

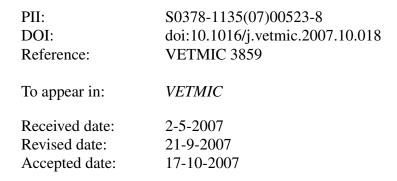
Diagnostic and typing options for investigating diseases associated with

Francis Dziva, Amandus Muhairwa, Magne Bisgaard, Henrik Christensen

► To cite this version:

Francis Dziva, Amandus Muhairwa, Magne Bisgaard, Henrik Christensen. Diagnostic and typing options for investigating diseases associated with. Veterinary Microbiology, 2008, 128 (1-2), pp.1. 10.1016/j.vetmic.2007.10.018 . hal-00532343

HAL Id: hal-00532343 https://hal.science/hal-00532343


Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Diagnostic and typing options for investigating diseases associated with *Pasteurella multocida*

Authors: Francis Dziva, Amandus Muhairwa, Magne Bisgaard, Henrik Christensen

Please cite this article as: Dziva, F., Muhairwa, A., Bisgaard, M., Christensen, H., Diagnostic and typing options for investigating diseases associated with *Pasteurella multocida*, *Veterinary Microbiology* (2007), doi:10.1016/j.vetmic.2007.10.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Diagnostic and typing options for investigating diseases associated
2	with Pasteurella multocida
3	
4	Francis Dziva ^{1†} , Amandus Muhairwa ² , Magne Bisgaard ³ and Henrik Christensen ³
5	
6	1. Division of Microbiology, Institute for Animal Health, Compton, Newbury,
7	Berkshire RG20 7NN, United Kingdom
8	2. Department of Veterinary Medicine and Public Health, Sokoine University of
9	Agriculture, Morogoro, Tanzania.
10	3. Department of Veterinary Pathobiology, Faculty of Life Sciences, University
11	of Copenhagen, Frederiksberg C, DK-1870, Denmark.
12	
13	
14	
15	[†] Corresponding author and mailing address: Division of Microbiology, Institute for
16	Animal Health, Compton, Newbury, Berkshire RG20 7NN, United Kingdom. Tel:
17	+44 1635 578 411; Fax: +44 1635 577 235; Email: <u>francis.dziva@bbsrc.ac.uk</u>
18	
19	
20	Running title: Diagnostic and typing options for P. multocida
21	
22	Number of tables: 2
23 24	
25	
26 27	

1 Abstract

2

3 Pasteurella multocida is responsible for major animal diseases of economic 4 significance in both developed and developing countries whereas human infections 5 related to this bacterium are infrequent. Significantly, development of a carrier status 6 or latent infections plays a critical role in the epidemiology of these diseases. Aiming 7 at increased knowledge of these infections, we examine potential diagnostic and 8 selected typing systems for investigating diseases caused by *P. multocida*. Detection 9 of P. multocida from clinical specimen by; i) isolation and identification, ii) 10 polymerase chain reaction (PCR), iii) specific hybridisation probes, iv) serological 11 tests and v) other alternative methods is critically evaluated. These detection systems 12 provide a wide spectrum of options for rapid diagnosis and for detecting and 13 understanding of latent infections in herd/flock health control programmes, though 14 PCR methods for detecting *P. multocida* in clinical specimen appear increasingly 15 preferred. For establishing the clonality of outbreak strains, we select to discuss 16 macromolecular profiling, serotyping, biotyping, restriction enzyme analysis, 17 ribotyping and multiplex PCR typing. Although P. multocida infections can be 18 rapidly diagnosed with molecular and serological tests, isolation and accurate species 19 identification are central to epidemiological tracing of outbreak strains. Our review 20 brings together comprehensive and essential information that may be adapted for 21 confirming diagnosis and determining the molecular epidemiology of diseases 22 associated with P. multocida.

- 23
- 24

25 Keywords: *Pasteurella multocida*, diagnostic tests, PCR, ELISA, typing.

26

1 1. Introduction

2

3	The genus Pasteurella has recently been outlined (Mutters et al., 2005; Anon,
4	2007) and the taxonomical position of <i>P. multocida</i> has been defined (Mutters et al.,
5	2005, Christensen and Bisgaard, 2003; Christensen et al., 2005). P. multocida is the
6	type species of the genus including the three subspecies; <i>P. multocida</i> subsp.
7	multocida, P. multocida subsp. gallicida and P. multocida subsp. septica. In addition
8	to P. multocida, Pasteurella sensu stricto also includes the species; P. canis, P.
9	stomatis, P. dagmatis and the unnamed taxon Pasteurella species B and two new
10	species-like taxa related to P. multocida (Christensen et al., 2005).
11	The pathogenic potential of <i>P. multocida</i> in vertebrate animals was recognized
12	over a century ago and infections are broadly termed pasteurelloses. P. multocida
13	infects a wide range of animal hosts causing specific infections that manifest
14	differently. Indeed, P. multocida has a broad host range, but this peculiar property is
15	poorly understood. Potential virulence factors of P. multocida have recently been
16	reviewed (Hunt et al., 2000; Christensen and Bisgaard, 2000; 2003, Harper et al.,
17	2006) but no host-specific factors have been identified as yet.
18	The major diseases of economic significance include porcine progressive
19	atrophic rhinitis (PAR; de Jong 1999), haemorrhagic septicaemia (HS) of cattle and
20	water buffaloes (De Alwis, 1992), fowl cholera of poultry (Christensen and Bisgaard,
21	2000) and snuffles in rabbits (DeLong and Manning, 1994). These infections can vary
22	from slow or latent infections observed with PAR to rapidly developing fatal
23	septicaemias seen with fowl cholera and HS. Additionally, P. multocida also plays a
24	significant role in increasing the severity of primary lung lesions in pigs (Pijoan,
25	1999) and ruminants (Frank, 1989) caused by other pathogens, though little is known

of the pathogenesis of these infections. Like any other diseases, clinical signs may be suggestive of the aetiology, but obtaining a definitive diagnosis provides essential guidance for effective treatment and for instituting successful control measures. In this respect, diagnostic tests play a pivotal role in confirming clinical cases and in detecting healthy carriers or reservoirs of infection(s). Healthy carriers or latent infections are common to all *P. multocida* infections and play a significant role in the epidemiology of these infections.

8 PAR, a severe disease of pigs characterized by stunted development and 9 turbinate atrophy is caused by toxinogenic strains of *P. multocida* (de Jong, 1999). 10 Piglets often acquire the infection from their carrier dams. Hence identification of 11 carrier sows in breeding herds by bacteriological procedures and other specific 12 diagnostic tests like PCR and a commercial ELISA kit (DAKO) with subsequent 13 removal of them play key roles in establishing infection-free pig herds (cited by De 14 Jong, 1999).

