Comparative evaluation of virulence and pathology of serotypes 2 and 9 in experimentally infected growers
Andreas Beineke, Katharina Bennecke, Christina Neis, Charlotte Schröder, Karl-Heinz Waldmann, Wolfgang Baumgärtner, Peter Valentin-Weigand, Christoph Georg Baums

To cite this version:

HAL Id: hal-00532349
https://hal.science/hal-00532349
Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Accepted Manuscript

Title: Comparative evaluation of virulence and pathology of Streptococcus suis serotypes 2 and 9 in experimentally infected growers

Authors: Andreas Beineke, Katharina Bennecke, Christina Neis, Charlotte Schröder, Karl-Heinz Waldmann, Wolfgang Baumgärtner, Peter Valentin-Weigand, Christoph Georg Baums

PII: S0378-1135(07)00531-7
Reference: VETMIC 3867

To appear in: VETMIC

Received date: 16-8-2007
Revised date: 25-10-2007
Accepted date: 30-10-2007

Please cite this article as: Beineke, A., Bennecke, K., Neis, C., Schröder, C., Waldmann, K.-H., Baumgärtner, W., Valentin-Weigand, P., Baums, C.G., Comparative evaluation of virulence and pathology of Streptococcus suis serotypes 2 and 9 in experimentally infected growers, Veterinary Microbiology (2007), doi:10.1016/j.vetmic.2007.10.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Comparative evaluation of virulence and pathology of

Streptococcus suis serotypes 2 and 9 in

experimentally infected growers

Andreas Beineke \(^a\), Katharina Bennecke \(^b\), Christina Neis \(^b\), Charlotte Schröder \(^c\), Karl-Heinz Waldmann \(^c\), Wolfgang Baumgärtner \(^a\), Peter Valentin-Weigand \(^b\), Christoph Georg Baums \(^b\,*\).

\(^a\) Institut für Pathologie, Stiftung Tierärztliche Hochschule Hannover, D-30173 Hannover, Germany

\(^b\) Institut für Mikrobiologie, Zentrum für Infektionsmedizin, Stiftung Tierärztliche Hochschule Hannover, D-30173 Hannover, Germany

\(^c\) Klinik für kleine Klauentiere und forensische Medizin und Ambulatorische Klinik, Stiftung Tierärztliche Hochschule Hannover, D-30173 Hannover, Germany

*Corresponding author. Mailing address:

Stiftung Tierärztliche Hochschule Hannover
Zentrum fuer Infektionsmedizin
Institut fuer Mikrobiologie
Bischofsholer Damm 15
D-30173 Hannover, GERMANY
Phone: ++49-511 856-7563
Fax: ++49-511 856-7697
Email: christoph.baums@gmx.de
Abstract

Streptococcus (S.) suis is an invasive porcine pathogen causing meningitis, septicemia, arthritis and other diseases. Studies on pathogenesis as well as vaccine trials have focused on serotype 2 strains, which are worldwide the most prevalent among invasive isolates. However, in Europe serotype 9 strains also contribute substantially to S. suis-associated invasive diseases of piglets. The objective of this study was to determine the virulence of an MRP* SLY+ serotype 9 S. suis strain in comparison to an MRP+ EF+ SLY+ serotype 2 strain. Experimental intranasal and intravenous infections of 7-8 week old SPF piglets were investigated with regard to clinic and pathology. In contrast to the virulent serotype 2 strain, the serotype 9 strain did not cause disease with clinical manifestations after intranasal administration. However, histological screenings of these animals revealed pathological lesions, such as mild focal suppurative meningitis. Clinical manifestations related to meningitis, arthritis and serositis could be induced by intravenous application of this serotype 9 strain. Bacteriological culture, immunohistochemistry of the brain and nested PCR of cerebrospinal fluid confirmed association with the S. suis challenge strains in all cases with clinical manifestations. Interestingly, expression of MRP within meningitis lesions was demonstrated for both pathotypes via immunohistochemistry. In conclusion, this study demonstrates that MRP* SLY+ serotype 9 strains are less virulent for growers than MRP+ EF+ SLY+ serotype 2 strains. Thus, intravenous application of this serotype 9 strain is required to evaluate heterologous protection in the course of vaccine development based on serotype 2 strains in the future.

