

Occurrence and species level diagnostics of spp., enteric spp. and spp. in healthy and diarrheic dogs and cats

M. Rossi, M.L. Hänninen, J. Revez, M. Hannula, R.G. Zanoni

▶ To cite this version:

M. Rossi, M.L. Hänninen, J. Revez, M. Hannula, R.G. Zanoni. Occurrence and species level diagnostics of spp., enteric spp. and spp. in healthy and diarrheic dogs and cats. Veterinary Microbiology, 2008, 129 (3-4), pp.304. 10.1016/j.vetmic.2007.11.014 . hal-00532361

HAL Id: hal-00532361 https://hal.science/hal-00532361

Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Occurrence and species level diagnostics of *Campylobacter* spp., enteric *Helicobacter* spp. and *Anaerobiospirillum* spp. in healthy and diarrheic dogs and cats

Authors: M. Rossi, M.L. Hänninen, J. Revez, M. Hannula, R.G. Zanoni

PII:	S0378-1135(07)00568-8
DOI:	doi:10.1016/j.vetmic.2007.11.014
Reference:	VETMIC 3889
To appear in:	VETMIC
Received date:	7-9-2007
Revised date:	9-11-2007
Accepted date:	15-11-2007

Please cite this article as: Rossi, M., Hänninen, M.L., Revez, J., Hannula, M., Zanoni, R.G., Occurrence and species level diagnostics of *Campylobacter* spp., enteric *Helicobacter* spp. and *Anaerobiospirillum* spp. in healthy and diarrheic dogs and cats, *Veterinary Microbiology* (2007), doi:10.1016/j.vetmic.2007.11.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	
2	
3	
4	
5	Occurrence and species level diagnostics of <i>Campylobacter</i> spp., enteric
6	Helicobacter spp. and Anaerobiospirillum spp. in healthy and diarrheic
7	dogs and cats.
8	
9	Rossi, M. ^{1*} , Hänninen, M.L. ² , Revez, J. ¹ , Hannula, M. ² , Zanoni, R.G. ¹
10	¹ Department of Veterinary Public Health and Animal Pathology, University of
11	Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy.
12	² Department of Food and Environmental Hygiene, University of Helsinki,
13	P.O.Box 66 00014, Helsinki, Finland.
14	
15	
16	Key words: Campylobacter, Helicobacter, Anaerobiospirillum, co-infection,
17	diagnostic, antibiotic resistance
18	
19	
20	
21	
22	
23	*Corresponding author
24	Rossi Mirko
25	E-mail: mirko.rossi4@unibo.it
26	Tel: +39 0512097065 Fax: +39 0512097039

27 Abstract

28	In order to study the occurrence and co-infection of different species of
29	Campylobacter, enteric Helicobacter and Anaerobiospirillum in dogs and cats
30	and define a possible association between these microrganisms and
31	gastrointestinal disorders, 190 dogs and 84 cats, either healthy or with
32	diarrhea, were sampled between 2002 and 2003. Thirty-three C. upsaliensis,
33	17 C. jejuni, 2 C. helveticus, 1 C. lari isolates from dogs and 14 C. helveticus,
34	7 C. jejuni, 6 C. upsaliensis isolates from cats were identified using species-
35	specific PCR and phenotypic tests. Whole cell protein profile analysis,
36	phenotypic tests, PCR-RFLP of gyrB and a phylogenetic study of partial
37	groEL and 16S rRNA sequences were used to identify 37 H. bilis, 22 H. canis
38	and 14 H. cinaedi in dogs and 12 H. canis, 5 H. bilis and 2 H. cinaedi in cats.
39	Whole cell protein profile analysis, phenotypic tests and species-specific PCR
40	of 16S rRNA were used to identify 14 A. succiniciproducens, 12 A. thomasii
41	isolates and one unidentified Anaerobiospirillum sp. isolate in dogs and 3 A.
42	thomasii isolates in cats. Fifty-two animals (19%) were positive for the
43	isolation of more than one genus. No significant statistical correlation was
44	found between any isolates of Campylobacter, Helicobacter or
45	Anaerobiospirillum spp. or the various co-infection rates, and the presence of
46	diarrhea in either dogs or cats. Campylobacter isolates were also tested for
47	antibiotic resistance using the agar dilution method.

Introduction 48 49 Campylobacter species, in particular Campylobacter jejuni and 50 Campylobacter coli, are considered to be the most frequent bacterial cause of human enteritis whereas their role as enteric pathogens in dogs and cats is 51 much less evident (Burnens et al., 1992; Sandberg et al., 2002; Engvall et al., 52 2003; Koene et al., 2004; Wieland et al., 2005). In addition, enteric 53 54 Helicobacter spp. have been isolated also from normal and diarrhoeic dogs 55 and cats (Stanley et al., 1993; Kiehlbauch et al., 1995; Foley et al., 1999; 56 Kipar et al., 2001) as well as from the liver of a dog with hepatitis (Fox et al., 57 1996) but their prevalence and role as pathogens in these animals have not 58 been well-established. Currently, the genus Anaerobiospirillum comprises two species, A. 59 succiniciproducens and A. thomasii, which have been isolated from dogs and 60 61 cats (Malnick, 1997) although, only few studies have related them to diarrhea 62 (Misawa et al., 2002; De Cock et al., 2004). 63 Mixed infections of *Campylobacter* spp. and *Helicobacter* spp. and 64 Anaerobiospirillum spp. have been described previously (Shen et al., 2001; 65 Misawa et al., 2002) but no extensive studies have been carried out on the co-66 infection in dogs and cats with these tree genera to verify any possible correlation with gastrointestinal disorders. 67 68 The aims of this survey were to: (i) study the occurrence and (ii) co-infection 69 of different species of Campylobacter, enteric Helicobacter and 70 Anaerobiospirillum in healthy and diarrhoeic dogs and cats; (iii) define a 71 possible association between these microrganisms and gastrointestinal 72 disorders; (iv) define a combination of phenotypic and genotypic tests which

73	could be used in diagnosing of these species. Antimicrobial susceptibility was
74	also determined for Campylobacter isolates.

