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Abstract26

27

Hafnia alvei is considered an opportunistic pathogen of animal and humans, affecting a 28

wide range of homeothermic and poikilothermic hosts with different body temperatures. 29

In this work, H. alvei strains isolated from different sources were studied with regard to 30

their capacity to form biofilms under different environmental conditions. Strain, growth 31

phase, temperature and culture media dependent changes of biofilm formation were 32

semiquantitatively monitored using a microtiter plate method. Our study shows that all 33

strains used could form biofilms in vitro, and that biofilm formation increases 34

dramatically during growth at 25ºC but not at 37ºC, and decreases at both temperatures 35

in presence of glucose. At 16ºC only one strain isolated from a lizard was able to form a 36

dense biofilm showing that the ability to form biofilms in this species is regulated by 37

environmental factors and is also strain specific. 38
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1. Introduction52

Hafnia alvei is a Gram negative, rod-shaped, facultative anaerobic bacterium of the 53

family Enterobacteriaceae that has been isolated from various mammals, fish and birds 54

(Gelev et al., 1990; Sharma et al., 1991; Rodríguez et al., 1998). The organism has also 55

been detected in food and in food production units (Gamage et al., 1998; Tornadijo et 56

al., 1993; García-Fontán et al., 2007; Morales et al., 2004; González-Rodríguez et al., 57

2001). In humans this species causes a wide variety of infections, including pneumonia, 58

bacteremia, and extraintestinal infections (Klapholz et al., 1994; Ramos and Damaso, 59

2000; Casanova-Román et al., 2004). Its thermic ecological niche varies from cold, the 60

temperatures found in the preservation food chains and fish aquatic environments (4-61

20ºC) to the body temperature of humans and birds (37ºC-42ºC). However, the 62

properties determining its adaptation capacity to these different temperatures are still 63

unknown. Previously, we described an outbreak in commercial laying hens in Spain 64

(Real et al., 1997) and we were able to reproduce the same disease presentation in hens 65

experimentally infected by either the intraperitoneal or oral route. A similar outbreak 66

recently reported in Italy and challenges with the strain isolated was reproduced the 67

disease in healthy pullets (Proietti et al., 2004). H. alvei has some characteristics closely 68

related to the genus Escherichia, Salmonella and Shigella (Janda and Abbott, 2006).69

Septicemic lesions produced by Hafnia spp. in several animal species resemble those 70

produced by Salmonella spp. (Kelly, 1993; Ridell, 1987; Real et al., 1997). 71

Furthermore, some reports show that H. alvei may be misidentified for Salmonellae or 72

other pathogens (Wang et al., 2006). Although some virulence factors have been 73

identified in H. alvei, little is known about the factors that contribute to its pathogenesis 74

within its host. According to Hall-Stoodley and co-workers (Hall-Stoodley L et al., 75

2004), biofilms can be defined in a narrower sense as "a structured community of 76



Page 4 of 20

Acc
ep

te
d 

M
an

us
cr

ip
t

4

bacterial cells enclosed in a self-produced polymeric matrix and adherent to an inert or 77

living surface”. Since cell surface components play a role on adherence and biofilm 78

formation, we speculate that adherence properties in H. alvei may contribute to its79

pathogenicity. The goal of the present study was to analyse the capacity of H. alvei 80

strains to form biofilms during the growth under different environmental conditions. 81

Identifying these parameters should contribute to a better understanding of the 82

correlation between adherence capabilities in vitro and in vivo, and the pathogenicity of 83

this pathogen.84

85

2. Materials and Methods86

2.1. Bacterial strains87

Eight Hafnia alvei strains were used. Strains 187-95, C-34 and 19-68 are animal 88

isolates, and strains 7-67, 24-65, 1967-82, X-1 are human clinical isolates. These strains 89

were identified with the MicroScan WalkAway system (Rodriguez et al., 1999) and 90

with the standard reference procedures (Smibert and Krieg, 1981). Results were 91

confirmed by use of the API 20E diagnostic system (Biomerieux, Spain) and lysis by92

phage ATCC 1672 (Guinée and Valkenburg, 1968). The strains were routinely cultured 93

on Trypticase soy agar (TSA; Cultimed) at 25°C for 24 h and stored at -80°C with 15% 94

glycerol. Test for the eae gene in H. alvei strains were all negative as described 95

previously (Padilla et al, 2005).96

97

2.2 Culture conditions and biofilm formation98

Tryptic soy broth (TSB), Luria-Bertani (LB), LB diluted ½ (LB ½), LB supplemented 99

with 0.25% and 0.5% of glucose, and brain heart infusion broth (BHIB) were employed 100

in all experiments.101
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Estimation of biofilm formation was performed by the method of O´Toole and Kolter102

(1998) with some modifications. Hafnia alvei strains were grown in TSA for 36 h at 25103

ºC, and a suspension from two to three colonies was prepared in PBS (OD600 of 0.05). 104