Keywords: Streptococcus suis, meningitis, MRP, immunohistochemistry

1. Introduction

Streptococcus (S.) suis is worldwide an important porcine pathogen, causing different diseases such as meningitis, septicemia, pneumonia, polyarthritis and polyserositis. These diseases occur mainly in suckling and weaning piglets. Invasion of the
cerebrospinal fluid (CSF) compartment, the joint spaces and serosal cavities by S. suis is predominantly associated with fibrinosuppurative inflammations of the respective tissues (Williams and Blakemore, 1990; Madsen et al., 2002). S. suis might also cause meningitis and other diseases in humans (Arends and Zanen, 1988; Gottschalk et al., 2007).

S. suis isolates from diseased animals express a capsule, which is, at least in serotype 2 strains, protective against phagocytosis (Smith et al., 1999). Other factors such as the hemolysin suilysin (SLY), a fibrinogen and fibronectin-binding protein and a serum opacity factor have also been shown to contribute to the pathogenesis of S. suis (Allen et al., 2001; de Greeff et al., 2002; Baums et al., 2006).

Epidemiological studies revealed a high diversity of serotypes among S. suis isolates. In Europe serotypes 1, 2, 7 and 9 are far more common among invasive isolates than any of the other 29 known serotypes (Wisselink et al., 2000; Silva et al., 2006). Pathogenesis studies focused on serotype 2 strains, because they are worldwide the most prevalent strains in pigs, and the vast majority of isolates from humans belong to serotype 2. Experimental infection models have only been described for serotype 1, 2 and 7, but not for serotype 9 strains. These experimental infections revealed, in addition to epidemiological data, that the 136 kDa muramidase-released protein (MRP) and the 110 kDa extracellular factor (EF) are reliable virulence markers for serotype 2 isolates (Vecht et al., 1992; Wisselink et al., 2000). The majority of invasive serotype 9 isolates from Central Europe express a larger variant of MRP, termed MRP*, which shares high homology with the 136 kDa MRP protein of serotype 2 strains (Wisselink et al., 2000; Silva et al., 2006). The objective of this study was to establish and characterize an experimental infection model with an MRP* SLY+ serotype 9 reference strain in pigs.

2. Materials and methods

2.1. Bacterial strains and growth conditions

S. suis strain 10 is an MRP+ EF+ SLY+ serotype 2 strain which has been shown to be highly virulent in experimental infections of piglets (de Greeff et al., 2002; Baums et al.,
2006). A3286/94 is a serotype 9 S. suis strain, which was originally isolated from a pig with meningitis. This strain expresses a large variant of MRP (MRP*) and carries the suilysin gene sly (Silva et al., 2006). Multilocus sequence typing of A3286/94 revealed that it belongs to sequence type 99, which is part of the clonal complex 87 (Rehm et al., 2007). S. suis and Escherichia coli strains were cultured as described (Baums et al., 2006).

2.2. Cloning of mrp

For expression of recombinant His-tagged MRP (rMRP) the plasmid pQEmrp was constructed as follows. The 3520 bp PCR amplification product generated with Pfu polymerase (Promega, Mannheim, Germany) and the primer pair mrppostssBamHI (CTGAGGATCCTGTTGCTTCATCAGAACC) and mrppraeanchorPstI (TTACCTGCAGCGGTTTTACCTGCTTG) was cut with BamHI and PstI (New England Biolabs, Frankfurt, Germany) and cloned into pQE31 (Qiagen, Hilden, Germany). Purified plasmid DNA was verified by restriction analysis. Routine DNA manipulations were performed as described (Sambrook et al., 1989).

