

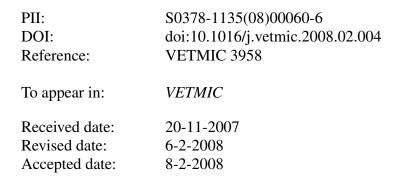
A survey of avian species for neuraminidase enzymatic activity

Rebeka Lucijana Berčič, Brigita Slavec, Miha Lavrič, Mojca Narat, Olga Zorman-Rojs, Peter Dovč, Dušan Benčina

► To cite this version:

Rebeka Lucijana Berčič, Brigita Slavec, Miha Lavrič, Mojca Narat, Olga Zorman-Rojs, et al.. A survey of avian species for neuraminidase enzymatic activity. Veterinary Microbiology, 2008, 130 (3-4), pp.391. 10.1016/j.vetmic.2008.02.004 . hal-00532395

HAL Id: hal-00532395 https://hal.science/hal-00532395


Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: A survey of avian *Mycoplasma* species for neuraminidase enzymatic activity

Authors: Rebeka Lucijana Berčič, Brigita Slavec, Miha Lavrič, Mojca Narat, Olga Zorman-Rojs, Peter Dovč, Dušan Benčina

Please cite this article as: Berčič, R.L., Slavec, B., Lavrič, M., Narat, M., Zorman-Rojs, O., Dovč, P., Benčina, D., A survey of avian *Mycoplasma* species for neuraminidase enzymatic activity, *Veterinary Microbiology* (2007), doi:10.1016/j.vetmic.2008.02.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	A survey of avian Mycoplasma species for neuraminidase enzymatic activity
2	
3	Rebeka Lucijana Berčič ¹ , Brigita Slavec ² , Miha Lavrič ¹ , Mojca Narat ¹ , Olga Zorman-Rojs ² ,
4	Peter Dovč ¹ , Dušan Benčina ^{1*}
5	
6	¹ Department of Animal Science, Biotechnical faculty, University of Ljubljana
7	² Veterinary faculty, University of Ljubljana
8	
9	
10	Corresponding author:
11	Dušan Benčina
12	Tel: +38617217809
13	Fax No.: +38617241005
14	E-mail: dusan.bencina@bfro.uni-lj.si
15	
16	The proof should be sent to:
17	University of Ljubljana, Biotechnical Faculty
18	Department of Animal Science
19	Dr. Dušan Benčina
20	Groblje 3, 1230 Domžale
21	Slovenia
22	
23	

24 Abstract

25

Among 23 currently recognized avian *Mycoplasma* (AM) species only *M*. 26 gallisepticum, M. synoviae, M. meleagridis and M. iowae cause disease and loss 27 28 of production in chickens and/or turkeys. Because neuraminidases are 29 considered virulence factors in many pathogenic microorganisms the aim of our study was to determine which AM species possess neuraminidase enzymatic 30 31 activity (NEAC). Small samples of AM cells were assayed for NEAC using the chromogenic substrate 5-Bromo-4-chloro-3-indolyl-α-D-N-acetylneuraminic 32 acid. In the case of positive NEAC reaction the substrate gave the insoluble 33 indigoblue product what enabled simple test and easy estimation of NEAC. M. 34 35 gallisepticum and M.synoviae which share sequences of the gene encoding neuraminidase (sialidase NanH) exhibited considerable levels of NEAC. 36 However, NEAC levels differed among their strains, as well as among cultures 37 of different strains. Only certain cultures of the type strain of *M. meleagridis* 38 showed NEAC, whereas among six serovars of *M. iowae* only serovar I (type 39 strain 695) showed NEAC. Weak NEAC was detectable in M. anseris, M. 40 cloacale and M. pullorum, whereas the type strain of M. corrogypsi (BV1) 41 42 showed strong NEAC. Our study provides novel informations about NEAC in 43 AM species and suggests that higher invasiveness and possibly, the pathological 44 processes might be associated with their NEAC.

45

46 Key words: avian *Mycoplasma* species, neuraminidase activity

47

48 1. Introduction

49

Pathogenic avian Mycoplasma (AM) species are important causes of 50 51 disease and loss of production in intensively reared poultry (Chin et al., 2003; Kleven, 2003b; Ley 2003). Chicken and/or turkeys are natural hosts of twelve 52 53 Mycoplasma spp., whereas 23 recognized species could be found in birds (Bradbury, 1998; Kleven, 2003a). However, only Mycoplasma gallisepticum, 54 Mycoplasma synoviae, Mycoplasma meleagridis (infects only turkeys) and 55 Mycoplasma iowae are considered to be significant poultry pathogens (Bradbury, 56 1998; Kleven, 2003a). These pathogenic AM spp. synthesize haemagglutinins 57 which are immunodominant antigens (Benčina, 2002). Their strains vary in 58 tissue tropism, invasiveness and pathogenicity, but factors contributing to such 59 differences are largely unknown. 60

Recently, Brown et al. (2004) suggested that *Mycoplasma alligatoris* sialidase (neuraminidase) is associated with its high invasiveness and virulence. Interestingly, *M. gallisepticum* and *M. synoviae* share sequences of genes coding for putative sialidase *i.e.* neuraminidase (Papazisi et. al., 2003; Vasconcelos et al., 2005). However, data about the neuraminidase enzymatic activity (NEAC) in different *M. gallisepticum* strains are conflicting (Roberts, 1967; Sethi and Müller, 1972; Glasgow and Hill, 1980). Indeed, it has been reported that

reference strains of *M. gallisepticum*, S6 and A5969, did not reveal detectable neuraminidase activity (Glasgow and Hill, 1980; Kahane et al., 1990). Both, *M. gallisepticum* and *M. synoviae* bind to host cell via receptors containing sialic acid residues (Razin, 1985). Therefore, their potential NEAC might be very important in interactions with their host cells and glycoproteins containing sialic acid receptors.