Twenty microlitres of H. alvei suspension was placed in each well containing 100l of 105

culture medium. The microplates were incubated for 24h at 16ºC, 25ºC and 37ºC. After 106

discarding the medium in the microtiter plate wells by inversion of the plate and tapping 107

on absorbent paper, wells were rinsed three times with distilled water (each 200l/well) 108

and the remaining adherent bacteria were stained for 12 min with 140l/well of crystal 109

violet (0.7% [wt/vol] solution). Excess stain was removed by washings (x3) with 110

distilled water (each 170l/well). Crystal violet was extracted by an ethanol-acetone 111

solution (80:20 v/v) and the plates were incubated at room temperature in an orbital 112

shaker for 1 min at 400 rpm (thermomixer comfort, Eppendorf) to release the dye into 113

solution. Then, a sample of 100l was transferred to another 96-well flat botton plate 114

and the amount of dye (proportional to the density of adherent cells) was quantified at 115

620 nm using a microplate reader. For each experiment, correction for background 116

staining was made by subtracting the value for crystal violet bound to uninoculated 117

controls. The biofilm assay was performed two times, with quadruplicates in each assay.118

Influences of the temperature and culture media on biofilm formation were statistically 119

analyzed by using one way ANOVA and Tukey’s test. Statistical significance was set at 120

two-tailed p < 0.001.121

122

2.3 Motility assays123

Bacterial cells grown for 24h on TSA plates served as inoculum for all motility 124

experiments. (1) Swimming. Tryptone swim plates (1% tryptone, 0.5% NaCl, and 0.3% 125

Agar) dried overnight at room temperature were point inoculated with bacteria using 126
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sterile toothpicks, incubated for 24h at 16, 25 and 37ºC, and flagellar motility assessed 127

by the size of the circular zone. (2) Swarming. Tryptone swarm plates (1% tryptone, 128

0.5% NaCl, and 0.6% Agar) dried overnight at room temperature were inoculated using 129

sterile toothpicks to the bottom of the petri dish; the sizes of the swarming zones were 130

observed macroscopically (3). Twitching. Cells were stab inoculated in the swarming 131

plates and after incubation, the polystyrene surface was examined by removing the agar, 132

washing unattached cells with tap water, and staining the attached cells with crystal 133

violet (0.7% [wt/vol] solution). 134

135

2.4 Test for surface hydrophobicity136

The bacterial surface hydrophobicity was tested by the two-phase partition method 137

described by Rosenberg et al. (1980). Xylene was used as the hydrocarbon phase. 138

Bacteria grown in TSB were washed and suspended in phosphate-buffered saline. The 139

concentration of the bacteria was adjusted to an OD600 of 0.1. One milliliter of the 140

suspension and 0.6 ml of xylene were mixed vigorously in a 2 ml tube with a vortex 141

mixer for 30 s. After allowing 30 min for the separation of the aqueous and xylene 142

phases, the aqueous phase was carefully removed and its OD600 was recorded. The 143

hydrophobicity was expressed as the percent reduction of the optical density of the 144

aqueous phase after being mixed with xylene. All experiments were performed in145

triplicate and numerical data are presented as means with error bars representing 146

standard deviations. The data were statistically analyzed by using one way ANOVA and 147

Tukey’s test. Statistical significance was set at two-tailed p < 0.001.148

149

150

151
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Results152

153

All H. alvei strains tested were able to form biofilms in the polystyrene surface of the 154

microtiter plates. Homogeneity seems to be the most common characteristic at 37ºC in 155

the animal isolates without notable differences between strains in each culture medium. 156

The amount of biofilm formed by animal strains grown in diluted LB (LB ½), in LB 1X, 157

or in BHIB medium was higher than that of cells grown in LB supplemented with 158

glucose (0.25 or 0.5%) at 37ºC (Figure 1a), but at 25ºC, only strain 19-68 were able to 159

maintain this difference (Figure 1b). At 25ºC, there was a clear difference between the 160

lizard and trout isolates with respect to the laying hen isolate (Fig. 1b). Surprisingly, at 161

16ºC, strain 19-68 was able to form a dense biofilm in comparison with the other animal 162

or clinical strains (Fig. 1c). In this point, 25ºC was the most favourable temperature to 163

form biofilms for all strains (p<0.001).164

In the group of human isolates, strain X-1 and 4256-83 seem to form more dense 165

biofilms in diluted, undiluted LB, and in TSB (strain X-1) than in the other media at the 166

higher temperatures (37 and 25ºC, p<0.001) (Fig. 2a,b). Again, glucose added to the LB 167

medium seems to reduce the capacity to form biofilms for most of the human strains. 168

