
fuC	Iron transport	-0,7			-1,0	-0,8	-1,5			-0,8				PM09
M1428	Iron transport							1,1	1,2			~ -		PM14
ibpA	Iron transport				1,0					0,9		0,7		PM05
ad⊢	Light adherence							0,6	1,3					PM08
adE	Tight adherence	4 5	0.0					1,1	1,6					PMU8
	Tight adherence	-1,5	-0,9					0,7	1,1					PIVIUE
ade	Tight adherence	15	10		0.6			0,7	1,3					
aub	Tight adherence	-1,5	-1,0		0,0			0,0	1,1	0.8	07			
auA	Homogalutinin	22	2.2			13	0.0	1,2	1,1	0,0	0,7			
ofhR1	Hemadutin transp	-2,2	-2.3	-1.3	-0.8	-1,3	-0,5			-0,7				PMOC
fhB2	Hemadutinin	-1.3	-1.8	-1,5	-0,0	-1, 1	-1,5			-0.7		-10	-12	PMOC
attK	Attachment protein	-1,5	-1,0	-0,5	-1,2	-1,5	-2,7	07		0.8	0.6	-1,0	-1,2	PM15
PM0649	Hemolysin		0.6			-0.7	-0.9	0,1		0,0	0,0			PMOR
iaT	Sialvltransferase	1.8	1.4			0,1	0,0		-1.0	0,1				PM01
omE	DNA competence	0.8		-1.3	-2.4		-2.3	-1.5	-1.9	-1.0	-1.2		-1.2	PM12
omD	DNA competence			-1,2	-2,8		-3,1	, -	, -	-1,0	-1,1	-0,8	-1,5	PM12
comC	DNA competence		-1,0	,	-2,8		-3,1	-2,3	-3,1	-0,9	-1,2	,	,	PM12
omB	DNA competence	0,8	-0,9		-2,6		-2,4	-2,2	-2,9	-1,0	-1,2	-0,7	-1,5	PM12
omA	DNA competence A		-1,2		-2,2		-2,0			-1,1	-1,4		-1,1	PM12
omM	DNA competence	-5,0	-5,4		-1,2		-1,9		-1,4	-0,9				PM15
omF	DNA competence	-1,4	-1,6											PM15
jalE	LPS biosynthesis	-1,4	-1,0	-0,6	-1,4		-1,2							PM02
PM0507	LPS biosynthesis								1,0					PM05
PM0508	LPS biosynthesis								0,8					PM05
PM0509	LPS biosynthesis	0,7	0,8						0,9					PM05
M0512	LPS biosynthesis	0,8	0,7											PM05
dsA	LPS biosynthesis	1,0						1,0	0,8					PM05
M1294	LPS biosynthesis	0,6	0,8											PM12
psX	LPS biosynthesis			0,7										PM13
dtB	LPS biosynthesis	0,7	0,9						-					PM13
dsB	LPS biosynthesis		_			-0,7	-1,1		0,7					PM08
aK	LPS biosynthesis	1,9	2,0	-1,5	-1,2	-1,1	-1,5						-	PM11
M1843	LPS biosynthesis	-1,3	. –			-0,6	-0,8		0,7				0,6	PM18
M1863	LPS biosynthesis	-1,2	-0,7	0,6			0,8		0,8					PM18
хB	LPS biosynthesis	-1,0					0,8							PM19
lpQ	LPS modification	1,3	1,3	<u> </u>	-1,2		-1,2				0,7			PM14
PM1306	Glycosyl transf.	<u> </u>		0,7	0,8	0,8					0,7			PM13
anU	Sialic acid metab.	-2,1			-0,9	-0,9	-1,3							PM17
ıanP	Sialic acid metab.	-0,8		-1,2	-1,9	-1,4	-2,2		0,7					PM17

SCRIPT CCEP

nanX nanE nanK PM1713 PM1714 PM0842 nanA neuA nagB PM0876 oapA htrA degS clpP clpX clpB dam gcp cpxR cpxA oppD	Sialic acid metab. Sialic acid metab. Sialic acid metab. Hypothetical Regulator Regulator SirB-like Sialic acid metab. Sugar metabolism Sugar metabolism Sugar metabolism Opacity protein Protease Protease Protease Protease DNA methylase Sialoendopeptidase Reg. chemotaxis Sensor chemotaxis Oligopept. transp.	-1,9 -1,4 -1,5 -1,5 2,1 -1,0 1,9 0,8 -1,2 -1,1	1,7 1,3 0,6 0,7 1,1 0,9	-0,7 -1,2 -1,1 -0,7	-0,7 -1,3 -1,1 -1,4 -2,0 -0,6	-0,7 -0,7 -1,6 0,7 -1,8	-0,8 -1,1 -1,1 -0,7 -0,6 -1,6 1,1 -1,0 -0,7 -0,6	0,9 0,8 0,6 0,9 0,6 -0,7 0,8	1,0 0,8 0,7 0,9 0,6 1,3 -0,7 -0,6 0,7 0,6 1,6	-0,7 -0,9 -0,9),6 1,0		PM1710 PM1711 PM1712 PM1713 PM1714 PM0842 PM1715 PM0874 PM0875 PM0876 PM098 PM0734 PM0748 PM0748 PM1976 PM1977 PM1222 PM1238 PM1887 PM1888 PM1907
oppC oppB oppA sodC	Oligopept. transp. Oligopept. transp. Oligopept. transp. Superox. dismutase	-1,2 -0,7	1,0	-0,7 1,2	-0,8 2,0	-1,0 -0,9 -1,7 1,0	-1,0 -1,3 -1,4 2,1	0,9	1,1		1	,1	1,2	PM1908 PM1909 PM1910 PM1952
sodA hktE	Superox. dismutase Catalase	-1,3	0,8	1,0	0,9		1,3	0,6	1,9		0),6		PM0001 PM0032
		9			Ś									