15 HS is a significant form of septicaemic pasteurellosis affecting predominantly 16 cattle and water buffaloes (Carter and De Alwis, 1989). In many South East Asian 17 countries, this disease is endemic and sporadic outbreaks are often witnessed 18 following introduction of index cases, which are often healthy carriers within the 19 same herd (De Alwis, 1992). Due to the short incubation period and the fact that 20 symptoms may assume a peracute nature, treatment is often of limited value (Carter 21 and De Alwis, 1989; De Alwis, 1992). Detection with subsequent removal of carriers 22 significantly contributes to the control of HS (De Alwis, 1992). 23 Fowl cholera, is another significant septicaemic and worldwide disease of

rowr cholera, is another significant septicaenine and worldwide disease of
 severe economic importance (Christensen & Bisgaard, 2000). Both healthy carrier
 birds within a flock and infected wild birds can act as sources of infection (Glisson et

1 al., 2003). In peracute or acute cases, chemotherapy may provide limited success,

2 hence rapid detection and subsequent elimination of reservoir birds interrupts the

3 transmission cycle (Glisson et al., 2003).

4 Snuffles, a highly contagious pasteurellosis of rabbits primarily affects the 5 upper respiratory tract with potential fatal consequences (DeLong and Manning, 6 1994). Rabbits often get colonized with P. multocida for long durations without 7 clinical signs, and the prevalence of this organism in clinically healthy animals has 8 been estimated to range from 20 to 90% depending on the detection method employed 9 (cited by Sanchez et al., 2004). Infection is often acquired from a carrier dam, and the 10 disease develops when the animals are subjected to some form of stress like 11 transportation. Profound losses in both commercial and research breeders are often 12 inevitable as vaccination (cited by Ruble et al., 1999) and antimicrobial therapy have 13 been found to be largely ineffective (Gaertner, 1991; Mahler et al., 1995). Hence the 14 detection of *P. multocida* in clinically healthy rabbit colonies is important for the 15 control of this disease (Ward, 1973).

Human infections are, in most cases, of animal origin and most often related to bites
or scratches by carnivores, though other types of infections have also been reported (Hubbert
and Rosen, 1970; Frederiksen, 1993; Liu *et al.*, 2003; Christensen *et al.*, 2005, Polzhofer et
al. 2004).

Clearly, diseases caused by *P. multocida* impose a huge economic burden on the livestock industry. This has led to intensive research efforts to understand mechanisms by which this organism invades and causes disease(s). Parallel to this, the desire for rapid diagnostic tests to either complement or substitute traditional methods rose to unprecedented levels. Consequently, a vast amount of literature now exists on diagnostic tests and epidemiology of *P. multocida* and the pathogenetic mechanisms of

this organism are slowly being elucidated. Without doubt, very little has been published
on the epidemiology and significance of infections caused by *P. multocida* in
developing countries. This review aims at generating preconditions for increased
knowledge on these infections in developing as well as developed countries by
examining potential diagnostic and typing options that may be adapted for their
investigations.

7

8 2. Isolation of *P. multocida* from clinical specimen

9

10 Though P. multocida can grow on basic laboratory media like nutrient agar, 11 blood and chocolate agar are preferentially favourable. In our hands, 5% or 10% 12 bovine or ovine blood agar has consistently yielded reasonable success in isolating 13 Pasteurella species (Muhairwa et al., 2000; 2001a; Dziva et al., 2000; 2001). An 14 unquestionable advantage of laboratory isolation is that strains can be collected and 15 archived for further characterisation, confirmation and also for epidemiological 16 studies. Besides, these can also act as vaccine seed strains for the control of respective 17 infections as is the case with autogenous vaccines or bacterins for HS (cited by Verma 18 and Jaiswal, 1998).

The source or tissue to be sampled for isolation of *P. multocida* depends on the specific disease. Generally, swabs from the naso-pharynx or tonsillar tissue are most appropriate specimen for isolating *P. multocida* associated with carriage or upper respiratory infections (Lariviere et al., 1993; DeLong and Manning, 1994; de Jong, 1999; Jamaludin et al., 2005). For septicaemic conditions like HS and fowl cholera, heart blood or visceral organs of newly dead animals readily yield pure cultures of *P. multocida* (De Alwis, 1992; Christensen and Bisgaard, 2000; Glisson et al., 2003).

However, if fresh samples from septicaemic diseases cannot be obtained as is often
 the case in rural areas of developing countries, bone marrow and/or brain may be
 appropriate for inoculation of blood agar.

4 Primary isolation of *P. multocida* from clinical specimen may be complicated 5 by overgrowth of other host microflora. Selective culture media generally remove this 6 obstacle and numerous of these have been developed for *P. multocida*. A modified 7 Knight's medium was described to be the best method for isolating *P. multocida* from 8 nasal cavities of piglets (Lariviere et al., 1993), but there is no evidence of its wider 9 application. Double selective treatment (Pasteurella multocida selective enrichment 10 broth; PMSB and selective agar; PMSA) was claimed to be proficient in isolating P. 11 multocida, but this tended to reduce the isolation rate of P. multocida from both pure 12 and contaminated samples (Moore et al., 1994). Though this selective enrichment 13 procedure provided successful isolation of *P. multocida* from deliberately-infected 14 pond water, testing of PMSA as primary isolation medium for P. multocida from 15 suspect avian cholera cases produced a lower detection rate than standard blood agar 16 (Moore et al., 1994). Antimicrobials such as clindamycin, gentamycin, neomycin, 17 amikacin, vancomycin and kanamycin, singly or in combination have been added to 18 agar-based media for isolating Pasteurella (Morris, 1958; Smith and Baskerville, 19 1983; Avril et al., 1990) and yielded inconsistent results. Our own experience with 20 selective media revealed variable success in isolating P. multocida ssp. multocida 21 from ducks, suggesting that host microflora might influence the selectivity of the 22 media (Muhairwa et al., 2000; 2001a). Comparison of different isolation media by 23 Baldrias et al. (1988) remarkably revealed that conventional sheep blood agar, was by 24 far, the most efficient choice for isolating various species of Pasteurella than selective 25 media and mouse inoculation. In addition to blood agar, dextrose starch agar or

8

1 trypticase soy agar have recently been recommended for primary isolation

2 (Christensen and Bisgaard, 2000).

3 Mouse inoculation selectively enriches P. multocida (Lariviere et al., 1993; 4 Muhairwa et al., 2001a) but is not strain specific. Samples from infected animals are 5 inoculated into Pasteurella-free mice intraperitoneally, subcutaneously or even 6 intramuscularly. Most strains of P. multocida will kill mice within 24-48 hours and 7 pure cultures can be obtained from spleen, liver and heart blood (Chandrasekaran and 8 Yeap, 1982; Muhairwa et al., 2001a). Ability to kill mice may depend on the 9 virulence status of the P. multocida strain (Rutter, 1983; Lariviere et al., 1993). 10 Mouse inoculation is most sensitive for surveillance and detection of carrier animals (Christensen and Bisgaard, 2000), but should be disfavored on animal welfare 11 12 grounds and only used when other methods are not available.