The main aim of this study was to assess recognized avian *Mycoplasma* spp. concerning their NEAC. Using commercially available substrate in a simple and relatively rapid test we developed a novel assay for detecting NEAC in *M. gallisepticum*, *M. synoviae* and other recognized AM spp.

78

79 2. Materials and methods

80

81 2.1 Mycoplasma species, their strains and growth media

Five reference strains of *M. gallisepticum* characterized in previous studies and 82 used in this study are listed in Table 1 (Levisohn et al., 1986; Benčina et al., 83 1994; Avakian et al., 1991; Winner et al., 2000). Reference strains of M. 84 synoviae also used in previous investigations are shown in Table 2 (Avakian et 85 86 al. 1992, Benčina et al., 1999, 2001, 2005). One isolate of the type strain of M. 87 synoviae (WVU1853), one isolate of M. meleagridis, and reference serovars (I. 88 J, K, N, Q, and R represented by strains 695, DJA, DK-CPA, FMN, L3-10B and 89 DRA-O, respectively) were provided by Dr. Janet M. Bradbury. The type

90	strains of <i>M. meleagridis</i> (17529) and <i>M. synoviae</i> (WVU 1853) were obtained
91	also from FAO/WHO Collaborating Center for Animal Mycoplasmas, Aarhus,
92	Denmark). Other AM species and their type strains are listed in Table 3.
93	A modified Frey's media (agar and broth) containing 10% porcine serum,
94	0,1% NAD and 0,1% cysteine hydrochloride were used for M. synoviae and
95	other AM spp. However, media with 10% horse serum (but without NAD) were
96	also used to grow AM spp., except M. synoviae. Cultures were grown at 37-
97	38°C and were usually harvested in a late log-phase growth. Colony forming
98	units (CFU) were determined by standard procedures (Rodwell and Whitcomb,
99	1983).

100

101 2.2 Preparation of mycoplasma samples examined for neuraminidase enzymatic
102 activity (NEAC)

Mycoplasma cells were harvested by centrifugation (usually 27000 x g, 20min). Their pellets were washed in sterile phosphate buffered saline (PBS, pH 7,4) using centrifugation. Samples were then assayed for NEAC or were kept frozen (at -20°C) and were thawed when the NEAC test was done.

107

108 2.3 Determination of NEAC

The substrate used for NEAC assays was 5-Bromo-4-chloro-3-indolyl-αD-N-acetylneuraminic acid sodium salt (BIN, B4666, Sigma, St. Louis, MO)).
Stock dillutions of this substrate in MilliQ water contained 4 mg of the substrate

per ml and were kept frozen as 1ml aliquots at -20°C. Samples with AM spp. 112 113 cells $(20 - 30 \mu L \text{ of cell-suspension})$ were assayed in small microfuge tubes with caps or in wells of the microtiter plates (see Supplementary Figs. 1 and 2). 114 Mycoplasma samples ($\sim 30 \mu$ L of suspension) were prepared (in PBS pH 5, with 115 10 mM CaCl₂) in wells of 96-well plastic microtiter plates. Usually, the 116 117 suspension examined represented about 100-fold concentration of mycoplasma 118 cells in comparison with their concentration in appropriate broth culture. In the 119 case of *M. synoviae* and *M. gallisepticum* their samples tested contained approximately 10⁹ CFU. Samples of AM species being negative at such 120 concentration were then tested at higher density. For mycoplasma samples with 121 122 higher NEAC, titration using double dilutions was done.

The substrate BIN was added to each well with sample, usually 10μl of
the solution containing 5μg of the substrate.

In most cases samples were incubated at room temperature. The positive NEAC reactions occured as indigoblue staining. In each NEAC assay the positive control was neuraminidase of *Clostridium perfringens* (type V, N2876, Sigma), whereas the negative control was PBS.

129

130 3. Results

131

132 *3.1 NEAC varies in cultures of M. gallisepticum*

133	We examined NEAC in cultures of five reference <i>M. gallisepticum</i> strains
134	which differ in infectivity, invasiveness and pathogenicity for chickens and
135	turkeys, as well as their embryos.

All examined cultures of the type strain PG31 and strain A5969 (both at high levels of *in vitro* passages) revealed lower levels of NEAC than strain R at a low passage (Table 1). However, in contrast to a previous study using A5969 (Kahane et al., 1990), cultures of A5969 had a detectable NEAC in this study.

In strain R, only its cultures at low passages (R_{LOW} , 15-25) had high NEAC, whereas its cultures at high passages (R_{HIGH} 163-170) revealed much lower NEAC (Table 1 and Supplementary Fig. 1). Direct comparison showed that a sample of R_{LOW} containing about 5x 10⁸ CFU had NEAC comparable to that of 1 µg of *C. perfringens* neuraminidase (time point – 1 hour). NEAC of R_{HIGH} was about 10 – fold lower.

Different populations of the S6 strain revealed a considerable differences
in NEAC, although they represented cultures at similar levels of *in vitro* passage.
In comparison to the parent culture S6, its clone C1 had higher level of NEAC,
whereas a sibling culture designated C 19 revealed much lower NEAC (Table 1).