To investigate whether motility was involved in biofilm formation, swimming and 169

swarming motility were analyzed at different temperatures in all H. alvei strains used in 170

this study. After 24h, only strain 1967-82 failed to swim when compared with other 171

animal or human strains (Fig. 3); strain C-34 showed reduced motility at all 172

temperatures in contrast with other strains (Fig. 3). This reduced motility seems not to 173

affect the capacity the strain to form a dense biofilm under the temperature and culture 174

media tested. Strain 1967-82 is also able to form biofilms despite being nonmotile.175
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All strains were unable to swarm at any temperature (not shown) indicating that 176

presence of lateral flagella is not a prerequisite -or that this type of motility had not high 177

contribution for biofilm formation in H. alvei. 178

The three animal isolates used in this study (C-34, 187-95, and 19-68) lack any type of 179

fimbriae whereas four of five human isolates (7-67, 1967-82, 24-65, and 4256-83) have 180

type I and III fimbriae as we reported previously (Padilla et al., 2005). The strain X-1181

isolated from human enteritidis lacks also these structures. This human strain shows 182

high biofilm formation at 37ºC in comparison with the other human isolates in three 183

different culture media (Fig. 2a). 184

The surface hydrophobicity of the H. alvei strains are shown in Figure 4. The strains 185

187-95 and C-34 (isolated from animals) have a more hydrophilic surface character186

(P<0.001), whereas no significant differences were found in the surface hydrophobicity187

among the human isolates.188

189

Discussion190

Our results in this study suggest that higher nutrient conditions such as TSB and BHIB191

favors H. alvei biofilm formation. In lower nutrient conditions (LB1/2 or in LB1X 192

without glucose), the addition of 0.25% of glucose seems to affect the capacity to form 193

biofilms in most of strains tested at 25ºC and 37ºC. Further increase in glucose 194

concentration (from 0.25% to 0.5%) did not significantly alter the number of adherent 195

bacteria. Several authors have suggested that attachment and biofilm formation is196

modulated by glucose present in the culture media (Dewanti and Wong, 1995; Pillai et 197

al., 2004; Reisner et al., 2006; Stanley and Lazazzera, 2004; Domka et al., 2006). In the 198

present study, the addition of glucose to LB medium affects biofilm formation in 75% 199

of the strains tested (6/8) at 37ºC and 25ºC, but did not affect biofilm formation at 16ºC.200
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Swimming motility is important in the initial approach and attachment to live or innert 201

surfaces. Swarming motility depends on the increased flagellar expression induced on 202

surfaces and it is envolved in colonization of surfaces and bacterial cell differentiation. 203

Swarming has been well characterized in species of Proteus, Vibrio, and Aeromonas 204

(Kirov, 2003) but little is known about this phenomenon in H. alvei where there are 205

motile and non-motile strains (Brenner, 1981). Although an extensive search has been 206

conducted to discover adherence factors in several pathogenic bacteria, little is known 207

abouth the identities of fimbrial proteins (proteinaceous surface structures). In our 208

study, we did not find a clear relationship between motility, fimbriae and adherence. 209

Similarly, Janda and co-workers (Janda et al., 2002) reported that two H. alvei strains 210

are unable to adhere to Hep-2 cells in a recognisable pattern at 37ºC, but assays in other 211

human or animal cell lines or at different temperatures are not described in the 212

literature. 213

The hydrophobicity of many enteric pathogens can be correlated with their capacity to 214

attach to human epithelial cells and subsequently cause disease (Absolom, 1988) and 215

this surface characteristic is often cited when interpreting bacterial adhesiveness 216

because it has been observed that adhesiveness increases or decreases depending on the 217

surface hydrophobicity (Van Loosdrecht et al., 1987). There was a clear difference 218

between the laying hen and trout isolates with respect to human isolates, and it is 219

possible that further in vitro or in vivo experiments show whether different bacterial 220

surface properties (like hydrophobicity) between these strains may demonstrate 221

different virulence properties.222

It appears that isolates from diffenrent sources (animal, human, or environmental) may 223

have differing abilities to form biofilms at different temperatures. Strain 19-68 that 224

exhibited exceptional biofilm formation at low temperature, and was motile, fimbriae 225
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negative (as the other animal isolates), would utilize additional, potentially novel factors 226

for elevated biofilm production. A better understanding of the adherence properties in 227

this and other H. alvei strains in vivo and in vitro will provide great insights into the 228

diseases caused by this bacterium.229

230

231

232
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375

376

377

Figures.378

Figure 1. Biofilm formation by animal H. alvei isolates in polystyrene plates. 379

Biofilm formation on polystyrene surface after 24 h was assessed by crystal violet 380

staining. Each bar indicates the mean values with standard deviations. The biofilm assay 381

was performed two times, with quadruplicates in each assay.382

383

Figure 2. Biofilm formation by human H. alvei isolates in polystyrene plates. 384

Biofilm formation on polystyrene surface after 24 h was assessed by crystal violet 385

staining. Each bar indicates the mean values with standard deviations. The biofilm assay 386

was performed two times, with quadruplicates in each assay.387

388

Figure 3. Motility agar phenotype of Hafnia alvei strains.389

Swimming zones were observed 24h after inoculating 0.3% LB agar plates and 390

incubation at different temperatures.391

392

Figure 4. Surface hydrophobicity of H. alvei strains.393

Surface hydrophobicity of H. alvei determined using the bacterial adherence to 394

hydrocarbon–xylene test. Error bars represent the standard deviations of the mean of 395

three independent experiments.396

397

398
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Fig. 1. 
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Fig. 2
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Fig. 3.
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Fig. 4. 
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