2.3. rMRP expression, purification and generation of polyclonal antisera in rabbits

IPTG-induced expression of rMRP and subsequent purification by Ni^{2+}-affinity chromatography under native conditions were carried out as described for rOFS (Baums et al., 2006). Western blot analysis with monoclonal anti-MRP antibodies was performed for verification (Silva et al., 2006). Polyclonal antiserum against purified rMRP was raised in a New Zealand White rabbit (Charles River Laboratories, Sulzfeld, Germany) through three consecutive immunizations with 0,1 mg of purified protein and Freund’s incomplete adjuvant. In addition, antiserum against formalin inactivated S. suis serotype 2 was raised respectively.
2.5. Animal experiments

Sixteen German Landrace piglets (#1-16) from a herd known to be free of sly+ mrp+ epf+ cps2+ and sly+ mrp* cps9+ strains were infected experimentally and cared for in accordance with the principles outlined in the European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes [European Treaty Series, no. 123: http://conventions.coe.int/treaty/EN/Menuprincipal.htm; permit no. 509.6-42502-04/829]. The piglets were 7 to 8 weeks old on the day of transport to the experimental facility. They were randomly divided into the different groups outlined in Table 1. Intranasal infections of piglets #1-12 were performed as described (Baums et al., 2006). To apply S. suis intravenously four piglets (#13-16) were anaesthetized the same way and S. suis A3286/94 resuspended in PBS was injected into the peripheral ear vein. The health status of the animals was monitored as described (Baums et al., 2006). All surviving piglets were sacrificed 20 days post infection. Differences between groups were assessed with the Fisher’s exact test.

2.6. Haematologic analysis

Blood samples were collected before experimental infection (0 dpi), on day 3, 5, 7 and 11 post infection and prior to euthanasia. White blood cells were counted on haemocytometer chamber. Leucocytes were differentiated on classical Wright stained blood smears.

2.7. Histopathological screening and immunohistochemistry

The histological screenings were carried out and scored with blinded experiments as described elsewhere (Baums et al., 2006). In addition, formalin-fixed and paraffin-embedded brain tissue was evaluated for the presence of streptococcal antigen by immunohistochemistry using the avidin-biotin complex (ABC) method. Primary antibodies consist of rabbit anti-S. suis and anti-MRP polyclonal antibodies (concentrations: 1:1600 and 1:1000). Binding of secondary goat anti rabbit antibodies
and formation of the ABC was visualized by a chromogen reaction using 3.3-
diaminobenzidine-tetrachloride (Beineke et al., 2001; Vector Laboratories, Burlingame,
USA). Positive controls consisted of formalin-fixed and paraffin-embedded pellets of
cultured S. suis. For negative controls primary antibodies were replaced by rabbit
preimmune serum.

2.9. Bacteriological screening

All tissues screened histologically were also investigated bacteriologically through
culture and PCR-based detection of putative isolates of the challenge strain as
described (Baums et al., 2006).

3. Results

3.1 Clinical and haematological findings

In this study an intranasal infection model of piglets was used to compare two different
S. suis pathotypes. Five of the six growers (#7-12) infected with the serotype 2 reference
strain 10 developed severe clinical symptoms with fever and leucocytosis as outlined in
Table 1. Two of these growers (#7 and #9) showed nervous dysfunctions, in particular
tremor, opisthotonus and ataxia. In contrast, clinical signs were not observed in the 6
piglets (#1-6) infected intranasally with the serotype 9 reference strain A3286/94 during
the 20 days after infection. The body temperature was below 40°C at all measurements
(Table 1). However, in all serotype 9 infected piglets a temporary increase of blood
neutrophils and lymphocytes was observed within 11 days after infection (Fig. 1).
Three of the four growers infected intravenously with A3286/94 developed severe signs
of acute arthritis within the first 24 h post infection. The fourth piglet (#13) showed very
high fever (42.7°C), anorexia, kyphosis, ataxia and tremor. All four growers infected
intravenously were euthanized for reasons of animal welfare within the first 24 hours
post infection. In conclusion, the serotype 9 strain A3286/94 caused severe diseases
with high mortality in growers after intravenous application, but not in an intranasal infection model in contrast to the highly virulent serotype 2 strain 10.

3.2 Histopathology

Severe or moderate fibrinosuppurative lesions were found by histopathological examination in a number of different tissues of animals intranasally infected with strain 10 as outlined in Table 2. Among all animals, inflammation of the brain was most advanced in strain 10 infected piglets #7 and #9 which showed in association with neural dysfunctions moderate to severe fibrinosuppurative meningitis (Fig. 2A; Table 3). Piglets infected intranasally with A3286/94 demonstrated mostly mild and focal lesions of serosal surfaces, meninges and choroid plexuses (Table 2). The lower severity of fibrinosuppurative lesions registered in the serotype 9 i. n. infected group resulted in a lower pathological score of 2.5 in comparison to the serotype 2 infected group which received 3.2 (Table 2). In both intranasally infected groups infiltrations were not always dominated by neutrophils, but in a substantial proportion of animals also by mononuclear cells as outlined for the brain in Table 3 and illustrated in Fig. 2B.