150 Similar differences were notable in clones of the vaccinal strain F (Table 1).

151

152 *3.2 NEAC in Mycoplasma synoviae strains*

Considerable differences in NEAC were observed among different *M*. *synoviae* strains (Table 2 and Supplementary Fig. 2). All cultures derived from

the type strain WVU 1853 obtained from different Mycoplasma culture 155 156 collections revealed strong NEAC. Comparison showed that samples of WVU 1853 containing about 10^8 CFU had NEAC comparable to that of 1 µg of 157 neuraminidase of C. perfringens. High levels of this activity were detected also 158 in M. synoviae strains F102AS, K1723, K1968, K2426D, as well as in closely 159 160 related field isolates ULB02/P4, ULB02/T6 and ULB02/0V6 (Table 2). Notably, 161 some cultures derived from a field *M.svnoviae* isolate ULB9122 (Benčina et al., 2005) revealed strong NEAC, whereas some cultures of its higher passages had 162 no detectable NEAC (Table 2). Cultures derived from the *M. synoviae* strain 163 ULB 925 (Benčina et al., 1999) lacked detectable NEAC (Table 2). The NEAC 164 assay reproducibility was good for all *M. synoviae* samples tested. Indeed, their 165 NEAC was not reduced notably if their aliquots kept in refrigerator were 166 retested after several days or if they underwent a few freezing – thawing cycles. 167

168

169 3.3 NEAC in M.meleagridis and M. iowae

170 Striking differences in neuraminidase activity were found in cultures of 171 the type strain 17529 of *M.meleagridis*. High NEAC was detected in two 172 cultures of 17529, whereas NEAC was absent in cultures derived from another 173 culture of this strain (Table 3).

M. iowae is a heterogenous species with six serovars (I, J, K, N,Q, R). A
weak NEAC was detected in the type strain 695 (serovar I). In other serovars,
NEAC was not detected. A weak neuraminidase activity was also found in a

field isolate of *M. iowae* (ULB 953) obtained from a yolk sac membrane of a
turkey embrio.

179

180 *3.4 NEAC in other recognized avian Mycoplasma spp.*

181 Relatively low NEAC was detected in the type strains of *M. anseris*, *M. cloacale* and *M. pullorum* (Table 3). In contrast to many *M. gallisepticum* 183 cultures (see 3.1), detectable NEAC was not present in *M. imitans* (strains 4229 184 and B2/85) which is closely related to *M. gallisepticum*.

Notably, cultures of *Mycoplasma corogypsi* (type strain BV1 isolated from a foot pad abscess of a black vulture in the USA) had extremely potent NEAC. Its broth cultures had detectable NEAC even when assayed at a dilution of 1:128. A potent NEAC was associated with washed *M. corogypsi* cells. Its pelleted cells gave the positive NEAC reaction also when they were diluted 1 : 20000. However, at this dilution the positive reaction appeared after overnight incubation.

Potent NEAC of *M. corogypsi* cells enabled identification of its proteins
with this activity. Following SDS-PAGE and transfer of separated proteins to
the Immobilon P membrane its protein of about 110 kDa reacted with the
substrate and revealed indigoblue color within 2 hours (Supplementary Fig. 3).
Nevertheless, after overnight incubation also a protein of ~130 kDa (narow band)
showed indigoblue staining.

198

199 4. Discussion

200

The pathogenesis of diseases associated with pathogenic AM spp. is probably a multifactorial process in which invasiveness of mycoplasma may be an important factor. In both poultry pathogens, *M. gallisepticum* and *M.synoviae*, more invasive strains tend to cause more intense pathologic changes in the lower respiratory tract and/or joints (Lockaby et. al., 1998; Much et al., 2003; Hinz et al., 2003).

Notably, more invasive strains of *M. synoviae*, like WVU 1853 and K 207 1968, showed in this study potent NEAC (see Table 2 and Lockaby et al., 1998). 208 209 Significant differences of NEAC among *M.synoviae* strains were recently 210 reported also by May and coworkers (2007). They also noticed that higher NEAC, for instance in WVU1853, is associated with the capability of M. 211 synoviae strain to cause clinical disease (May et al., 2007). Several lines of 212 evidence show that the *nanH* gene (MS0199) encodes neuraminidase (sialidase) 213 of about 110 kDa which exhibits NEAC (Vasconcelos et al., 2005, Berčič et al., 214 2007, May et al., 2007; and data of this study). Nevertheless, further studies are 215 216 needed to confirm that neuraminidase is responsible for pathologic processes or 217 apoptosis as has been suggested for the *M. alligatoris* sialidase (Hunt and Brown, 218 2007).

A considerable differences of NEAC were observed also among strains of
 M. gallisepticum, as well as among different cultures derived from appropriate

strains. This was found also for cultures of the S6 strain which is widely used as *M. gallisepticum* antigen in serology. The fact that some S6 cultures had very
low NEAC might be the explanation why Glasgow and Hill (1980) did not
detect NEAC in the S6 strain. On the other hand, our results confirm suggestion
that *M. gallisepticum* exhibits neuraminidase activity (Sethi and Müller, 1972).