75 Materials and methods

76 **Sampling and isolation**. Between 2002 and 2003, 274 samples of fresh 77 faeces from pet dogs and cats were collected by the owners and delivered to 78 private veterinary clinics located in province of Bologna. The study included 79 52 healthy dogs, 21 healthy cats as well as 138 dogs and 63 cats with 80 clinically diagnosed diarrhea. A maximum of one pet per household was 81 included in the study. The anamnesis revealed that all the animals had been 82 vaccinated against canine or feline Parvovirus, were negative for enteric 83 parasites and had not been treated with antibiotics for two months before 84 sampling. Moreover, all the animals in the study suffering from diarrhea had 85 been tested for Salmonella by direct plating faeces in different selective media and also by enrichment methods, resulting negative. The faeces were 86 87 transported to the laboratory in BBL-Cary and Blair Transport Medium 88 (Becton, Dickinson and Co., Sparks, MD 21152, USA) and processed within 89 12 h after collection. Approximately 5g of faeces were homogenized in 5 ml 90 of sterile saline and ten microlitres of each sample were streaked directly by a 91 loop onto three different selective media: Blaser-Wang's agar plate (Oxoid 92 LTD, Basingstoke, Hampshire, UK), Skirrow's agar plate (Oxoid) and 93 modified Charcoal Cefoperazone Deoxycholate Agar (Oxoid). The plates 94 were incubated in a jar at 37°C±1 under a microaerobic atmosphere with 95 hydrogen obtained by the gas replacement method with anaerobic gas mixture (H₂ 10%, CO₂ 10%, N₂ 80%) (Bolton et al., 1992) and examined daily for 96 97 growth for up to one week. Colonies of Gram negative, curved, spiral or 98 fusiform rod organisms were subcultivated on Difco-Brucella Agar (Becton,

99	Dickinson and Co.) supplemented with 10% sheep blood. After cloning, on
100	the basis of colony morphology and microscopic observation, the isolates
101	were roughly grouped into campylobacters, spiral-shaped helicobacters,
102	fusiform-shaped or cigar-like helicobacters and Anaerobiospirillum.
103	DNA extraction . The chromosomal DNA of bacteria was extracted using
104	DNeasy Tissue kit (Qiagen, GmbH D-40724, Hilden, Germany) according to
105	the manufacturer's instructions.
106	Genus identification. The isolates underwent genus specific PCRs for
107	Campylobacter (Linton et al. 1996), Helicobacter (Bohr et al. 2002), and
108	Anaerobiospirillum for which we developed a new PCR primer set. Forward
109	primer anasF437 5'-ACGTTACCCACAGAAGAAG-3' and reverse primer
110	anasR937 5'-CCTACGATGTCAAGGTCAG-3', designed from regions of
111	the 16S rRNA gene of A. succiniciproducens ATCC 29305 ^T (Accession
112	number U96412) and A. thomasii DSM 11806 ^T (Accession number
113	AJ420985), were used to amplify a 500 bp specific fragment. The specificity
114	of anasF437 and anasR937 primers was confirmed by comparing the
115	sequences of the purified amplicons of four different positive isolates with
116	deposited 16S rRNA sequences in non-redundant databases using BLASTN
117	(<u>http://www.ncbi.nlm.nih.gov/BLAST/</u>). The sequence similarity among all
118	four isolates and the sequences of Anaerobiospirillum deposited was always
119	>92%.
120	Identification of Campylobacter species. The isolates were identified at the
121	species level by C. jejuni - C. coli specific multiplex PCR (Denis et al., 1999),
122	C. upsaliensis - C. helveticus specific duplex PCR (Lawson et al., 1997) and
123	C. lari PCR (Linton et al., 1996). The isolates also underwent biochemical

124	tests using the methods, media and quality control strains recommended by
125	On et al. (1996) (see Table 2).
126	Identification of Helicobacter species. The isolates were identified at the
127	species level using whole cell protein profile analysis in 1D SDS-PAGE
128	(Zanoni et al., 2007) and biochemical characterization (see Table 2). All the
129	tests were performed according to On et al. (1996), except for the Gamma-
130	glutamyltranspeptidase production test which was carried out as
131	recommended by Zanoni et al. (2007). Further identification of urease-
132	negative spiral-shaped Helicobacter isolates was carried out by sequence
133	analysis of groEL (Mikkonen et al., 2004). Moreover, as an additional
134	identification tool for urease-positive fusiform shaped Helicobacter isolates, a
135	PCR-RFLP based on gyrB was used. Briefly, forward primer HBILISF 5'-
136	AATGGTGGCACACATGAAG-3' and reverse primer HBILISR 5'-
137	CGCAACCAAAGGCAGTAATC-3' were used to amplify a 600 bp
138	fragment. A specific restriction pattern (324, 224 and 52 bp) for H. bilis was
139	obtained using HindIII (New England Biolabs, Inc., 240 County Road,
140	Ipswich, MA 01938-2723 USA). Fusiform-shaped Helicobacter also
141	underwent morphological examination by Transmission Electron Microscopy
142	(TEM; ZEISS E 900) using 1% (w/v) phosphotungstate acid (Sigma Chemical
143	Co., St. Luis, MO63178, USA) as negative staining.
144	Identification of Anaerobiospirillum species. The isolates were first
145	identified by whole cell protein profile analysis in 1D SDS PAGE (Zanoni et
146	al., 2007). Moreover, phenotypic identification (see Table 3) was carried out
147	by employing enzymatic reactions using rapid ID 32 A (BioMérieux SA,
148	69280, Marcy l'etoile, France) and carbohydrate fermentation tests as
149	described by Malnick et al. (1990). The isolates were also identified as A.

150	thomasii by a PCR primer set thomF419 5'-GAGGAAATCGCAAGAGTG-3'
151	and thomR919 5'-GTAAGGTTCTTCGCGTTG-3', designed from the 16S
152	rRNA gene of <i>A. thomasii</i> DSM 11806 ^T (Accession number AJ420985)
153	developed in the present study. The specificity of this PCR was confirmed by
154	comparing the results obtained to those achieved by whole cell protein profile
155	analysis and phenotypic tests.
156	16S rRNA gene sequence analysis. The nearly complete 16S rRNA gene of
157	Helicobacter and Anaerobiospirillum isolates was amplified by using
158	universal primers p27f (5'-AGAGTTTGATCCTGGCTCAG- 3') and p1492r
159	(5'-TACGGCTACCTTGTTACGACT-5') and the PCR-amplified template
160	was sequenced by primer walking strategy (Primm s.r.l., Milan, Italy). All
161	sequences were compared directly with the NCBI GenBank nonredundant
162	nucleotide database using MEGABLAST
163	(<u>http://www.ncbi.nlm.nih.gov/BLAST/</u>). Subsequently, the nucleotide
164	sequences were aligned in BioEdit
165	(http://www.mbio.ncsu.edu/BioEdit/bioedit.html) with reference sequences
166	obtained from GenBank using ClustalW and the alignment was corrected
167	visually removing IVS regions. A phylogenetic tree was constructed in
168	MEGA3 (<u>http://www.megasoftware.net/</u>) using the neighbour-joining method.
169	Data were corrected for multiple base changes using the method of Jukes and
170	Cantor (Jukes and Cantor, 1969), and boostrap analysis was performed with
171	1000 resembled data sets.
172	Antimicrobial susceptibility. Minimum Inhibitory Concentration (MIC)
173	values of eight antimicrobial agents were determined on 78 Campylobacter
174	isolates (see Table 4). MICs values for C. jejuni isolates were determined by
175	the agar dilution method recommended by the Clinical and Laboratory