A high pathological score of 4.0 was also found in the group infected intravenously with A3286/94. Three of these four growers (#14-16) showed moderate to severe neutrophilic infiltrations of at least one tarsal joint. In addition, all four piglets demonstrated neutrophilic accumulation of the splenic red pulp and pneumonia of different severity as outlined in Table 2.

3.3. Detection of the challenge strains

In general, the challenge strain was isolated from a number of affected tissues in the group infected with serotype 2 and also in the group infected intravenously with serotype 9. However, the serotype 9 challenge strain was not isolated from the piglets infected intranasally, except for the tonsil of one animal (#3). All culture positive samples except for the tonsils were associated with fibrinosuppurative inflammations. Specifically, the CSF of the animals with severe meningitis (#7 and #9) were positive for sly+ mrp+ epf+
The challenge strain (sly+ mrp* cps9) was also isolated from the CSF of piglet #13. All other CSF samples were culture negative. The joint fluids were positive for the challenge strain only in the three piglets with severe arthritis (synovialitis) infected i. v. with serotype 9 (#14-16). Furthermore, this challenge strain was also detected in the spleen, liver and pleural swab of piglet #13 as well as in the peritoneal swab of piglet #14.

In this study, immunohistochemistry was performed with an antiserum against whole bacteria of S. suis serotype 2, which was known to cross react with serotype 9. In addition to the two piglets with severe serotype 2-associated meningitis (#7 and #9), immunoreactivity was also observed in meningeal lesions of piglets #1 and #4 infected intranasally with serotype 9. Immunolabeling of extracellular coccoid bacteria was present in all four animals, whereas extensive immunolabeling within macrophages and neutrophils was observed in piglets #4, #7 and #9 (Fig. 2C). Additionally, a polyclonal serum against rMRP, which was found to recognize also MRP* of serotype 9, was used for immunohistochemistry. In animals #4, #7 and #9 immunolabeling with the anti-rMRP serum was very similar to the results with the serum against whole bacteria and was present in different lesions of the brain, such as fibrinosuppurative meningitis and granulomatous encephalitis (Table 3, Fig. 2D). In addition extensive immunolabeling with the anti-MRP serum was also observed within macrophages and neutrophils in piglet #13 (Table 3). In conclusion, expression of MRP within lesions of the brain was demonstrated by immunohistochemistry for serotypes 2 and 9.

4. Discussion

In our opinion it is important to challenge piglets with different S. suis serotypes in vaccination trials in order to evaluate heterologous protection. As MRP* serotype 9 strains are responsible for a substantial fraction of invasive S. suis diseases of piglets in Europe (Wisselink et al., 2000; Silva et al., 2006), we included this pathotype in our studies. Here, we describe for the first time systematically the outcome of experimental infections with a well characterized MRP* serotype 9 strain (A3286/94), which was originally isolated from a piglet with meningitis. Intravenous application of 10^8 CFU of
this strain resulted in disease with clinical manifestation and should allow evaluation of protection against serotype 9 strains in future vaccination trials.

Comparison of this serotype 9 strain with the MRP+ EF+ serotype 2 reference strain 10 in an intranasal infection model of 7 to 8 week old SPF piglets demonstrated that A3286/94 is less virulent than strain 10. It appears unlikely that maternal antibodies might have interfered with the comparison of these pathotypes, as sera taken from all animals prior to experimental infection were negative in an αMRP-ELISA. Furthermore, these animals had comparable low titers in ELISAs measuring antibodies against all lysozyme-released proteins of either strain 10 or A3286/94 (results not shown). Low virulence of MRP* serotype 9 strains in intranasal infections is in agreement with preliminary results of Vecht et al. (1996).