226 Interestingly, in cultures of the *M. gallisepticum* strain R the levels of NEAC was high at a low passage (R_{LOW}), but weak after >160 passages (R_{HIGH}). 227 228 It should be noted, that R_{LOW} is highly invasive, whereas R_{HIGH} lacks invassivenes (Winner et al., 2000; Much et al., 2003). Moreover, data from 229 previous studies indicate that R_{LOW} is virulent for poultry, whereas R_{HIGH} is not 230 (Levisohn et al., 1986; Much et al., 2003). In all, it seems that NEAC might be 231 associated with higher invasiveness and virulence of R_{LOW}, but further 232 233 investigations are needed to confirm this.

The last topic should be investigated also in other AM spp. which seem to posses NEAC (sections 3.3 and 3.4). Of those AM species *M.meleagridis* is a well known pathogen of turkeys (Chin et al., 2003).

Among *Mycoplasma* species examined so far, we found the highest level of NEAC in *M. corogypsi*. This species belongs to the *M. synoviae* cluster in which several species, including *M. alligatoris* exhibit strong NEAC (Brown et al., 2004; and our unpublished data). However, a number of *Mycoplasma* species still remain to be examined for NEAC. Such information would be very useful because in *M. alligatoris* its sialidase activity (i.e. NEAC) is considered

to be among the most important pathogenic factors (Brown et al., 2004; Huntand Brown, 2007).

245

246 5. Conclusions

247

Major poultry pathogens *M. gallisepticum* and *M. synoviae* synthesize enzymatically active neuraminidase. Two other poultry pathogens, *M. meleagridis* and *M.iowae* also revealed NEAC, indicating that this activity might be associated with their pathogenicity. *M. corogypsi* showed very strong NEAC and is another member of the *M. synoviae* phylogenetic cluster with potent NEAC.

254

255 Acknowledgements

256

This research was supported by the grant from Slovenian Research Agency (ARRS). We thank Dr J. M. Bradbury for the *Mycoplasma* cultures. Technical help of S. Salmič and I. Beretič is acknowledged.

260

261 References

262

263	Avakian, A.P., Kleven, S.H., Ley, D.H., 1991. Comparison of Mycoplasma
264	gallisepticum strains and identification of immunogenic integral membrane
265	proteins with Triton X-114 by immunoblotting. Vet. Microbiol. 29, 319–328.
266	Avakian, A.P., Ley, D.H., Kleven, S.H., 1992. Comparison of Mycoplasma
267	synoviae isolates by immunoblotting. Avian Pathol. 21, 633–642.
268	Benčina, D., Kleven, S.H., Elfaki, M.G., Snoj, A., Dovč, P., Dorrer, D., Russ, I.,
269	1994. Variable expression of epitopes on the surface of Mycoplasma
270	gallisepticum demonstrated with monoclonal antibodies. Avian Pathol. 23,
271	19–36.
272	Benčina, D., Narat, M., Dovc, P., Drobnič-Valič, M., Habe, F., Kleven, S.H.,
273	1999. The characterization of Mycoplasma synoviae EF-Tu protein and
274	proteins involved in hemadherence and their N-terminal amino acid
275	sequences. FEMS Microbiol. Lett. 173, 85–94.
276	Benčina, D., Drobnič-Valič, M., Horvat, S., Narat, M., Kleven, S.H., Dovč, P.,
277	2001. Molecular basis of the length variation in the N-terminal part of
278	Mycoplasma synoviae hemagglutinin. FEMS Microbiol. Lett. 203, 115–123.
279	Benčina, D., 2002. Haemagglutinins of pathogenic avian mycoplasmas. Avian
280	Pathol. 31, 535–547.
281	Benčina, D., Narat, M., Bidovec, A., Zorman-Rojs, O., 2005. Transfer of
282	maternal immunoglobulins and antibodies to Mycoplasma gallisepticum and
283	Mycoplasma synoviae to the allantoic and amniotic fluid of chicken embryos.
284	Avian Pathol. 34, 463–472.

- 285 Berčič, R.L., Slavec, B., Lavrič, M., Narat, M., Bidovec, A., Dovč, P., Benčina,
- D., 2008. Identification of major immunogenic proteins of *Mycoplasma synoviae* isolates. Vet. Microbiol. 127, 147–154.
- 288 Bradbury, J.M., Forrest, M., 1984. Mycoplasma cloacale, a new species isolated
- from a turkey. Int. J. Syst. Bacteriol. 34, 389–329.
- 290 Bradbury, J.M., 1998. Recovery of Mycoplasmas from birds. In: Miles, R.,
- 291 Nicholas, R. (Eds.), Mycoplasma protocols. Humana Press, Totowa, New
- 292 Jersey, pp. 45–54.
- Brown, D.R., Zacher, L.A., Farmerie, W.G., 2004. Spreading factors of *Mycoplasma synoviae*, a flesh-eating Mycoplasma. J Bacteriol. 186, 3922–
 3927.
- 296 Chin, R.P., Ghazikhanian, G.Y., Kempf, I., 2003. Mycoplasma meleagridis
- 297 infection. In: Saif, Y.M., Barnes, H.J., Glisson, J.R., Fadly, A.M.,
- 298 McDougald, L.R., Swayne, D.E. (Eds), Diseases of Poultry. 11th ed. Iowa
- 299 State University Press, Ames, pp. 744–756.
- Glasgow, L. R., Hill, R.L., 1980. Interaction of *Mycoplasma gallisepticum* with
 sialyl glycoproteins. Infect. Immun. 30, 353–361.
- 302 Hinz, K.H., Blome, C., Ryll, M., 2003. Virulence of Mycoplasma synoviae
- 303 strains in experimentally infected broiler chickens. Berl. Munch. Tierarztl.
- 304 Wochenschr. 116, 59–66.
- 305 Hunt, M.E., Brown, D.R., 2007. Role of sialidase in Mycoplasma alligatoris -
- induced pulmonary fibroblast apoptosis. Vet. Microbiol. 121, 73–82.