176	Standards Institute (CLSI, formerly NCCLS; NCCLS, 2002). Since not all
177	strains of C. upsaliensis and C. helveticus grew on Muller Hinton Agar
178	supplement with 5% sheep blood, the original method was modified as
179	described by Zanoni et al. (2007) for <i>Helicobacter pullorum</i> . The following
180	breakpoints for resistance were used: erythromycin $\ge 8 \ \mu g \cdot m l^{-1}$;
181	chloramphenicol \ge 32 µg·ml ⁻¹ ; gentamicin \ge 16 µg·ml ⁻¹ ; ampicillin \ge 32
182	$\mu g \cdot ml^{-1}$; tetracycline $\geq 16 \ \mu g \cdot ml^{-1}$; nalidixic acid $\geq 32 \ \mu g \cdot ml^{-1}$; ciprofloxacin \geq
183	4 μ g·ml ⁻¹ ; enrofloxacin \geq 4 μ g·ml ⁻¹ .
184	Statistical analysis. The results were analyzed using SPSS/PC+ statistical
185	package for logistic regression. The Yates-corrected χ^2 test or 2-tailed Fisher
186	exact test ($\alpha = 0.05$) were used for testing the correlation between the presence
187	of Campylobacter, Helicobacter or Anaerobiospirillum and gastrointestinal
188	disorders.
189	Results
189 190	Results Isolation. A total of 131 out of 274 animals sampled (51% of the dogs and
190	Isolation. A total of 131 out of 274 animals sampled (51% of the dogs and
190 191	Isolation. A total of 131 out of 274 animals sampled (51% of the dogs and 41.6% of the cats) were positive for at least one genus considered in our study.
190 191 192	Isolation. A total of 131 out of 274 animals sampled (51% of the dogs and 41.6% of the cats) were positive for at least one genus considered in our study. The isolation rates of the different species are shown in Table 1.
190 191 192 193	Isolation. A total of 131 out of 274 animals sampled (51% of the dogs and 41.6% of the cats) were positive for at least one genus considered in our study.The isolation rates of the different species are shown in Table 1.<i>Campylobacter</i> spp. were isolated from 53 dogs and from 27 cats,
190 191 192 193 194	 Isolation. A total of 131 out of 274 animals sampled (51% of the dogs and 41.6% of the cats) were positive for at least one genus considered in our study. The isolation rates of the different species are shown in Table 1. <i>Campylobacter</i> spp. were isolated from 53 dogs and from 27 cats, <i>Helicobacter</i> spp. from 65 dogs and 18 cats and <i>Anaerobiospirillum</i> spp. from
190 191 192 193 194 195	 Isolation. A total of 131 out of 274 animals sampled (51% of the dogs and 41.6% of the cats) were positive for at least one genus considered in our study. The isolation rates of the different species are shown in Table 1. <i>Campylobacter</i> spp. were isolated from 53 dogs and from 27 cats, <i>Helicobacter</i> spp. from 65 dogs and 18 cats and <i>Anaerobiospirillum</i> spp. from 27 dogs and 3 cats. From the canine samples, the highest isolation rate was for
190 191 192 193 194 195 196	 Isolation. A total of 131 out of 274 animals sampled (51% of the dogs and 41.6% of the cats) were positive for at least one genus considered in our study. The isolation rates of the different species are shown in Table 1. <i>Campylobacter</i> spp. were isolated from 53 dogs and from 27 cats, <i>Helicobacter</i> spp. from 65 dogs and 18 cats and <i>Anaerobiospirillum</i> spp. from 27 dogs and 3 cats. From the canine samples, the highest isolation rate was for <i>H. bilis</i> (19.5%) followed by <i>C. upsaliensis</i> (17.3%), <i>H. canis</i> (11%), <i>C. jejuni</i>
190 191 192 193 194 195 196 197	 Isolation. A total of 131 out of 274 animals sampled (51% of the dogs and 41.6% of the cats) were positive for at least one genus considered in our study. The isolation rates of the different species are shown in Table 1. <i>Campylobacter</i> spp. were isolated from 53 dogs and from 27 cats, <i>Helicobacter</i> spp. from 65 dogs and 18 cats and <i>Anaerobiospirillum</i> spp. from 27 dogs and 3 cats. From the canine samples, the highest isolation rate was for <i>H. bilis</i> (19.5%) followed by <i>C. upsaliensis</i> (17.3%), <i>H. canis</i> (11%), <i>C. jejuni</i> (8.9%), <i>H. cinaedi</i> (7.9%), <i>A. succiniciproducens</i> (7.4%) and <i>A. thomasii</i>
190 191 192 193 194 195 196 197 198	 Isolation. A total of 131 out of 274 animals sampled (51% of the dogs and 41.6% of the cats) were positive for at least one genus considered in our study. The isolation rates of the different species are shown in Table 1. <i>Campylobacter</i> spp. were isolated from 53 dogs and from 27 cats, <i>Helicobacter</i> spp. from 65 dogs and 18 cats and <i>Anaerobiospirillum</i> spp. from 27 dogs and 3 cats. From the canine samples, the highest isolation rate was for <i>H. bilis</i> (19.5%) followed by <i>C. upsaliensis</i> (17.3%), <i>H. canis</i> (11%), <i>C. jejuni</i> (8.9%), <i>H. cinaedi</i> (7.9%), <i>A. succiniciproducens</i> (7.4%) and <i>A. thomasii</i> (6.3%). In cats, the highest isolation rate was for <i>C. helveticus</i> (16.7%)
190 191 192 193 194 195 196 197 198 199	 Isolation. A total of 131 out of 274 animals sampled (51% of the dogs and 41.6% of the cats) were positive for at least one genus considered in our study. The isolation rates of the different species are shown in Table 1. <i>Campylobacter</i> spp. were isolated from 53 dogs and from 27 cats, <i>Helicobacter</i> spp. from 65 dogs and 18 cats and <i>Anaerobiospirillum</i> spp. from 27 dogs and 3 cats. From the canine samples, the highest isolation rate was for <i>H. bilis</i> (19.5%) followed by <i>C. upsaliensis</i> (17.3%), <i>H. canis</i> (11%), <i>C. jejuni</i> (8.9%), <i>H. cinaedi</i> (7.9%), <i>A. succiniciproducens</i> (7.4%) and <i>A. thomasii</i> (6.3%). In cats, the highest isolation rate was for <i>C. helveticus</i> (16.7%) followed by <i>H. canis</i> (14.3%), <i>C. jejuni</i> (8.3%), <i>C. upsaliensis</i> (7.2%), <i>H. bilis</i>