S. suis is generally regarded as a causative agent of fibrinous inflammations and neutrophilic infiltrations (Williams and Blakemore, 1990; Madsen et al., 2002). In accordance these alterations were observed in different tissues of piglets either infected with the serotype 2 or the serotype 9 strain. However, numerous mild infiltrations observed in the experimentally infected piglets of this study were not dominated by neutrophils but by mononuclear cells. These alterations were very frequent in the meninges and the choroid plexuses of intranasally infected piglets. A number of different findings suggest that at least the lymphoplasmacytic infiltrations of the brain were caused by the experimental *S. suis* infection. First, the meninges and the choroid plexuses are well known target tissues of *S. suis*. Mononuclear infiltrations at these sites have not been registered in other piglets from this herd used in other studies (data not shown). Secondly, *S. suis* was detected by immunohistochemistry in two of these animals. Finally, the majority of these growers did not only show an increase of blood neutrophils within 11 dpi, but also a mild increase of blood lymphocytes. Thus, in older piglets infection with *S. suis* might also cause lymphoplasmacytic infiltrations due to the activation of memory cells. The association of *S. suis* with lymphoplasmacytic infiltrations in the meninges is in agreement with findings by Sanford (1987) who describes subacute meningoencephalitis or meningoencephalomyelitis associated with mostly mononuclear cell infiltrations in 53 piglets.
This study revealed differences of virulence between an MRP* serotype 9 and an MRP+ EF+ serotype 2 strain. With regard to pathogenesis it is remarkable that expression of MRP was demonstrated for both pathotypes within meningeal lesions via immunohistochemistry, though Smith et al. (1996) showed that an isogenic mrp mutant of the same MRP+ EF+ serotype 2 strain was not attenuated in virulence and was frequently isolated from the central nervous system of infected piglets. However, the etiology of the differences in virulence between the two S. suis-pathotypes remains to be elucidated in future studies.

Acknowledgements

We thank Hilde Smith for providing strain 10 and the monoclonal antibodies against MRP as well as Julia Schirrmeier for excellent technical support. This study was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG), Bonn, Germany (SFB587).

References

of selected cell markers from various species for characterization of lymphatic tissues in the harbour porpoise (*Phocoena phocoena*). J. Comp. Pathol. 125, 311-317.

locus of *Streptococcus suis* serotype 2: the capsule protects against phagocytosis and is an important virulence factor. Infect. Immun. 67, 1750-1756.

TABLE 1. Virulence of *S. suis* strain 10 (*mrp*+ *epf*+ *sly*+ *cps2*) and A3286/94 (*mrp*+ *sly*+ *cps9*) in experimentally infected piglets\(^a\)

<table>
<thead>
<tr>
<th>number of infected piglets</th>
<th>experimental S. suis strain</th>
<th>application</th>
<th>CFU</th>
<th>morbidity</th>
<th>mortality</th>
<th>severe clinical symptoms(^b)</th>
<th>max. body temperature (°C)</th>
<th>max. WBC (10(^9)/l)(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≤40</td>
<td>40 – 40.5</td>
<td>≥40.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≤22</td>
<td>22 – 30</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>i. n.(^d)</td>
<td>10(^9)</td>
<td>5/6</td>
<td>4/6</td>
<td>1/6</td>
<td>3/6</td>
<td>2/6</td>
</tr>
<tr>
<td>6</td>
<td>A3286/94</td>
<td>i. n.(^d)</td>
<td>10(^9)</td>
<td>0/6(^e)</td>
<td>0/6(^e)</td>
<td>6/6</td>
<td>0/6(^e)</td>
<td>0/6(^e)</td>
</tr>
<tr>
<td>4</td>
<td>A3286/94</td>
<td>i. v.(^d)</td>
<td>10(^8)</td>
<td>4/4</td>
<td>4/4</td>
<td>1/4</td>
<td>0/4</td>
<td>3/4</td>
</tr>
</tbody>
</table>

\(^a\) German landrace piglets from a herd free of *sly*+ *epf*+ *mrp*+ *cps2* and *cps9* *S. suis* strains

\(^b\) in particular severe depression, persistent anorexia, neural disorder and acute severe lameness

\(^c\) White blood cell (WBC) counts were performed on day 3, 5, 7 and 11 post infection. All piglets had WBCs below 20 pre-infection.