	Jordan, F.T.W., Ernö, H., Cottew, G.H., Hinz, K.H., Stipkovits, L., 1982.
308	Characterization and taxonomic description of five Mycoplasma serovars
309	(serotypes) of avian origin and their elevation to species rank and further
310	evaluation of the taxonomic status of Mycoplasma synoviae. Int. J. System.
311	Bacteriol. 32, 108–115.
312	Kahane I., Reisch-Saada, A., Almagor, M., Abeliuck, P., Yatziv, S., 1990.
313	Glycosidase activities of mycoplasmas. Zentralbl. Bakteriol. [Orig. B]. 273:
314	300–305.
315	Kleven, S.H., 2003a. Mycoplasmosis. In: Saif, Y.M., Barnes, H.J., Glisson, J.R.,
316	Fadly, A.M., McDougald, L.R., Swayne, D.E. (Eds.), Diseases of Poultry.
317	11th ed. Iowa State University Press, Ames, pp. 719–721.
318	Kleven, S.H., 2003b. Mycoplasma synoviae infection. In: Saif, Y.M., Barnes,
319	H.J., Glisson, J.R., Fadly, A.M., McDougald, L.R., Swayne, D.E. (Eds.),
320	Diseases of Poultry. 11th ed. Iowa State University Press, Ames, pp. 756-
321	766.
322	Levisohn, S., Dykstra, M.J., Lin, M.Y., Kleven, S.H., 1986. Comparison of in
323	vivo and in vitro methods for pathogenicity evaluation for Mycoplasma
324	gallisepticum in respiratory infection. Avian Pathol. 15, 233–246.
325	Ley, D.H., 2003. Mycoplasma gallisepticum infection. In: Saif, Y.M., Barnes,
326	H.J., Glisson, J.R., Fadly, A.M., McDougald, L.R., Swayne, D.E. (Eds.),
327	Diseases of Poultry. 11th ed. Iowa State University Press, Ames, pp. 722-

329	Lockaby, S.B., Hoerr, F.J., Laureman, L.H., Kleven, S.H, 1998. Pathogenicity of
330	Mycoplasma synoviae in broiler chickens. Vet. Pathol. 35, 178–190.
331	May, M., Kleven, S.H., Brown, D.R., 2007. Sialidase activity in Mycoplasma
332	<i>synoviae</i> . Avian Dis. 51, 829 – 833.
333	Much, P., Winner, F., Stipkovits, L., Rosengarten, R., Citti, C., 2003.
334	Mycoplasma gallisepticum: influence of cell invasiveness on the outcome of
335	experimental infection in chickens. FEMS Immunol. Med. Microbiol. 34,
336	181–186.
337	Narat, M., Benčina, D., Kleven, S.H., Habe, F., 1998. Hemagglutination-
338	positive phenotype of Mycoplasma synoviae induces experimental infectious
339	synovitis in chickens with a higher frequency than the hemagglutination-
340	negative phenotype. Infect. Immun. 66, 6004–6009.
341	Noormohammadi, A.H., Markham, P.F., Whithear, K.G., Walker, I.D.,
342	Gurevich, V.A., Ley, D.H., Browning, G.F., 1997. Mycoplasma synoviae has
343	two distinct phase-variable major membrane antigens, one of which is a
344	putative hemagglutinin. Infect. Immun. 65, 2542–2547.
345	Panangala, V.S., Stringfellow, J.S., Dybvig, K., Woodward, A., Sun, E., Rose,
346	D.L., Gresham, M.M., 1993. Mycoplasma corrogypsi, sp. nov., a new species
347	isolated from the foot pad abscess of a black vulture. Int. J. System.
348	Bacteriol. 43, 585–590.
349	Papazisi, L., Gorton, T.S., Kutish, G., Markham, P.F., Browning, G.F., Nguyen,
350	D.K., Swartzell, S., Madan, A., Maharais, G., Geary, S.J., 2003. The

- 351 complete genome: sequence of the avian pathogen *Mycoplasma*352 *gallisepticum* strain R low. Microbiology. 149, 2307–2316.
- 353 Ramirez, A.S., Naylor, C.J., Hammond, P.P., Bradbury, J.M., 2006.
- 354 Development and evaluation of a diagnostic PCR for *Mycoplasma synoviae*
- using primers located in the intergenic spacer region and the 23 S rRNA
- 356 gene. Vet. Microbiol. 118, 76–82.
- 357 Razin, S., 1985. Mycoplasma adherence. In: Razin, S., Barile, M.F. (Eds.), The
- 358 Mycoplasmas IV. Mycoplasma pathogenicity. Academic Press, pp. 161–202.
- Roberts, D.H., 1967. Neuraminidase-like enzyme present in *Mycoplasma gallisepticum*. Nature. 213, 87–88.
- 361 Rodwell, A.W., Whitcomb, R.F., 1983. Methods for direct and indirect
- 362 measurement of mycoplasma growth. In: Razin, S., Tully, J.G. (Eds.),
- 363 Metods in mycoplasmology. Volume I. Academic Press, pp. 185–196.
- 364 Sethi, K.K., Müller, H.E., 1972. Neuraminidase activity in *Mycoplasma* 365 gallisepticum. Infect. Immun. 5, 260–262.
- 366 Vasconcelos, A.T.R., Ferreira, H.B., Bizarro, C.V., Bonatto, S.L., Carvalho,
- 367 M.O., Pinto, P.M., Almeida, D.F., Almeida, L.G.P., Alves-Filho, R.A.L.,
- 368 Assunção, E.N., Azevedo, V.A.C., Bogo, M.R., Brigido, M.M., Brocchi, M.,
- Burity, H.A., Camargo, A.A., Camargo, S.S., Carepo, M.S., Carraro, D.M.,
- de Mattos Cascardo, J.C., Castro, L.A., Cavalcanti, G., Chemale, G.R.,
- 371 Collevatti, Cunha, C.W., Dallagiovanna, B., Dambrós, P., Dellagostin, O.A.,
- 372 Falcão, C., Fantinatti-Garboggini, F., Felipe, M.S.S., Fiorentin, L., Franco,