202	were positive for the isolation of more than one genus. Co-infection with
203	Campylobacter and Helicobacter, observed in about 10% of both dog and cat
204	samples, was the most frequent while only 8 dogs (4 healthy and 4 with
205	diarrhea) and 2 cats with diarrhea were simultaneously infected by all three
206	genera. Co-infection with Campylobacter and Anaerobiospirillum was found
207	in 6 dogs (3.1%) and 1 cat (1.2%) whereas a mixed co-infection of
208	Helicobacter and Anerobiospirllum was found in 8 dogs (4.2%).
209	Identification of Campylobacter spp. Eighty strains of Campylobacter spp.
210	were isolated in this study: 24 C. jejuni, 39 C. upsaliensis, 16 C. helveticus
211	and 1 C. lari. The results of the biochemical characterization of
212	Campylobacter spp. are shown in Table 2. Genotypic identification using
213	species-specific PCR was concordant with biochemical characterization.
214	Identification of Helicobacter spp. A total of 92 strains of Helicobacter spp.
215	were isolated: 42 H. bilis, 33 H. canis and 17 H. cinaedi. Biochemical
216	characterization results of Helicobacter spp. are shown in Table 2. The
217	numerical analysis of the protein electrophoregrams pointed out 42 urease-
218	positive fusiform-shaped Helicobacter isolates in one cluster with an 82% of
219	similarity to <i>H. bilis</i> ATCC 51630^{T} (data not shown). All these isolates,
220	according to TEM analysis, had a net-like ultrastructure with periplasmic
221	fibers on the surface and bipolar tufts of sheated flagella; moreover, they
222	showed a <i>HindIII</i> pattern of the gyrB fragment (324, 224 and 52 bp - data not
223	shown) identical to <i>H. bilis</i> . On the basis of both phenotypic and genotypic
224	results, we found that all 42 urease-positive isolates were <i>H. bilis</i> . Fifty
225	urease-negative spiral-shaped Helicobacter isolates were divided, by whole
226	cell protein profile analysis, into 3 different groups with more than 82% of
227	similarity within the clusters: (i) H. canis ATCC 51401 cluster; (ii) H. cinaedi

228	CCUG 18818 cluster and (iii) a group including ten isolates which did not
229	cluster with any of the reference strains. Visual analysis of the protein profiles
230	of these ten isolates showed a high level of similarity with H. canis, except for
231	two dense low-molecular weight bands absent in the <i>H. canis</i> reference strain
232	(data not shown). A phylogenetic tree based on the partial groEL sequences of
233	the isolates referring to the group mentioned above, along with randomly
234	selected 4 putative H. canis and 3 putative H. cinaedi isolates, is presented in
235	Figure 1a. Six out of the ten isolates were closely related with the four
236	putative and reference H. canis strains, while four isolates (isolate numbers
237	192, 163, 170, 162) clustered together in a distinct clade separated from the
238	other <i>H. canis</i> strains with high bootstrap value (100). The sequence similarity
239	between these two distinct clusters was 94% and within the ten sequences
240	ranged from 93,1% to 100%. A similar divergence in nucleotide sequences
241	was observed also for <i>H. cinaedi</i> strains. This divergence was not supported
242	by the phylogenetic tree based on deduced partial GroEL protein sequences
243	(Figure 1b), which showed a high similarity within all the <i>H. canis</i> or <i>H.</i>
244	cinaedi sequences. MEGABLAST analysis of partial 16S rRNA sequences
245	indicated that there was a very high degree of sequence similarity among
246	isolates 192, 163, 170 and 162 and H. canis. Phylogenetic analysis showed a
247	robust clade including H. canis strains (data not shown). For all four16S
248	rRNA gene sequences, the similarity with the type strain of <i>H. canis</i> (strain
249	NCTC 12739) was >99%. Analysis of the partial groEL and 16S rRNA
250	sequences demonstrated that these ten isolates were H. canis and supported
251	the whole cell protein profile results.
252	Identification of Anaerobiospirillum spp. A total of 30 Anaerobiospirillum
253	were isolated: 15 A. thomasii, 14 A. succiniciproducens and 1 unidentified

254	Anaerobiospirillum. Numerical analysis of the protein profiles divided the
255	isolates at 83% of similarity in two major clusters, A. succiniciproducens and
256	A. thomasii, and into a single profile concerning the isolate 78/9/02 (data not
257	shown). Divergence between the 78/9/02 isolate and the other
258	Anaerobiospirillum spp. was also observed by biochemical characterization
259	(Table 3): the isolate was positive for α -galoctosidase and produced acid from
260	fructose, raffinose and adonitol. For A. succiniciproducens and A. thomasii
261	isolates the biochemical results were consistent with those published
262	previously by Malnick (1997), except for two isolates (44/6/02 and 78/3/02)
263	of A. succiniciproducens which were not able to produced acid from raffinose.
264	In order to obtain further taxonomic data, an analysis of the partial 16S rRNA
265	sequence of the 78/9/02 isolate was carried out. A high degree of sequence
266	similarity (>99%) between 78/9/02 and the 3J102 strain of Anaerobiospirillum
267	sp. isolated in a puppy with hemorrhagic diarrhea (Misawa et al., 2002) was
268	found by MEGABLAST analysis. Phylogenetic analysis indicated a close
269	genetic relationship between the 78/9/02 and 3J102 strains as well as their
270	clear separation from the other Anaerobiospirillum spp. (Figure 2). The
271	genotypic identification of A. thomasii isolates by thomF419 and thomR919
272	primer set was always concordant with biochemical and 1D SDS PAGE data.
273	Antibiotic susceptibility testing. The distribution of MIC values and the
274	overall resistance rates of the 78 Campylobacter strains tested are presented in
275	Table 4. The fluoroquinolones resistance were most common resistance
276	among isolates. One out of 24 C. jejuni isolates showed multidrug resistance
277	to nalidixic acid, ciprofloxacin, tetracycline and ampicillin; while other five C.
278	jejuni strains were resistant to nalidixic acid, ciprofloxacin and tetracycline at
279	the same time.