\(^d\) i. n. = intranasal; i. v. = intravenous

\(^e\) significantly different from strain 10 infected group.
TABLE 2. Scoring of fibrinosuppurative lesions of piglets infected with *S. suis* strain 10 (*mrp* + *epf* + *sly* + *cps*2) and A3286/94 (*mrp* *sly* + *cps*9)

<table>
<thead>
<tr>
<th>Number of infected piglets</th>
<th>experimental infection</th>
<th>S. suis application</th>
<th>brain</th>
<th>serosae</th>
<th>joint</th>
<th>spleen and liver</th>
<th>lung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CFU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>i. n.</td>
<td>10⁹</td>
<td>2/6</td>
<td>0/6</td>
<td>0/6</td>
<td>1/6</td>
<td>1/6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>i. n.</td>
<td>10⁹</td>
<td>1/6</td>
<td>0/6</td>
<td>0/6</td>
<td>0/6</td>
<td>1/6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>i. v.</td>
<td>10⁸</td>
<td>0/4</td>
<td>1/4</td>
<td>0/4</td>
<td>1/4</td>
<td>1/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | | | | | | | |

- Scoring of 4 and 5 indicates moderate to severe diffuse or multifocal fibrinosuppurative inflammations.
- Scoring of 2 and 3 indicates mild focal fibrinosuppurative inflammation.
- Individual single perivascular neutrophils received a score of 1.
- $\omega = \Sigma \text{score}_{\text{max}}/n_{\text{animals}}$ (Baums et al., 2006).
TABLE 3. Histopathological findings in the brain of piglets infected with *S. suis* strain 10 (*mrp* epf* sly* cps2) and A3286/94 (*mrp* sly* cps9)

<table>
<thead>
<tr>
<th>Piglet # b</th>
<th>S. suis challenge strain</th>
<th>Application</th>
<th>Necropsy dpi</th>
<th>Histopathology a</th>
<th>Immunohistochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fibrinosuppurative</td>
<td>lymphoplasmacytic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>meningesitis</td>
<td>choroiditis</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>i. n.</td>
<td>3</td>
<td>+++</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>i. n.</td>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>i. n.</td>
<td>6</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>i. n.</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>i. n.</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1 A3286/94</td>
<td>i. n. 20</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2 A3286/94</td>
<td>i. n. 20</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3 A3286/94</td>
<td>i. n. 20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>4 A3286/94</td>
<td>i. n. 20</td>
<td>++</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>5 A3286/94</td>
<td>i. n. 20</td>
<td>++</td>
<td>+++ c</td>
<td>++ c</td>
<td>-</td>
</tr>
<tr>
<td>6 A3286/94</td>
<td>i. n. 20</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>13 A3286/94</td>
<td>i. v. 1</td>
<td>++</td>
<td>++</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
a Lesions were assigned + to ++++ depending on the severity (+ individual perivascular immune cells, ++ mild, +++ moderate and ++++ severe).

b Piglet #12 infected with strain 10 intranasally (i. n.) and piglets #14-16 infected with A3286/94 intravenously (i. v.) did neither show lesions nor immunolabeling in the brain.

c Severe fibrinous ventriculitis and mild lymphoplasmacytic encephalitis was also present in piglet #5.
Figure legends

Fig. 1. Neutrophil (A) and lymphocyte (B) concentrations in the jugular vein after experimental infection of growers with serotype 9 strain A3286/94. Piglet #5 was not sampled 11 dpi. The number of each piglet (#) is indicated in the box.

Fig. 2. Histological findings (A, B) and immunohistochemistry (C, D) of the brain of growers infected intranasally with *S. suis*. (A) Severe diffuse suppurative meningitis in piglet #9 infected with serotype 2 strain 10; bar = 100 µm, HE. (B) Focal lymphocytic infiltration (arrow) of the choroid plexus (CP) in strain A3286/94 infected piglet #3; bar = 25 µm, HE. (C) Immunolabeling in macrophages and neutrophils of serotype 2 strain 10 infected piglet #9 with an antiserum raised against *S. suis* serotype 2, bar = 10 µm. (D) Intrahistiocytic MRP-specific immunoreactivity associated with granulomatous encephalitis in piglet #4 infected intranasally with *S. suis* serotype 9 strain A3286/94, bar = 25 µm.
Figure 1

(A) Neutrophils (G/L) vs. day post infection

(B) Lymphocytes (G/L) vs. day post infection