373	G.R., Freitas, N.S.A., Frías, D., Grangeiro, T.B., Grisard, E.C., Guimarães,
374	C.T., Hungria, M., Jardim, S.N., Krieger, M.A., Laurino, J.P., Lima, L.F.A.,
375	Lopes, M.I., Loreto, É.L.S., Madeira, H.M.F., Manfio, G.P., Maranhão, A.Q.,
376	Martinkovics, C.T., Medeiros, S.R.B., Moreira, M.A.M., Neiva, M.,
377	Ramalho-Neto, C.E., Nicolás, M.F., Oliviera, S.C., Paixão, R.F.C., Pedrosa,
378	F.O., Pena, S.D.J., Pereira, M., Pereira-Ferrari, L., Piffer, I., Pinoto, L.S.,
379	Potrich, D.P., Salim, A.C.M., Santos, F.R., Schmitt, R., Schneider, M.P.C.,
380	Schrank, A., Schrank, I.S., Schuck, A.F., Seuanez, H.N., Silva, D.W., Silva,
381	R., Silva, S.C., Soares, C.M.A., Souza, K.L. R., Souza, R.C., Staats, C.C.,
382	Steffens, M.B.R., Teixeira, S.M.R., Urmenyi, T.P., Vainstein, M.H.,
383	Zuccherato, L.W., Simpson, A.J.G., Zaha, A., 2005. Swine and poultry
384	pathogens: the complete genome sequences of two strains of Mycoplasma
385	hyopneumoniae and a strain of Mycoplasma synoviae. J. Bacteriol. 187,
386	5568–5577.
387	Winner, F., Rosengarten, R., Citti, C., 2000. In vitro cell invasion of
388	Mycoplasma gallisepticum, Infect, Immun, 68, 4238–4244.

- 389
- 390

391 Table 1: Neuraminidase enzymatic activity (NEAC) in reference *M. gallisepticum* strains

Strain	Culture/clone	Passage	NEAC ^a	Note ^b	Reference
PG 31	X-95	> 100	weak	apathogenic	Levisohn et al., 1986
A5969	SHK	> 500	weak	noninfectious	Avakian et al., 1991; Levisohn et al., 1986
R(K781) R _{LOW}	R _{LOW} 1 R _{LOW} 2	20 20	strong strong	pathogenic invasive	Levisohn et al., 1986; Winner et al., 2000