280	Statistical analysis. Based on the results of χ^2 tests or the 2-tailed Fisher exact
281	test ($\alpha = 0.05$), no statistically significant correlation was found between the
282	isolation of Campylobacter, Helicobacter, Anaerobiospirillum or different co-
283	infection rates, and the presence of gastroenteric disorders, in either dogs or
284	cats. Moreover, no positive association between the presence of diarrhea and
285	Campylobacter, Helicobacter or Anaerobiospirillum isolation in dogs and cats
286	was found when matching the healthy and ill animals on sex and age.
287	Nucleotide sequence accession numbers. Partial sequence of 16S rRNA
288	gene of the H. canis isolates 162, 163, 170, 192 and the Anaerobiospirullum
289	isolate 78/9/02 were submitted to GenBank with the follow accession
290	numbers: EF569185, EU144017, EU144018, EU144019 and EF428122.
291	Partial sequence of groEL of the H. canis isolates 142, 143, 148, 149, 155,
292	162, 163, 168, 170, 171, 185, 188, 192, 194 and <i>H. cinaedi</i> isolates 139, 161
293	and 190 were submitted to GenBank with the follow accession numbers:
294	EU233438, EU233439, EU233440, EU233441, EU233442, EU233443,
295	EU233444, EU233445, EU233446, EU233447, EU233448, EU233449,
296	EU233450, EU233451 and EU233452, EU233453, EU233454.
297	Discussion and conclusion
298	There is a paucity data regarding the occurrence of mixed infections of
299	Campylobacter spp., enteric Helicobacter spp. and Anaerobiospirillum spp. in
300	dogs and cats. To our knowledge, only two studies have been published. Shen
301	et al. (2001) reported a high prevalence (26%) of co-infections by
302	Campylobacter spp. and enteric Helicobacter spp. in a large number of
303	clinically healthy cats using species-specific PCR-RFLP. Furthermore,
304	Misawa et al. (2002) described a mixed infection with Campylobacter spp.,
305	enteric Helicobacter spp. and Anaerobiospirillum spp. in a puppy with

306	hemorrhagic diarrhea. In the present study, which represents the first
307	extensive investigation on co-infection by Campylobacter spp., enteric
308	Helicobacter spp. and Anaerobiospirillum spp. in healthy or diarrhoeic dogs
309	and cats, 27 animals (10%) were found to be infected with <i>Campylobacter</i>
310	spp. and Helicobacter spp., and eight dogs and two cats were positive for all
311	three genera.
312	The isolation rates of different Campylobacter spp. observed in our study
313	were similar to those described in other countries (Burnens et al., 1992;
314	Sandberg et al., 2002; Hald et al., 2004). C. upsaliensis was the most
315	frequently isolated species in dogs and C. helveticus from cats while the
316	isolation rates of <i>C. jejuni</i> were similar in both animals.
317	Concerning Helicobacter, in 1993 Stanley et al. first described a prevalence of
318	about 1.5% of <i>H. canis</i> in one thousand healthy and diarrhoeic domestic pets.
319	Then, H. canis was isolated by Fox et al. (1996) in a dog liver with multifocal
320	necrotizing hepatitis, by Foley et al. (1999) in four bengal cats with endemic
321	diarrhea and by Shen et al. (2001) in one healthy cat. Canine and feline H.
322	cinaedi strains were reported by different authors (Kiehlbauch et al., 1995;
323	Vandamme et al. 2000; Misawa et al. 2002) but prevalences of this species in
324	dogs or cats are not currently available. Helicobacter sp. flexispira taxon 8,
325	recently included in the H. bilis species (Hänninen et al., 2005), was first
326	isolated from an asymptomatic young dog and from its owners by Romero et
327	al. (1988). Further descriptions of these isolates were reported by Dewhirst et
328	al. (2000), Shen et al. (2001) and Hänninen et al. (2005) in healthy pets, but
329	no data about prevalence are available in these studies. In our study, the most
330	frequent isolates were <i>H. bilis</i> (15,3%) followed by <i>H. canis</i> (12%) and finally
331	<i>H. cinaedi</i> (6,2%).

332	Studies regarding the prevalence of different Anaerobiospirillum species in
333	dogs and cats have not previously been published, even if Malnick et al.
334	(1990) reported that these bacteria may belong to the normal faecal flora of
335	these animals. We detected <i>A. succiniciproducens</i> in 7.4% of animals and <i>A.</i>
336	thomasii in 5.5%.
337	On the basis of our results, no statistically significant correlation between
338	isolation of single or mixed infections and the presence of diarrhea was
339	observed. Concerning Campylobacter spp., these data are in agreement with
340	those described by Sandberg et al. (2002) in an analogous study.
341	To overcome the difficult identification of Helicobacter spp., in our study it
342	was indispensable to use a polyphasic approach, in order to define a real
343	frequency of these species and subsequently to evaluate their pathogenic role
344	in the animal hosts. Actually, misidentification of Helicobacter spp. is
345	frequent, due to their taxonomic complexity and the morphological similarity
346	of some species with Campylobacter. 16S rRNA sequence analysis, which is a
347	common tool for bacterial species identification, is not suitable for all enteric
348	Helicobacter spp. inasmuch as sequence variation within a species can be as
349	high as 4.5% and, on other hand, the sequences of two species can be 99%
350	similar (Vandamme et al., 2000; Hänninen et al., 2003).
351	This identification strategy, applied to Anaerobiospirillum spp., also allowed
352	the detection of a strain from a dog (isolate 78/9/02) which was not
353	identifiable at the species level. In particular, the nearly complete 16S rRNA
354	gene revealed a close genetic relationship between this isolate and the strain
355	3J102 isolated by Misawa et al. (2002) from a puppy as well as its clear
356	separation from the other Anaerobiospirillum spp., indicating that both
357	isolates probably belong to a new taxon.

358	Moreover, the polyphasic approach has permitted the development of novel
359	genomic diagnostic tools for the identification of Helicobacter spp. and
360	Anaerobiospirillum spp Recently, Hannula and Hänninen (2007) showed that
361	partial gyrB gene sequence analysis proved to be a particularly well-suited
362	tool for phylogenetic analysis of <i>Helicobacter</i> and, in particular, for
363	distinguishing closely related species which belong to the 'flexispira-like'
364	group. In this study, we developed a new PCR-RFLP analysis of gyrB in order
365	to differentiate <i>H. bilis</i> from the other members of this group.
366	Likewise, new PCR approaches were described for rapid and simple
367	identification both at the genus level of Anaerobiospirillum and the species
368	level of A. thomasii; the previously used conventional phenotypic methods for
369	this identification were difficult and time consuming.
370	Some studies showed that approximately 6% of human enteric
371	campylobacteriosis is transmitted from pets (Tenkate and Stafford, 2001) and
372	that these animals represent potential sources of the spread of antimicrobial
373	resistance due to their close contact with humans (Guardabassi et al., 2004).
374	Direct evidence of the transmission of fluoroquinolone resistant C. jejuni
375	between humans and pets living in the same households has also been shown
376	(Damborg et al., 2004). Currently, macrolides and fluoroquinolone are the
377	antibiotics of choice when therapeutic intervention is warranted in human
378	campylobacteriosis. Our results showed the absence of resistance to
379	erythromycin in Campylobacter isolates but a high percentage of C. jejuni
380	isolates were resistant to nalidixic acid and ciprofloxacin, with values higher
381	than those described by Sanberg et al. (2002) in Norway. These data probably
382	reflect the extensive use of fluoroquinolones in dogs and cats in Italy.