13

14 **3.** Phenotypic identification of *P. multocida*

15 3.1. Colony and biochemical characteristics

16 Though the detection of *P. multocida* in clinical specimen can be achieved by 17 rapid alternative tests like PCR, standard phenotypic identification techniques have 18 remained trusted in providing a definitive diagnosis. Following isolation, a 19 presumptive identification of *P. multocida* is often made from growth characteristics 20 on blood agar plates, where pure colonies are round, gray in colour, nonhaemolytic, 21 mucoid or non-mucoid with a typical sweetish smell of indole. However, major 22 variations in colony morphology have been observed for *P. multocida*, some of which 23 are host-related. Mucoid colonies are often obtained from pneumonic lesions in cattle, 24 pigs and rabbits while non-mucoid colonies most often are recovered from poultry. It 25 should be remembered that even V-factor dependent isolates have been reported

1 (Krause et al., 1987). A characteristic bipolar staining feature, frequently observed in 2 Gram-stained smears of fresh isolates, is often abolished following serial laboratory 3 subculture. This staining feature is not fully understood, though we can speculate it to 4 be linked to expression of capsule material. It is well-established that serial subculture 5 often results in reduced capsular material (Heddleston et al., 1964) and previously this 6 has been the basis for generating non-capsulated mutants of *P. multocida* (Tsuji and 7 Matsumoto, 1989). By this way, the importance of encapsulation in the virulence of P. 8 *multocida* was earlier established. A presumptive diagnosis of *P. multocida* from 9 cases of fowl cholera has been suggested based on observing colonies on dextrose 10 starch agar using a stereomicroscope with an oblique source of light (Heddleston et 11 al., 1964; Bond et al., 1970). Highly encapsulated colonies, often from clinical 12 specimen, assume an iridescent phenotype whereas those from a serial laboratory 13 passage appear blue or take an intermediate range. 14 A wide range of biochemical tests are available for a definitive identification 15 of *P. multocida* (see for example Christensen and Bisgaard, 2003), but these are rarely

16 done in most laboratories except in those engaged in an extended phenotypic typing 17 scheme or national culture collection (Christensen et al., 2007). A presumptive 18 diagnosis of P. multocida is often made following associating disease syndrome and 19 host and minimal laboratory findings that include growth characteristics, colonial 20 morphology, odour, bipolar staining, positive catalase and oxidase reactions and 21 failure to grow on MacConkey agar. However, this compromise imposes a huge risk 22 of mis-identification. The easiest solution toward a safer identification is to combine 23 initial phenotypic testing with a genotypic test. And to aid in the definitive 24 identification, it is imperative to include reference strains of P. multocida and those 25 with a public access are given in Table 1.

1

2 *3.2. Semi-automated identification systems*

3 Semi-automated identification systems including the analytical profile index 4 (API) system were developed in the 1980s (Collins et al., 1981; Collins and Swanson, 5 1981; Oberhofer, 1981; Groom et al., 1986), but there appears to be no evidence of 6 their routine use for the identification of *P. multocida*. Though rapid and easy to use, 7 the associated high costs may be prohibiting routine use in most ordinary diagnostic 8 laboratories. Besides, mis-identification of strains appears to be of major concern. 9 Certain biotypes of *Haemophilus influenzae* and *H. parainfluenzae* were identified by 10 the API system as Pasteurella species (Hamilton-Miller, 1993). Recently, identification of 40 Pasteurellaceae strains to the species level using the API 20NE 11 12 system was found to be unreliable (Boot et al., 2004). Despite this, there is some 13 evidence on confirmation of *P. multocida* strains by the API 20NE alongside standard 14 sugar fermentation methods (Samuel et al., 2003a).

15

16 4. Genotype-based detection and identification of *P. multocida*

17 4.1. Species-specific PCR

18PCR-based methods employ specific primers targeting a conserved gene

19 within the genome. Development of a species-specific PCR was indeed a significant

20 step in the diagnosis of some *P. multocida* infections. Rapid confirmation of

21 suspected cases of pasteurellosis was facilitated.

A recently developed 5[°] Taq nuclease assay (Corney et al., 2007) promises to be far superior in detecting *P. multocida* in field samples than culture-based methods. Though initially described for detecting *P. multocida* from cases of fowl cholera, the potential for a wider application in diagnosing pasteurellosis in other host species has

1	been reported (Corney et al., 2007). In addition to type and reference strains of P.
2	multocida, isolates from bovine, porcine and avian sources were all detected in the
3	assay. Specificity was confirmed by negative results obtained with 27 other taxa
4	within the <i>Pasteurellaceae</i> family and some selected bacterial species and viruses.
5	Although the newest PCR test (Corney et al., 2007) promises to be the
6	required solution to rapid diagnosis of P. multocida infections, earlier PCR tests may
7	also be considered. Information gleaned from genomic subtraction studies enabled
8	identification of a unique chromosomal region, which upon subsequent amplification
9	produced a 460 bp product from all P. multocida strains (PM-PCR) tested (Townsend
10	et al., 1998). This test has successfully been used to detect <i>P. multocida</i> from tonsils
11	of slaughtered pigs (Townsend et al., 2000). From 36 tonsil swab samples, 16 gave a
12	positive PCR test, whilst 17 strains were eventually isolated. However, P. multocida
13	could not be isolated following mouse inoculation of 5 samples that were PCR
14	positive (Townsend et al., 2000) reflecting a higher sensitivity of the PCR test. A
15	modified PM-PCR assay allowed detection of P. multocida in intestinal contents of
16	orally infected chickens (Lee et al., 2000), further confirming the potential for this
17	PCR test to substitute culture-based detection methods.
18	The PCR of Miflin and Blackall (2001) amplified a product of 1,432 bp, which
19	was present in avian and porcine strains of <i>P. multocida</i> . The authors recommended
20	the test to accurately diagnose fowl cholera and porcine pasteurellosis, but there
21	appears to be no evidence of its wider application in clinical diagnosis. However, this
22	PCR test gave a positive result with biovar 2 variants of <i>P. canis</i> and <i>P. avium</i> , which
23	together with results from DNA-DNA hybridizations provided the basis of including
24	these variants under P. multocida (Christensen et al., 2004).