R _{HIGH} S6	R _{HIGH} 1 R _{HIGH} 2 parental clone C1 clone C19	163 unknown	weak weak moderate strong weak	apathogenic noninvasive pathogenic NA NA	Levisohn et al., 1986; Winner et al., 2000 Benčina et al., 1994
F(K810)	clone7/2		strong	vaccinal strain	Levisohn et al., 1986
	clone9/4	>25	weak		Benčina et al., 1994
392					
^a NEAC	assayed with sam	ples (30 µl) of	100-fold and	d/or 1000-fold conce	ntrated broth cultures.
3 94 •	Strong NEAC, po	sitive reaction	within 30-60) minutes. (100-fold	concentrated cells)
.	Moderate NEAC,	positive reaction	on within 4 l	nours. (100-fold cond	centrated cells)
•	Weak NEAC, pos	itive reaction o	of 1000-fold	concentrated cells la	ter than in 4 hours.
⁸ 97 ^b NA, no	t assayed for inva	siveness or patl	hogenicity.		
399					
399 400 401 Table 2 402	: Neuraminida	se enzymatic	activity (N	EAC) in <i>M. synov</i>	<i>iae</i> strains
400 401 Table 2	: Neuraminidas Culture/	-	activity (N EAC	EAC) in <i>M. synov</i> Reference	<i>viae</i> strains
400 401 Table 2 402	Culture	Clone NE			
400 401 Table 2 402 <u>Strain</u>	Culture/ 853 S	Clone NE	EAC	Reference	01
400 401 Table 2 402 <u>Strain</u> WVU18	Culture/ 853 S 853 Aar	Clone NE stro	EAC ong ^a	Reference Benčina et al., 20	01 06
400 401 Table 2 402 <u>Strain</u> WVU18 F102 A	Culture/ 853 S 853 Aar S C1	Clone NE stro stro stro	EAC ong ^a ong ong	Reference Benčina et al., 20 Ramirez et al., 20	01 06 92
400 401 Table 2 402 <u>Strain</u> WVU18 WVU18	Culture/ 853 S 853 Aar	Clone NE stro stro stro	EAC ong ^a ong	Reference Benčina et al., 20 Ramirez et al., 20 Avakian et al., 19 Noormohammadi	01 06 92 et al., 1997
400 401 402 Strain WVU18 F102 A K1723	Culture/ 853 S 853 Aar S C1 C23	<u>Clone NE</u> stro stro stro stro	EAC ong ^a ong ong ong	Reference Benčina et al., 20 Ramirez et al., 20 Avakian et al., 19 Noormohammadi Benčina et al., 20	01 06 92 et al., 1997 01, 2005
400 401 Table 2 402 <u>Strain</u> WVU18 F102 A	Culture/ 853 S 853 Aar S C1	<u>Clone NE</u> stro stro stro stro	EAC ong ^a ong ong	Reference Benčina et al., 20 Ramirez et al., 20 Avakian et al., 19 Noormohammadi Benčina et al., 20 Lockaby et al., 19	01 06 92 et al., 1997 01, 2005 998
400 401 402 Strain WVU18 WVU18 F102 A K1723 K1968	Culture/ 853 S 853 Aar S C1 C23 C3	Clone NE stro stro stro stro stro	EAC ong ong ong ong ong	Reference Benčina et al., 20 Ramirez et al., 20 Avakian et al., 19 Noormohammadi Benčina et al., 20 Lockaby et al., 19 Benčina et al., 20	01 06 92 et al., 1997 01, 2005 998 01
400 401 402 Strain WVU18 F102 A K1723	Culture/ 853 S 853 Aar S C1 C23 C3	Clone NE stro stro stro stro stro	EAC ong ^a ong ong ong	Reference Benčina et al., 20 Ramirez et al., 20 Avakian et al., 19 Noormohammadi Benčina et al., 20 Lockaby et al., 19 Benčina et al., 20 Avakian et al., 19	01 06 92 et al., 1997 01, 2005 998 01 92
400 401 402	Culture/ 853 S 853 Aar S C1 C23 C3 D AA3	Clone NE stro stro stro stro stro stro	EAC ong ong ong ong ong ong	Reference Benčina et al., 20 Ramirez et al., 20 Avakian et al., 19 Noormohammadi Benčina et al., 20 Lockaby et al., 19 Benčina et al., 20 Avakian et al., 19 Benčina et al., 20	01 06 92 et al., 1997 01, 2005 998 01 92 01
400 401 402 5train WVU18 WVU18 F102 A K1723 K1968 K2426I ULB 02	Culture/ 853 S 853 Aar S C1 C23 C3 D AA3 2/P4 P4	Clone NE stro stro stro stro stro stro stro stro	EAC ong ong ong ong ong ong ong	Reference Benčina et al., 20 Ramirez et al., 20 Avakian et al., 19 Noormohammadi Benčina et al., 20 Lockaby et al., 19 Benčina et al., 20 Avakian et al., 20 Benčina et al., 20	01 06 92 et al., 1997 01, 2005 998 01 92 01 01, 2005
400 401 Table 2 402 <u>Strain</u> WVU18 WVU18 F102 A K1723 K1968 K2426I ULB 02 ULB 02	Culture/ 353 S 353 Aar S C1 C23 C3 D AA3 2/P4 P4 2/T6 T6	Clone NE stro stro stro stro stro stro stro stro	EAC ong ong ong ong ong ong ong ong ong	Reference Benčina et al., 20 Ramirez et al., 20 Avakian et al., 19 Noormohammadi Benčina et al., 20 Lockaby et al., 19 Benčina et al., 20 Avakian et al., 20 Benčina et al., 20 Benčina et al., 20	01 06 92 et al., 1997 01, 2005 98 01 92 01 01, 2005 7
400 401 402 5train WVU18 WVU18 F102 A K1723 K1968 K2426I ULB 02	Culture/ 853 S 853 Aar S C1 C23 C3 D AA3 2/P4 P4 2/T6 T6 .22 C1	Clone NE stra stra stra stra stra stra stra stra	EAC ong ong ong ong ong ong ong ong ong ong	Reference Benčina et al., 20 Ramirez et al., 20 Avakian et al., 19 Noormohammadi Benčina et al., 20 Lockaby et al., 19 Benčina et al., 20 Avakian et al., 20 Benčina et al., 20	01 06 92 et al., 1997 01, 2005 98 01 92 01 01, 2005 7
400 401 402 5train WVU18 WVU18 F102 A K1723 K1968 K2426I ULB 02 ULB 02 ULB 02 ULB 91	Culture/ 853 S 853 Aar S C1 C23 C3 D AA3 2/P4 P4 2/C16 T6 22 C1 C2 C1	Clone NE stro stro stro stro stro stro stro stro	EAC ong ong ong ong ong ong ong ong ong ong	Reference Benčina et al., 20 Ramirez et al., 20 Avakian et al., 19 Noormohammadi Benčina et al., 20 Lockaby et al., 19 Benčina et al., 20 Avakian et al., 20 Benčina et al., 20 Benčina et al., 20 Benčina et al., 20 Benčina et al., 20	01 06 92 et al., 1997 01, 2005 98 01 92 01 01, 2005 7
400 401 Table 2 402 <u>Strain</u> WVU18 WVU18 F102 A K1723 K1968 K2426I ULB 02 ULB 02	Culture/ 353 S 353 Aar S C1 C23 C3 D AA3 2/P4 P4 2/P4 P4 2/T6 T6 22 C1 C2 C1 C2 S	Clone NE stro stro stro stro stro stro stro stro	EAC ong ong ong ong ong ong ong ong ong gative ^b gative	Reference Benčina et al., 20 Ramirez et al., 20 Avakian et al., 19 Noormohammadi Benčina et al., 20 Lockaby et al., 19 Benčina et al., 20 Avakian et al., 20 Benčina et al., 20 Benčina et al., 200 Benčina et al., 200 Narat et al., 1998	01 06 92 et al., 1997 01, 2005 998 01 92 01 01, 2005 7 01, 2005
400 401 402 Strain WVU18 WVU18 F102 A K1723 K1968 K2426I ULB 02 ULB 02 ULB 02 ULB 91	Culture/ 853 S 853 Aar S C1 C23 C3 D AA3 2/P4 P4 2/C16 T6 22 C1 C2 C1	Clone NE stra stra stra stra stra stra stra stra	EAC ong ong ong ong ong ong ong ong ong ong	Reference Benčina et al., 20 Ramirez et al., 20 Avakian et al., 19 Noormohammadi Benčina et al., 20 Lockaby et al., 19 Benčina et al., 20 Avakian et al., 20 Benčina et al., 20 Benčina et al., 20 Benčina et al., 20 Benčina et al., 20	01 06 92 et al., 1997 01, 2005 98 01 92 01 01, 2005 7 01, 2005 99, 2001