383

384		Acknowledgements
385		We thank Prof. Peter Vandamme and Lies Debruyne PhD, University of Gent,
386		for his kind suggestion on the identification of Helicobacter and for her
387		technical support.
388		References
389	1.	Bohr, U.R., Primus, A., Zagoura, A., Glasbrenner, B., Wex, T., Malfertheiner,
390		P., 2002. A group-specific PCR assay for the detection of Helicobacteraceae
391		in human gut. Helicobacter. 7(6), 378-383.
392	2.	Burnens, A.P., Angeloz-Wick, B., Nicolet, J., 1992. Comparison of
393		Campylobacter carriage rates in diarrheic and healthy pet animals. Zentralbl.
394		Veterinarmed. B. 39(3), 175-80.
395	3.	Bolton, F.J., Wareing, D.R.A., Skirrow, M.B., Hutchinson, D.N., 1992.
396		Identification and biotyping of campylobacters. In: Board, R.G., Jones, D.,
397		Skinner, F.A. (Eds). Identification Methods in Applied and Environmental
398		Microbiology. Blackwell Scientific Publications, Oxford. Pp. 151-161.
399		Damborg, P., Olsen, K.E., Moller Nielsen, E., Guardabassi, L., 2004.
400		Occurrence of Campylobacter jejuni in pets living with human patients
401		infected with C. jejuni. J. Clin. Microbiol. 42(3), 1363-1364.
402	4.	De Cock, H.E., Marks, S.L., Stacy, B.A., Zabka, T.S., Burkitt, J., Lu, G.,
403		Steffen, D.J., Duhamel, G.E., 2004. Ileocolitis associated with
404		Anaerobiospirillum in cats. J. Clin. Microbiol. 42(6), 2752-2758.
405	5.	Denis, M., Soumet, C., Rivoal, K., Ermel, G., Blivet, D., Salvat, G., Colin, P.,
406		1999. Development of a m-PCR assay for simultaneous identification of
407		Campylobacter jejuni and C. coli. Lett. Appl. Microbiol. 29(6):406-410.

408	6.	Dewhirst, F.E., Fox, J.G., Mendes, E.N., Paster, B.J., Gates, C.E., Kirkbride,
409		C.A., Eaton K.A., 2000. 'Flexispira rappini' strains represent at least 10
410		Helicobacter taxa. Int. J. Syst. Evol. Microbiol. 50, 1781-1787.
411	7.	Engvall, E.O., Brandstrom, B., Andersson, L., Baverud, V., Trowald-Wigh,
412		G., Englund, L., 2003. Isolation and identification of thermophilic
413		Campylobacter species in faecal samples from Swedish dogs. Scand. J. Infect.
414		Dis. 35(10), 713-718.
415	8.	Foley, J.E., Marks, S.L., Munson, L., Melli, A., Dewhirst, F.E., Yu, S., Shen,
416		Z., Fox, J.G., 1999. Isolation of Helicobacter canis from a colony of bengal
417		cats with endemic diarrhea. J. Clin. Microbiol. 37(10), 3271-3275.
418	9.	Fox, J.G., Drolet, R., Higgins, R., Messier, S., Yan, L., Coleman, B.E., Paster,
419		B.J., Dewhirst, F.E., 1996. Helicobacter canis isolated from a dog liver with
420		multifocal necrotizing hepatitis. J. Clin. Microbiol. 34(10), 2479-2482.
421	10.	Guardabassi, L., Schwarz, S., Lloyd, D.H., 2004. Pet animals as reservoirs of
422		antimicrobial-resistant bacteria. J. Antimicrob. Chemother. 54(2), 321-332.
423	11.	Hänninen, M.L., Utriainen, M., Happonen, I., Dewhirst, F.E., 2003.
424		Helicobacter sp. flexispira 16S rDNA taxa 1, 4 and 5 and Finnish porcine
425		Helicobacter isolates are members of the species Helicobacter trogontum
426		(taxon 6). Int. J. Syst. Evol. Microbiol. 53, 425-433.
427	12.	Hänninen, M.L., Karenlampi, R.I., Koort, J.M., Mikkonen, T., Bjorkroth, K.J.,
428		2005. Extension of the species Helicobacter bilis to include the reference
429		strains of Helicobacter sp. flexispira taxa 2, 3 and 8 and Finnish canine and
430		feline flexispira strains. Int. J. Syst. Evol. Microbiol. 55, 891-898.
431	13.	Hannula, M., Hänninen, M.L., 2007. Phylogenetic analysis of Helicobacter
432		species based on partial gyrB gene sequences. Int. J. Syst. Evol. Microbiol. 57,
433		444-449.

434	14. Jukes, T.H., Cantor, C.R., 1969. Evolution of protein molecules. Butler, J.E.,
435	In: Munro, H.N. (Ed.), Mammalian protein metabolism, Academic Press Inc.,
436	New York, pp. 21-123.
437	15. Kiehlbauch, J.A., Brenner, D.J., Cameron, D.N., Steigerwalt, A.G.,
438	Makowski, J.M., Baker, C.N., Patton, C.M., Wachsmuth, I.K., 1995.
439	Genotypic and phenotypic characterization of Helicobacter cinaedi and
440	Helicobacter fennelliae strains isolated from humans and animals. J. Clin.
441	Microbiol. 33(11), 2940-2947.
442	16. Kipar, A., Weber, M., Menger, S., Harmsen, D., 2001. Fatal gastrointestinal
443	infection with 'Flexispira rappini'-like organisms in a cat. J. Vet. Med. B
444	Infect. Dis. Vet. Public. Health. 48(5), 357-365.
445	17. Koene, M.G., Houwers, D.J., Dijkstra, J.R., Duim, B., Wagenaar, J.A., 2004.
446	Simultaneous presence of multiple Campylobacter species in dogs. J. Clin.
447	Microbiol. 42(2), 819-821.
448	18. Lawson, A.J., Linton, D., Stanley, J., Owen, R.J., 1997. Polymerase chain
449	reaction detection and speciation of Campylobacter upsaliensis and C.
450	helveticus in human faeces and comparison with culture techniques. J. Appl.
451	Microbiol. 83(3), 375-380.
452	19. Linton, D, Owen, R.J., Stanley, J., 1996. Rapid identification by PCR of the
453	genus Campylobacter and of five Campylobacter species enteropathogenic for
454	man and animals. Res. Microbiol. 147(9), 707-718.
455	20. Malnick, H., 1997. Anaerobiospirillum thomasii sp. nov., an anaerobic spiral
456	bacterium isolated from the feces of cats and dogs and from diarrheal feces of
457	humans, and emendation of the genus Anaerobiospirillum. Int. J. Syst.
458	Bacteriol. 47(2), 381-384.