1	A PCR test based on two putative transcriptional regulators (Pm0762 and
2	Pm1231) has recently been described for the detection of P. multocida (Liu et al.,
3	2004). These genes appeared to be unique to P. multocida and PCR based on these
4	gave products of 567 bp and 601 bp, respectively (Liu et al., 2004). Confirmation of
5	PCR amplicons was achieved by DNA-DNA hybridization or alternatively by PCR-
6	ELISA (Sanchez et al., 2004). These findings suggest that this could be a species-
7	specific detection test for P. multocida, but there is no evidence for further
8	applicability.

9 A PCR assay based on the pls (P6-like) gene (PCR-H) was earlier developed 10 (Kasten et al., 1997), but not widely used. The *pls* gene encodes for a protein that is 11 unique to P. multocida and Haemophilus influenzae and a positive sample gives an 12 amplicon of 453 bp in size. The test can be undertaken with mixed cultures or clinical 13 specimen like pharyngeal swabs from infected birds, thus offering a distinct 14 advantage. However, in a subsequent test, whilst mouse inoculation detected 5 out of 15 six infected flocks, the PCR-H assay only detected 4 of the same six infected flocks 16 (Kasten et al., 1997), probably due to the presence of inhibitors of PCR in the clinical 17 specimen. Though this PCR-H assay seems to be easily adaptable for the confirmation of pasteurellosis, evidence is lacking on its wider application in detecting naturally 18 19 infected birds.

tRNA-intergenic spacer PCR has been shown to discriminate members of the
 Pasteurella sensu stricto (Catry et al., 2004) by producing specific patterns for each
 species, but there is lack of evidence of its practical application.

23

24 4.2. Disease specific PCRs

25 4.2.1. PCR methods for PAR

1	The P. multocida toxin (PMT) is the single most important virulence factor
2	responsible for atrophic rhinitis in pigs. Development of several PCR assays for the
3	detection of toxinogenic P. multocida followed identification, successful cloning and
4	sequencing of the entire toxA gene (Petersen and Foged, 1989; Lax et al., 1990; Buys
5	et al., 1990). An early PCR assay targeting the HindIII-HindIII 1.5 kb region of the
6	toxA gene was shown to be highly specific (Nagai et al., 1994), but this appeared not
7	to have been widely used. An alternative PCR assay amplifying a 846 bp fragment of
8	the toxA gene was shown to give equally sensitive and specific differentiation of
9	toxinogenic from nontoxinogenic P. multocida strains (Lichtensteiger et al., 1996).
10	We and others elsewhere have confirmed the reproducibility of this PCR assay
11	(Amigot et al., 1998; Townsend et al., 2000; Dziva et al., 2004). A nested PCR
12	protocol based on this PCR was reported to offer even a more sensitive and
13	reproducible alternative to the conventional test (Choi and Chae, 2001).
14	To cater for large-scale screening, a PCR test adaptable to a microtitre plate
15	format was developed (Kamp et al., 1996). The test employed 2 primer sets derived
16	from the toxA gene sequence and was validated to be suitable for large scale screening
17	of nasal and tonsillar swabs from clinically affected animals. The advantage of using
18	2 primers sets was not very obvious. However, it has been suggested that 2 primer sets
19	avoid cross reactions with genes encoding for cytotoxic necrotizing factors which may
20	be found in E. coli (cited by Kamp et al., 1996). Consistent with an earlier notion of
21	synergistic contribution of Bordetella bronchiseptica, toxinogenic and non-
22	toxinogenic P. multocida to PAR in pigs, a multiplex PCR that simultaneously
23	identifies these pathogens has recently been reported (Register and DeJong, 2006).
24	These PCR tests have brought an added advantage for the detection of <i>P. multocida</i> in
25	PAR-infected swine herds. A major advantage of these procedures lies in direct

- detection of the *tox*A gene in nasal swabs, thus shortening the diagnostic process.
 Today, some control and surveillance programmes rely on these successful, rapid,
 easy and cheap diagnostic PCR assays (cited by de Jong, 1999).
- 4

5 4.2.2. HS PCR

6 Insights from subtractive hybridization studies provided the basis of a serotype 7 B-specific PCR (Townsend et al., 1998). Primers based on a clone designated KMT1 8 generated an amplicon of 590 bp from only type B strains irrespective of the somatic 9 antigen type, indicating the specificity of the assay. Recently, another PCR based on 10 information gathered from amplicon patterns generated by 16S-23S rDNA universal 11 primers has been described (Brickell et al., 2002). This region was found to be unique 12 to pathogenic type B:2 strains of *P. multocida*, thus potentially becoming a diagnostic 13 marker for HS-causative agents in Asia. To the authors' knowledge type E strains 14 have not yet been associated with HS in Asia. However, it should be notified that 15 capsular type B strains have infrequently been reported from poultry (Rhoades & 16 Rimler, 1987; Jonas et al., 2001).

17

18 4.2.3. Fowl cholera PCR

Taking advantage of that hyaluronic acid is the predominant component of the
capsule material in capsular type A *P. multocida* strains, a PCR assay based on a
section of the hyaluronic acid encoding region (*hyaC-hyaD*) has been reported
(Townsend et al., 2001) and this gives a 1044 bp DNA product. Recently, a PCR test
targeting a shorter region of the same locus gives a 564 bp amplicon (Gautam et al.,
2004). Validation of the specificity and sensitivity of this assay was provided by a
successful nested PCR designed alongside this initial PCR (Gautam et al., 2004). This

1	test has been extended to confirm suspected fowl cholera cases in chickens using
2	morbid tissues (Shivachandra et al., 2004). By virtue of targeting a universal
3	component of capsule, these serotype-specific PCR assays are expected to detect all
4	serotype A strains irrespective of the disease condition or host species. However,
5	associations between serotype, diseases and hosts should not be strict since serotype A
6	strains can also cause other diseases in other animals for example snuffles in rabbits
7	and besides, fowl cholera can be caused by capsular types D and F strains that lack
8	this gene.
9	Serotype 1 is one of the more frequent serotypes associated with fowl cholera
10	in both wild and domesticated birds (Botzler, 1991; Gunawardana et al., 2000). A
11	PCR assay based on a unique 490 bp arbitrarily amplified fragment detected
12	Heddleston serotypes 1 and 14 reference strains (Rocket et al., 2002). Although the
13	assay inevitably gave amplicons in both serotypes 1 and 14, the authors (Rocke et al.,
14	2002) did not consider this to be a drawback since serotype 14 strains are hardly
15	encountered in birds (Botzler, 1991).
16	
17	4.3. DNA-DNA hybridisation
18	
19	The first application of this technique for the diagnosis of PAR followed the
20	identification of the toxA gene (Petersen and Foged, 1989; Kamps et al., 1990).
21	Several hybridization probes were evaluated by colony hybridization, but only two
22	(an EcoR1-Xba1 fragment of 2000 bp; a HindIII fragment of 1500bp) of the five
23	probes were considered to be of diagnostic value (Kamps et al., 1990). There is lack
24	of evidence in relation to successful field application of these probes. A fluorescein-
25	or biotin-labelled probe based on the amplified region of toxA (Nagai et al, 1994) was