403

404 ^a Strong NEAC – samples (30 μ l) representing ~ 100-fold concentrated *M. synoviae* broth culture gave

405 positive NEAC within 1 hour.

- 406 ^b Samples did not give positive NEAC even when they contained highly concentrated cells (1000-fold)
- 407 and were incubated with BIN for 24 hours.

408

409

- 410
- 411

412 Table 3: Neuraminidase activity in other avian *Mycoplasma* species^a

413

	Ŀ		4	
Species	Strain ^b	Usual host ^c	NEAC ^d	
M. anatis	1340	Duck	negative	
M. anseris	1219	Goose	moderate	Bradbury et al., 1988
M. buteonis	BbT2g	Buteo hawk	negative	
M. cloacale	383	Turkey, goose	weak	Bradbury and Forrest, 1984
M. columbinasale	694	Pigeon	negative	
M. columbinum	MMP1	Pigeon	negative	
M. columborale	MMP4	Pigeon	negative	
M. corogypsi	BV1	Black vulture	very strong	Panangala et al., 1993
M. falconis	HT1	Saker falcon	negative	
M. gallinarum	PG 16	Chicken	negative	
M. gallinaceum	DD	Chicken	negative	
M. gallopavonis	WR1	Turkey	negative	
M. glycophilum	486	Chicken	negative	
M. gypis	B1T1	Griffon vulture	negative	
M. imitans	4229	Duck, Goose	negative	
M. iners	PG 30	Chicken	negative	
M. lipofaciens	R171	Chicken	negative	
M. pullorum	СКК	Chicken	weak ^d	Jordan et al., 1982
M. sturni	UCMF	European starling	negative	

414

415 ^a Note, data for *M. gallisepticum* and *M. synoviae* are in Tables 1 and 2, whereas for *M. meleagridis*

- 416 and *M. iowae* see section 3.4.
- 417 ^b Type strains were assayed. In the case of *M. cloacale, M. gallinarum* and *M. pullorum* also field
- 418 isolates were tested.

419 ^c Usual hosts or hosts from which the strain was isolated e.g. *M.corogypsi* from a black vulture

420 (Panangala et al., 1993).

421	^d Pelleted cells were examined for NEAC. Moderate NEAC, positive reaction at a dilution of 1:40 in
422	2 hours; weak NEAC - positive reaction appeared after overnight incubation. One culture of M.
423	pullorum (CKK) was (weakly) positive, whereas another culture of this strain and field isolates of M.
424	pullorum were negative.
425	
426	
427	Supplementary material:
428	
429	Fig. 1: NEAC in cultures of <i>M. gallisepticum</i> (strain R) and in cultures of <i>M. meleagridis</i>
430	(type strain 17529).
431	Panel A, R strain's cultures at low passages (designated L) revealed higher NEAC than
432	its cultures at high passages (designated H). Panel B, only M. meleagridis (17259)
433	cultures originating from the culture received from Dr. J. M. Bradbury revealed
434	NEAC (under 1 and 3).
435	
436	Fig. 2: NEAC titration in 96-well microtiter plates (double dilutions).
437	Row A, neuraminidase of C. perfringens (type V, Sigma); Row B, wells 2 - 6,
438	negative control (only buffer and BIN); Row C, M. synoviae WVU 1853; Row D, M.
439	synoviae ULB 925, KF; Row E, M. synoviae K1968; Row F, M.corogypsi BV1.
440	
441	Fig. 3: Mycoplasmal proteins exhibiting neuraminidase enzymatic activity.
442	Lane 1, <i>M. corogypsi</i> and lane 2, pre-stained molecular weight marker (PageRuler TM ,
443	Fermentas). Proteins were separated by SDS-PAGE in PhastGel Gradient 8-25 (GE
444	Healtcare, Sweden) and transferred to the Immobilon-P membrane by diffusion
445	blotting (45°C for 30 min). Following incubation in 0,5% PBS-Tween 20 (30 min), the
446	membrane was overlaid with 0,5 ml of buffer containing 250 μ g of BIN substrate. The

- 447 indigoblue staining of about 110 kDa protein of *M.corogypsi* appeared after 2 hours
- 448 (the arrowhead), whereas the staining of about 135-kDa *M. corogypsi* protein (lane 1,
- 449 arrow) appeared after 6 hours.
- 450