459	21. Malnick, H., Williams, K., Phil-Ebosie, J., Levy, A.S., 1990. Description of a
460	medium for isolating Anaerobiospirillum spp., a possible cause of zoonotic
461	disease, from diarrheal feces and blood of humans and use of the medium in a
462	survey of human, canine, and feline feces. J. Clin. Microbiol. 28(6), 1380-
463	1384.
464	22. Mikkonen, T.P., Karenlampi, R.I., Hänninen, M.L., 2004. Phylogenetic
465	analysis of gastric and enterohepatic Helicobacter species based on partial
466	HSP60 gene sequences. Int. J. Syst. Evol. Microbiol. 54, 53-58.
467	23. Misawa, N., Kawashima, K., Kondo, F., Kushima, E., Kushima, K.,
468	Vandamme, P., 2002. Isolation and characterization of Campylobacter,
469	Helicobacter, and Anaerobiospirillum strains from a puppy with bloody
470	diarrhea. Vet. Microbiol. 87(4), 353-364.
471	24. National Committee for Clinical Laboratory Standards (NCCLS), 2002.
472	Performance Standards for Antimicrobial Disk and Dilution Susceptibility
473	Tests for Bacteria Isolated from Animals, Second edition. NCCLS, Wayne,
474	PA, p. 80. Approved Standard M31-A2.
475	25. On, S.L., Holmes, B., Sackin, M.J., 1996. A probability matrix for the
476	identification of campylobacters, helicobacters and allied taxa. J. Appl.
477	Bacteriol. 81(4), 425-432.
478	26. Sandberg, M., Bergsjo, B., Hofshagen, M., Skjerve, E., Kruse, H., 2002. Risk
479	factors for Campylobacter infection in Norwegian cats and dogs. Prev. Vet.
480	Med. 55(4), 241-253.
481	27. Shen, Z., Feng, Y., Dewhirst, F.E., Fox, J.G., 2001. Coinfection of enteric
482	Helicobacter spp. and Campylobacter spp. in cats. J. Clin. Microbiol. 39(6),
483	2166-2172

484	28. Stanley, J., Linton, D., Burnens, A.P., Dewhirst, F.E., Owen, R.J., Porter, A.,
485	On, S.L., Costas, M., 1993. Helicobacter canis sp. nov., a new species from
486	dogs: an integrated study of phenotype and genotype. J. Gen. Microbiol.
487	139(10), 2495-2504.
488	29. Tenkate, T.D., Stafford, R.J., 2001. Risk factors for Campylobacter infection
489	in infants and young children: a matched case-control study. Epidemiol.
490	Infect. 127(3), 399-404.
491	30. Vandamme, P., Harrington, C.S., Jalava, K., On, S.L., 2000. Misidentifying
492	helicobacters: the Helicobacter cinaedi example. J. Clin. Microbiol. 38(6),
493	2261-2266.
494	31. Wieland, B., Regula, G., Danuser, J., Wittwer, M., Burnens, A.P., Wassenaar,
495	T.M., Stark, K.D., 2005. Campylobacter spp. in dogs and cats in Switzerland:
496	risk factor analysis and molecular characterization with AFLP. J. Vet. Med. B
497	Infect. Dis. Vet. Public. Health. 52(4), 183-189.
498	32. Zanoni, R.G., Rossi, M., Giacomucci, D., Sanguinetti, V., Manfreda, G., 2007.
499	Occurrence and antibiotic susceptibility of Helicobacter pullorum from broiler
500	chickens and commercial laying hens in Italy. Int. J. Food Microbiol. 116(1),
501	168-173.

Ð Ē P A.

502 Table 1. Isolation rates (%) of Campylobacter spp., enteric Helicobacter spp. and

	Dogs				Cats			
Species	Total (n=190)		Healthy (n=52)	Diarrhoeic (n=138)	Total (n=84)		Healthy (n=21)	Diarrhoeic (n=63)
C. jejuni	8,9	[17] ^a	11,5	7,9	8,3	[7]	4,8	9,5
C. upsaliensis	17,3	[33]	30,8	12,3	7,2	[6]	14,3	4,8
C. helveticus	1	[2]	1,9	0,7	16,7	[14]	19	15,9
C. lari	0,5	[1]	1,9	-	-	-	-	-
H. canis	11	[21]	21,2	7,3	14,3	[12]	28,6	9,5
H. cinaedi	7,9	[15]	5,8	8,7	2,4	[2]	4,8	1,6
H. bilis	19,5	[37]	36,5	13,1	5,9	[5]	4,8	6,3
A. succiniciproducens	7,4	[14]	7,7	7,3		-	-	-
4. thomasii	6,3	[12]	17,3	2,2	3,6	[3]	-	4,8
Unidentified	0,5	[1]	-	1,9	-	-	-	-
4								
-	r of isolates		6					
<i>Anaerobiospirillum</i> ¹ In square bracket the numbe	r of isolates	Š						

503 Anaerobiospirillum spp. from healthy and diarrhoeic dogs and cats.

504 ^a In square bracket the number of isolates

505 Table 2. Phenotypic characteristics of the 80 isolates of *Campylobacter* spp. and 92

506 Helicobacter spp

Phenotypic tests ^a	C. jejuni	C. upsaliensis	C. helveticus	C. lari	H. canis	H. cinaedi	H. bilis
	(n=24)	(n=39)	(n=16)	(n=1)	(n=33)	(n=17)	(n=42)
Positive reaction to							
Oxidase	24	39	16	1	33	17	42
Catalase	24	4	6	1	1	4	2
Urease	0	0	0	0	0	0	42
Hippurate hydrolysis	24	0	0	0	ND	ND	ND
Indoxyl acetate hydrolysis	24	39	16	0	31	8	3
γ -Glutamyltranspeptidase	ND	ND	ND	ND	32	0	42
Alkaline phosphatase	ND	ND	ND	ND	20	10	42
Trace H ₂ S in TSI	0	0	0	0	ND	ND	ND
Nitrate reduction	24	39	16	1	0	15	0
Growth on special media							
MacConkey	24	7	1	1	ND	ND	ND
Growth on media containing							
1% (w/v) bile	ND	ND	ND	ND	27	10	0
0,04% (w/v) TTC	17	0	0	0	ND	ND	ND
0,1% sodium selenite	ND	39	0	ND	ND	ND	ND
Growth at							
37°C (mO ₂)	24	39	16	1	33	17	42
37°C (O ₂)	0	0	0	0	0	0	0
37°C (AnO ₂)	0	0	0	0	1	9	0
42°C (mO ₂)	24	39	16	1	33	15	42
25°C (mO ₂)	0	0	0	0	0	0	0
Resistant to							
nalidixic acid	14	3	0	1	1	1	0
cephalotin	24	0	0	1	13	14	41

a ND, not done; mO₂ microaerobically plus H₂; O₂, aerobically; AnO₂, anaerobically; TSI, Triple Sugar Iron Agar; TTC, 2,3,5-triphenyltetrazolium chloride