1	reported to offer higher sensitivity and specificity (Register et al., 1998). Based on an
2	earlier notion of dual causation of PAR, a two-colour hybridization assay for
3	simultaneous detection of B. bronchiseptica and toxinogenic P. multocida was
4	developed and subsequently evaluated with 84 primary isolation plates generated
5	from clinical cases of PAR (Register et al., 1998). Direct detection of <i>P. multocida</i> on
6	mixed cultures removes the need for purification of colonies which may be time
7	consuming.
8	A 1,200 bp HpaI fragment from the coding region of adenylate cyclase was
9	shown to specifically hybridise with only P. multocida among other Pasteurella
10	species, Actinobacilllus ureae and group EF-4 bacteria (Neisseria spp.) (Escande and
11	Crasnier, 1993). Recently, in situ hybridization with fluorescent-labelled rRNA has
12	been described and evaluated using tissues from chickens with fowl cholera and
13	deliberately-infected pig lung tissues (Mbuthia et al., 2001). Following sequence
14	comparison of the 16S rRNA, a region that separated P. multocida from other
15	members of the Pasteurellaceae was identified and labelled with Cy3 or fluorescein.
16	The authors recommended this test to be a supplementary tool for the diagnosis of P .
17	multocida.
18	In essence, amplified products of PCR can easily be converted into probes to
19	allow hybridization studies once conjugated to specific fluorescein dyes or isotopic
20	compounds. With the public availability of the whole genome sequence of <i>P</i> .
21	multocida (May et al., 2001), development of new probes and specific PCRs for rapid
22	diagnosis of pasteurellosis is bound to be made easier and faster.
23	
24	4.4. DNA-sequence comparison

1	The potential of using gene sequence comparison in the identification of <i>P</i> .
2	multocida has increased with decreased costs of nucleotide sequencing. DNA
3	sequencing mostly has focused on conserved genes aiming for characterization at
4	species and subspecies levels (Kuhnert et al., 2000; Petersen et al., 2001; Davies et al.
5	2004; Gautier et al., 2005; Kuhnert and Korczak, 2006). Targeting a higher resolution,
6	MLST methods have been developed based on partial sequencing of seven genes of <i>P</i> .
7	multocida (adk, aroA, deoD, gdhA, g6pd, mdh and pgi) (Davies et al. 2004). It
8	remains to be shown if sequence types identified correlate with virulence, type of
9	lesions or host association.
10	
11	5. Antibody-based detection and identification of P. multocida
12	
13	Immunological assays are rarely undertaken for routine diagnosis of infections caused
14	by P. multocida. Evidently serological tests are practically valueless in diagnosing
15	rapidly fatal septicaemic forms of pasteurellosis (HS and fowl cholera) and mucosal
16	infections (PAR and snuffles) may be characterized by low level systemic immunity
	infections (I AR and shuffles) may be characterized by low level systemic initiality
17	in early stages of infection. Moreover, a positive antibody test should not be
17 18	
	in early stages of infection. Moreover, a positive antibody test should not be
18	in early stages of infection. Moreover, a positive antibody test should not be interpreted as presence of active infection. Consequently, the majority of serological
18 19	in early stages of infection. Moreover, a positive antibody test should not be interpreted as presence of active infection. Consequently, the majority of serological tests for <i>P. multocida</i> can be regarded as research support tools though some have
18 19 20	in early stages of infection. Moreover, a positive antibody test should not be interpreted as presence of active infection. Consequently, the majority of serological tests for <i>P. multocida</i> can be regarded as research support tools though some have
18 19 20 21	in early stages of infection. Moreover, a positive antibody test should not be interpreted as presence of active infection. Consequently, the majority of serological tests for <i>P. multocida</i> can be regarded as research support tools though some have found their way into herd/flock health screening and monitoring schemes.

25 nontoxinogenic strains became crucial following identification of *P. multocida* toxin

As mentioned earlier (4.2.1), differentiation of toxinogenic from

24

1	(PMT) to be a significant mediator of PAR. Monoclonal antibodies against purified
2	PMT allowed development of a sandwich ELISA (Foged et al., 1988) for confirming
3	diagnosis and herd health screening (Foged et al., 1990). Field-based serological
4	surveys identified infected pigs that were also confirmed by culture of nasal swabs
5	and nasal secretions (Foged et al., 1990; Bowersock et al., 1992). Today, a
6	commercially available P. multocida toxin ELISA kit (DAKO, Glostrup, Denmark) is
7	widely used for diagnosis and surveillance of PAR including creation of PAR-free
8	sow herds (cited by de Jong, 1999). A distinct advantage of this test is that the culture
9	does not necessarily have to be purified. However, most laboratories often combine
10	ELISA with toxA PCR (section 4.2.1) thus confirming expression of the gene. This
11	test has also been adapted for the detection of anti-PMT antibodies in sow colostrum
12	in a PAR control program of breeding pigs (Levonen et al., 1996).
13	Monoclonal antibodies directed at specific outer membrane proteins of porcine
14	P. multocida, designated H and W, have been evaluated for specific identification of
15	type D strains (Marandi and Mittal, 1995). Though capable of specific detection of
16	type D strains by dot-ELISA (Vasfi Marandi et al., 1997), the test failed to distinguish
17	toxin-producing strains which are central to the development of PAR. But peroxidase-
18	labeled monoclonal antibodies against the PMT specifically detected toxinogenic P.
19	multocida in primary cultures from experimentally infected gnotobiotic pigs by
20	colony-blotting (Magyar and Rimler, 1991), suggesting a potential use of this assay
21	under field conditions.
22	
23	5.1.2. HS
24	To identify HS-causing organisms, an ELISA test using a live or formalin-

25 inactivated suspension of *P. multocida* was developed (Dawkins et al., 1990).