Phenotypic tests	A. succiniciproducens	A. thomasii	Unidentified Anaerobiospirillum ^b
51	14	15	1
Positive reaction to ^a			
α-galactosidase	0	0	1
β- galactosidase	14	0	1
α-glucosidase	14	0	1
β-N-acetil-glucosaminidase	14	15	1
leucine arylamidase	9	0	0
Acid from			
D-mannitol	0	0	0
D-(-)-fructose	14	0	1
adonitol	0	15	1
D-(+)-raffinose	12	0	1
			·
^a API enzymes, rapid ID 32 A (BioMo			

508 Table 3. Phenotypic characteristics of the 30 isolates of Anaerobiospirillum spp.

509

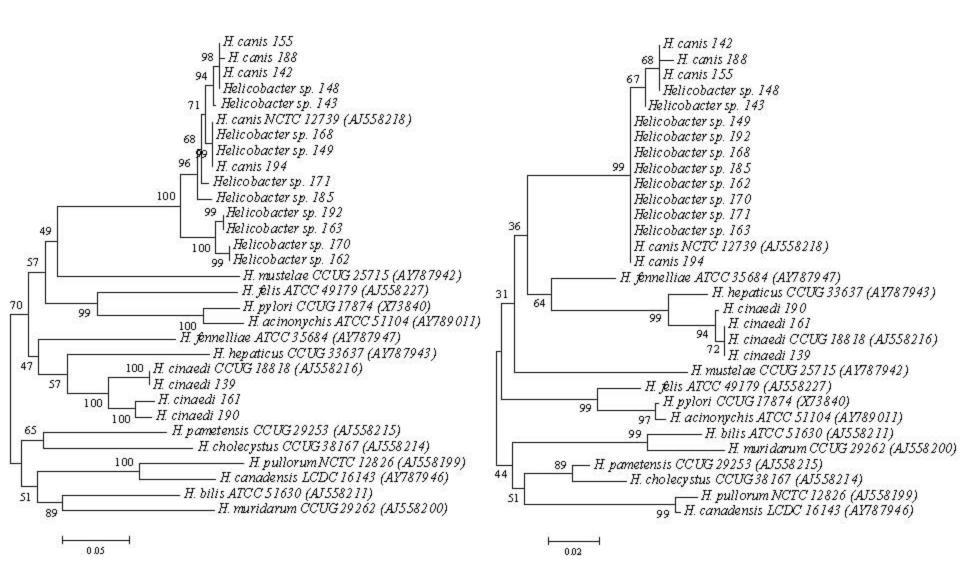
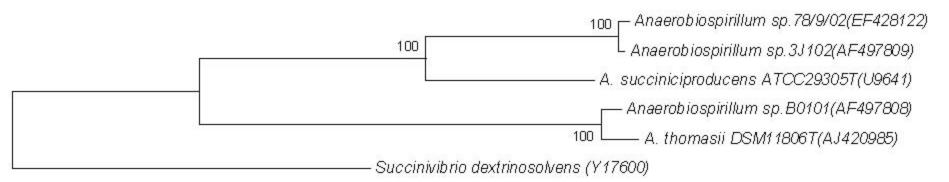
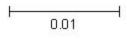

510 511	
512 513 514	
515 516 517	
518 519 520	
521 522 523	
524 525 526	
527 528 529 530	
530 531 532 533	
534 535 536	
537 538 539	
540 541 542	
543 544 545	
$\begin{array}{c} 510\\ 511\\ 512\\ 513\\ 514\\ 515\\ 516\\ 517\\ 518\\ 519\\ 520\\ 521\\ 522\\ 523\\ 524\\ 525\\ 526\\ 527\\ 528\\ 529\\ 530\\ 531\\ 532\\ 536\\ 537\\ 538\\ 539\\ 540\\ 541\\ 542\\ 546\\ 547\\ 548\\ 549\\ 549\\ 549\\ 549\\ 549\\ 549\\ 549\\ 549$	
549	

Table 4. Distribution of MICs for 24 C. jejuni, 38 C. upsaliensis and 16 C. helveticus isolated from dogs and cats

Antimicrobials	Species	Number of <i>Campylobacter</i> spp. isolates with MIC of $(\mu g \cdot ml^{-1})^a$:															_%R ^b		
		<0,015	0,015	0,03	0,06	0,12	0,25	0,5	1	2	4	8	16	32	64	128	256	>256	
erythromycin	C. jejuni							1	7	10	6								0
	C. upsaliensis								7	21	10								0
	C. helveticus							7	2	8	3	1	2						19
chloramphenicol	C. jejuni									2	16	2	3	1					4
	C. upsaliensis			1							18	18	1						0
	C. helveticus									8	6	2							0
gentamicin	C. jejuni							16	8										0
	C. upsaliensis					26	12												0
	C. helveticus	1		1	5	8	1												0
ampicillin	C. jejuni								4	5	7	3	2		3				12
	C. upsaliensis						2	10	8	3	4	4	4	3					8
	C. helveticus					1		1	4	9	1								0
tetracycline	C. jejuni				1	9	1	3			1		3		4	1	1		37
	C. upsaliensis	\mathbf{x}			1	12	21	4											0
	C. helveticus				1	10	3	1	1										0
nalidixic acid	C. jejuni										7	2		1	3	5	4	2	62
	C. upsaliensis									1	17	17				2	1		8
	C. helveticus									4	11					1			6
ciprofloxacin	C. jejuni					1	8			1			5	5	3	1			58
	C. upsaliensis				1	11	21	2					1	2					8
	C. helveticus			4	1	6	4						1						6
enrofloxacin	C. jejuni				1	8		1			7	3	4						58
	C. upsaliensis			1	29	5					1	1	1						8
	C. helveticus			12	3						1								6


^a Resistant isolates are represented in bold; ^b %R, total resistance rates


Figure 1. a- A phylogenetic tree obtained from the analysis of partial <i>groEL</i>
nucleotide sequences of 17 urease-negative Helicobacter spp. isolates and
reference Helicobacter spp. strains available in GenBank; b- A phylogenetic
tree obtained from the analysis of partial GroEL deduced amino acid
sequences of 17 urease-negative <i>Helicobacter</i> spp. isolates and reference
Helicobacter spp. strains.
Figure 2. A phylogenetic tree obtained from the analysis of partial 16S
rRNA sequences of 78/9/02 Anaerobiospirillum isolate and reference
Anaerobiospirillum spp. strains available in GenBank. Succinivibrio
dextrinosolvens (Y17600) was used as outgroup.

В

A