1	Regardless of the capsular serogroup associated with HS, the assay was reported to
2	have a specificity of 99% and a sensitivity of at least 86%. The authors asserted that
3	this serodiagnostic tool enables assessment of the impact of HS in endemic countries.
4	A similar technique confirmed the passive transfer of antibodies from HS-vaccinated
5	dams to calves (el-Eragi et al., 2001) and antibody responses in buffaloes
6	(Chandrasekaeran et al., 1994) following vaccination against HS. Recently, an outer
7	membrane protein-based ELISA enabled estimation of the levels of maternally and
8	naturally acquired <i>P. multocida</i> antibodies in beef calves (Prado et al., 2006).
9	
10	5.1.3. Fowl cholera
11	The need to accurately monitor antibody responses to P. multocida-derived
12	vaccines in turkeys gave rise to the development of an ELISA test for fowl cholera
13	(Marshall et al., 1981). Using sonicated whole cells of <i>P. multocida</i> as the antigen
14	source, ELISA was shown to be far more superior to previously described
15	agglutination tests (Marshall et al., 1981). Recently, an ELISA using purified bacterial
16	cellular constituents prepared by a cell disrupter (French press), was found to be
17	accurate in estimating the prevalence of <i>P. multocida</i> in wild birds (Samuel et al.,
18	1999), though subsequent tests showed little association between ELISA-determined
19	antibody levels and carrier status in waterfowls (Samuel et al., 2003a). Today, a
20	commercial ELISA kit (IDEXX FlockChek, Westbrook, Maine) for the detection of
21	P. multocida antibodies is available for large-scale screening of poultry sera. The
22	FlockChek P. multocida Antibody Test Kits have been employed in serosurvey
23	studies for pathogens of ostriches (Cadman et al., 1994) and backyard chicken flocks
24	(Kelly et al., 1994). In both instances, the authors identified <i>P. multocida</i> to be a
25	prevalent pathogen for the respective birds. The availability of this commercial test is

a huge asset allowing rapid and accurate detection of fowl-cholera-infected flocks.

1

2 However, when compared with dot immunobinding assay (DIA) in an unrelated 3 study, the ELISA protocol was found to be less specific (Choi et al., 1990). The 4 authors concluded that DIA offered several distinct advantages over ELISA that 5 included more uniform binding of coating antigen, but these findings have not yet 6 been commercially exploited. 7 8 5.1.4. Snuffles 9 Previous work (Marshall et al., 1981) provided the basis for the development 10 of an ELISA test for the detection of P. multocida antibodies from infected but clinically healthy rabbits (Klaasen et al., 1985). Despite differences in the nature of 11 12 the antigen, ELISA-based detection of *P. multocida* in apparently healthy but 13 consistently nasal culture-negative rabbits was confirmed by several independent 14 workers (Holmes et al., 1986; Hwang et al., 1986; Lukas et al., 1987; Zaoutis et al., 15 1991; Kawamoto et al., 1994). Intriguingly, the majority of these ELISA tests 16 detected antibodies to cross-reacting antigens, thus lacking specificity. Furthermore, 17 some of the assays tended to be serotype-specific, thereby limiting their applicability 18 under field conditions; snuffles is also caused by either serotype A or D (DeLong and 19 Manning, 1994) and potentially serotype F strains (Jaglic et al., 2007). To address 20 these limitations, more sensitive and specific ELISA tests targeting conserved factors 21 among strains associated with snuffles in rabbits have been reported. A 37kDa 22 protein-based capture ELISA (Peterson et al., 1997) and a NanH sialidase-based 23 ELISA (Sanchez et al., 2004) have been commended to be sensitive and specific in 24 detecting infected rabbits, though field applicability remains to be ascertained.

1	Collectively, these findings suggest that an ELISA-based technique could be
2	an extremely valuable serological tool for the diagnosis of pasteurellosis.
3	
4	5.2. In situ detection using antibodies
5	
6	Consistent with the finding that HS 'carrier animals' harbour P. multocida in
7	their tonsils (De Alwis, 1992), immunoperoxidase and peroxidase anti-peroxidase
8	(PAP) techniques successfully revealed this organism in the organs of naturally and
9	experimentally challenged buffaloes (Horadagoda et al., 1990; 1998). And using an
10	immunohistochemical technique, P. multocida-specific staining was demonstrated in
11	the kidneys of pigs that manifested with dermatitis and nephropathy syndrome
12	(Thomson et al., 2001). In a separate study, a modified immunoperoxidase assay was
13	used to diagnose rabbit pasteurellosis (Takashima et al., 2001). Importantly, in situ
14	detection is feasible in disease conditions that result in localization of the bacteria, its
15	products or immune complexes. It has been reported that antibody-coated
16	staphylococci could detect soluble group antigen in the plasma and liver extracts of
17	mice experimentally infected with HS strains of P. multocida, and that the two
18	serotypes (B and E) could also be differentiated by the same coagglutination test
19	(Rimler, 1978).
20	
21	5.3. Other antibody detection tests
22	Potential serological techniques that have not widely been used for diagnosis
23	but typing and epidemiological studies include the; haemagglutination assay (Carter,

- 24 1955), indirect haemagglutination (Sawada et al., 1982), agar gel diffusion
- 25 precipitation (Heddleston *et al.*, 1972), mouse protection assay (Carter, 1964) and

1	counterimmunoelectrophoresis (Carter and Chengappa, 1981; Chengappa et al.,
2	1986). Employing passive immunization of mice and by indirect haemagglutination
3	and agglutination test (IHAT), naturally acquired antibodies against P. multocida
4	types B and E were successfully detected in the sera of calves (Sawada et al., 1985)
5	suggesting a potential use of this test in diagnosis. However, the reliability of this test
6	could be highly questionable. A 23.5% correlation with positive nasal culture results
7	was obtained with IHAT in naturally infected rabbits and no antibodies were
8	demonstrable in experimentally infected rabbits (Kawamoto et al., 1994). It is most
9	probable that the sensitivity of the serological test is dependent on the P. multocida
10	antigen used. IHAT employs a crude capsular extract that is coated on fixed sheep red
11	blood cells and may therefore not detect OMP or LPS antibodies which will be
12	detectable when whole cells are used as an antigen source in tests like ELISA.
13	Counter-immunoelectrophoresis (CIE) appears to be useful as a confirmatory
14	test. It has been successfully applied for the identification of types B, D and E strains
15	of <i>P. multocida</i> (Carter and Chengappa, 1981; Chengappa et al., 1986). And when
16	used in conjunction with IHA test, a 100% correlation was observed, presumably due
17	to the nature of the antigen, i.e. crude capsular extract. However, the potential use of
18	this test in routine detection of <i>P. multocida</i> appears highly unlikely.
19	A dot-immunobinding assay using LPS as antigen has also been reported to be
20	efficient in detecting P. multocida infection in laboratory rabbits (Manning et al.,
21	1987), but there is lack of its proper assessment.
22	
23	5.4. Challenges to serological diagnosis
24	Although serology may be a valuable diagnostic alternative, potential
25	complications arise when the epidemiology of the disease changes. Indeed, in recent

1	years a decrease in the incidence of type E strains of P. multocida in southern African
2	countries has been noted (Lane et al., 1987; Voigts et al., 1997; Dziva et al., 2000). To
3	our knowledge, serotype E has never been reported outside Africa and there is lack of
4	evidence that this serogroup still poses a disease threat in domestic animals. This
5	decline in the incidence of serogroup E has been gathered from few reports linking
6	HS with serotype B in regions previously known to harbour serotype E strains.
7	Surprisingly, this apparent change in the prevalent serotype has attracted very little
8	attention. And perhaps the authors can be given some freedom of postulating some
9	probable reasons for this scenario. Firstly, it is known that many African cattle breeds
10	are of Asian origin brought over years of historical trade between the two continents.
11	It is likely that these cattle brought along capsular serotype B carried in their tonsils,
12	which is now encountered in most recent HS outbreaks in Africa. Improved changes
13	in husbandry systems could have promoted reversion to a gene arrangement that
14	encode for type B capsular antigen, thus leading to the disappearance or low incidence
15	of type E strains. Strictly, no major differences exist between these two HS causing
16	serotypes apart from; i) the capsular antigen (Carter, 1955, 1961), ii) that serotype B
17	strains produce hyaluronidase (Carter and Chengappa, 1991), and iii) the
18	electrophoretic position of one major outer membrane protein (Johnson et al., 1991).
19	Intriguingly, a parallel change in prevalent serotypes has also been reported in
20	Avibacterium [Haemophilus] paragallinarum strains in South Africa (Bragg et al.,
21	1996).
22	The other hurdle seems to be poor elicitation of systemic immune responses
23	particularly by infections occurring at mucosal surfaces. One such example already
24	discussed is PAR, where it takes up to 3 months for serum detectable levels of
25	antibodies to develop following infection (Levonen et al., 1996). Although sow

24

1	colostrum provides a concentrated source of antibody, PAR is predominantly a
2	disease of growing piglets that are direct targets for diagnosis in cases of outbreaks
3	rather than sows. However, sow colostrum becomes necessary when establishing
4	PAR-free sow herds. Following intranasal instillation of purified PMT, van Diemen et
5	al. (1994) were able to demonstrate significant differences, but weak humoral
6	responses in piglets, further indicating that serological diagnosis might be
7	inappropriate for this disease.
8	
9	6. Alternative detection techniques
10	
11	Observations that mice and guinea-pigs were extremely susceptible to some
12	serotypes of P. multocida provided the first animal models for pasteurellosis (de Jong
13	et al., 1980). Intraperitoneal injection of mice with suspected clinical specimen is
14	often used as a purification procedure for isolating P. multocida and for confirmation
15	of the virulence status of some strains. It has been reported that toxinogenic strains of
16	P. multocida are often lethal for BALB/c mice whilst non-toxinogenic strains may
17	cause mild disease (Rutter, 1983). Furthermore, toxinogenic strains of P. multocida
18	cause skin necrosis when injected intradermally into guinea-pigs (de Jong et al.,
19	1980). Use of live animals has huge implications on animal welfare hence the
20	development of cell-based assays for the detection of toxinogenic P. multocida.
21	Various cell lines have been shown to produce results comparable to data generated
22	by other alternative tests; mouse inoculation, guinea pig skin test, ELISA and toxA
23	PCR (Rutter and Luther, 1984; Pennings and Storm, 1984; Amigot et al., 1998). The
24	agar overlay method was reported to shorten the identification of toxinogenic strains
25	by 48 hours (Chanter et al., 1986). Radiographic examination of the snout, rhinoscopy

2 (cited by de Jong, 1999), but applicability on a wider scale has been hampered by 3 technical difficulties. 4 Certain serotypes of *P. multocida* exhibit distinctive features which have been 5 exploited for their rapid identification. Serotype B:2 strains from cases of HS produce 6 hyaluronidase that depolymerizes hyaluronic acid found in encapsulated streptococci 7 or type A P. multocida (Carter and Chengappa, 1991). Similarly, Type A strains can 8 easily be identified by cross-streaking with a hyaluronidase-producing *Staphylococcus* 9 aureus (Carter and Rundell, 1975). By an unknown mechanism, serotype D strains 10 typically produce a coarse flocculation when acriflavine dye is added to a broth 11 culture (Carter and Subronto, 1973). Additionally, a presumptive identification of 12 non-HS serotypes of *P. multocida* can be obtained by enzymatic digestion with 13 mucopolysaccharidases (Rimler, 1994).

and computerized tomography have been described for clinical diagnosis of PAR

14

1

15 7. Typing methods for *P. multocida*

16 7.1. Biotyping and macromolecular profiling

17 Strains from different disease conditions or hosts are often indistinguishable 18 by simple biochemical tests. Biotyping seems to be of little value in epidemiological 19 investigations but remains one of the trusted traditional methods of identifying 20 bacterial species following primary isolation. For P. multocida, an extended 21 phenotyping scheme (Bisgaard et al., 1991; Muhairwa et al., 2001a) offers a 22 comprehensive classification technique for this pathogen. In laboratories where 23 resources are limited, five key differentiation sugars described by Biberstein et al. 24 (1991) often yield information that is essential for grouping P. multocida into biotypes 25 or subspecies. We have employed these and obtained reasonable success in

1	differentiating isolates from clinical cases (Muhairwa et al., 2001a; Dziva et al., 2001;
2	2004). However, the limiting factor in this scheme is the frequent encounter of
3	unassigned biotypes as previously reported by Fegan et al. (1995). Although biotyping
4	remains one of the key phenotypic typing schemes of <i>P. multocida</i> , variation in the
5	utilization of sugars often confounds clear strain differentiation.
6	Outer membrane protein (OMP) profiling offers a relatively quick alternative
7	way to establish relationships between strains. In P. multocida, the electrophoretic
8	mobility of 2 outer membrane proteins, designated H and W, provided the basis of
9	typing strains from atrophic rhinitis cases (Lugtenberg et al., 1984). A close
10	association between an OMP profile and pathogenicity as evidenced by the guinea-pig
11	skin test was established (Lugtenberg et al., 1984). Based on the electrophoretic
12	migration of protein H (OmpH), different OMP patterns were demonstrated among
13	capsular serotype strains from various hosts and geographical origins (Vasfi Marandi
14	et al., 1997). OmpH and a heat-modifiable outer membrane protein of <i>P. multocida</i>
15	(OmpA) provided another OMP typing scheme. Based on the electrophoretic
16	separation of these 2 major outer membrane proteins and other minor ones, Davies et
17	al. (2003) demonstrated up to 19 OMP types among avian strains of <i>P. multocida</i> .
18	However, the variable molecular mass exhibited by OmpA when solubilised at
19	different temperatures (Marandi and Mittal, 1996) suggests that this could not be a
20	consistent typing technique despite a strong correlation between certain capsular types
21	and specific OMP-types (Davies et al., 2003). High resolution OmpA and OmpH
22	profiling of bovine isolates from England and Wales recently revealed no correlation
23	with disease-status and geographic origin (Davies et al., 2004). But electrophoretic
24	protein profiles had previously correlated well with capsular serotype and country of
25	origin (Johnson et al., 1991) suggesting that OMP profiling could still provide a non-

1	serological technique for identifying HS strains of P. multocida. Furthermore, minor
2	variations between field and vaccine strains were reported following OMP typing of
3	B:2 isolates (Tomer et al., 2002). Although classifying strains on the basis of
4	electrophoretic mobility of proteins provides a simple typing alternative, the
5	possibility of unrelated proteins migrating at the same rate should be considered as a
6	potential risk.
7	Interestingly, lipopolysaccharide (LPS) profiling was reported to correlate well
8	with OMP profiles (Lugtenberg et al., 1984), but a subsequent study revealed different
9	profiles for the 16 Heddleston somatic serotypes (Rimler, 1990).
10	
11	7.2. Serological typing
12	
13	Over a century, researchers have relied primarily on serological typing to
14	classify and/or identify bacterial strains. The first serological classification of P.
15	multocida was based on agglutination and adsorption tests (Cornelius, cited by
16	Rosenbusch and Merchant, 1939) and Khalifa was the first to correlate serological
17	results with the fermentation of some sugars; xylose, arabinose and mannitol (cited by
18	Rosenbusch and Merchant, 1939). Since then, several schemes have been developed
19	for serological and epidemiological studies of <i>P. multocida</i> and among them are;
20	specific agglutination, passive haemagglutination, passive protection of mice and agar
21	gel diffusion precipitin tests (reviewed by Rimler & Rhoades, 1987). The typing
22	scheme developed by Carter (1955; 1961) facilitated the first recognized grouping of
23	P. multocida into capsular serotypes (A, B, D and E). Decades later, an improved
24	indirect haemagglutination (IHA) assay that employed glutaraldehyde-fixed sheep red
25	cells was developed (Sawada et al., 1982) and identified a fifth capsular serotype F

1	(Rimler & Rhoades, 1987). In the early days, a trend associating a particular capsular
2	serotype with a specific disease in a distinct host and even geographical location was
3	widely accepted. Typically, serotype B strains were reported to cause HS only in
4	cattle and water buffaloes and restricted to the Asian continent whilst serotype E
5	strains caused HS in Africa (Carter, 1961; Carter and De Alwis, 1989). And despite
6	isolated incidences of acute septicaemic pasteurellosis in pigs due to capsular type B,
7	in India (Murty and Kaushik, 1965) and in Australia (Cameroon et al., 1996), serotype
8	B strains had remained associated with HS in cattle and buffaloes mostly in Asia.
9	However, it is becoming increasingly unsafe to use these associations. Most HS
10	outbreaks in North, Central and Southern Africa are associated with serotype B
11	(Shigidi and Mustafa, 1979; Lane et al., 1991; Martrenchar & Njanpop, 1994; Voigts
12	et al., 1997), previous enclaves for serotype E strains (Carter, 1961; De Alwis, 1992).
13	To further complicate the initial generalizations, capsular serotypes B and D have now
14	been recovered from poultry disease conditions in addition to the usual serotypes A
15	and F (Rhoades and Rimler, 1987; Davies et al., 2003). And in recent years, serotype
16	E strains are hardly isolated from any animal species around the world (Dziva et al.,
17	2000; Ewers et al., 2006). The epidemiology of <i>P. multocida</i> is probably changing and
18	in this regard serotyping is not always a good predictor of host-disease relationships.
19	IHA assay enjoyed immense popularity worldwide and became the gold
20	standard for capsular typing (Rhoades and Rimler, 1987; Rimler and Rhoades, 1987)
21	until the advent of PCR-based typing technique (Townsend et al., 2001). Although
22	capsular distribution in various animals could be investigated, some problems existed
23	in the readily dissociation of the isolates that rendered them untypable. Using a tube
24	agglutination test (Namioka and Murata, 1961a) first demonstrated that a single
25	capsular type could have two somatic antigens and that untypable dissociation

29

1	variants still possessed the same somatic antigen as the parent strain. The somatic
2	antigen typing scheme of Namioka and Murata (1961b) recognized only 6 groups,
3	which appeared to offer very restricted differentiation. Further differentiation of
4	somatic serotypes of <i>P. multocida</i> is possible with an agar gel diffusion precipitin test
5	(Heddleston et al., 1972) and identifies 16 somatic antigens (designated 1 to 16). To
6	date, no molecular typing technique has substituted this somatic typing scheme. Due
7	to the laborious nature of the test, researchers more than often rely on capsular typing,
8	which tends to correlate well with some infections.
9 10 11 12	7.3. Genotyping methods Aiming at tracing outbreak strains or simply sorting of isolates, nucleic acid-
13	based methods are now the cornerstone of typing bacteria. Molecular typing is
14	generally accomplished using; i) restriction enzyme digestion with or without
15	subsequent hybridization with a standard probe (7.3.1) or ii) PCR-based methods
16	(7.3.2), iii) sequencing of multiple loci of predominantly house-keeping genes. The
17	choice of a typing tool depends on available resources. In view of detailed reviews of
18	typing methods for <i>P. multocida</i> given elsewhere (Blackall and Miflin, 2000;
19	Christensen and Bisgaard, 2003), we will only give an overview of a selected few
20	including those we have recently employed in our studies.
21	
22	7.3.1. Restriction enzyme digestion with or without subsequent hybridization with a
23	standard probe
24	Restriction endonuclease analysis (REA) is based on specific cleavage of
25	DNA by a restriction enzyme (often derived from different bacterial species)
26	providing a basis for typing. Restriction enzyme digestion of chromosomal DNA
27	produces fragments of different sizes which upon electrophoresis generate a specific

1	pattern that can be visually inspected or computed for analysis. The power of REA
2	was shown when porcine strains P. multocida belonging to the same somatic and
3	capsular serotypes were differentiated (Harel et al., 1990), and likewise strains
4	causing atrophic rhinitis in pigs (Gardner et al., 1994). The discriminatory power of
5	REA is dependent upon the restriction enzyme used. In addition to pulse-field gel
6	electrophoresis (PFGE; Boerlin et al., 2000; Liu et al., 2003; Pedersen et al., 2003),
7	REA typing has been one of the most frequently used methods for epidemiological
8	investigations of pasteurellosis (Olson and Wilson, 2001; Samuel et al., 2003b;
9	Weiser et al., 2003; Pedersen et al., 2003).
10	Ribotyping involves an initial digestion of genomic DNA with a restriction
11	enzyme, followed by transfer onto a nitrocellulose membrane that is reacted with a
12	16S or 23S rRNA-based probe. Specific patterns generated are compared among the
13	strains under study for similarity and these are dependent on the restriction enzyme
14	applied. Significantly, information on the genetic diversity and population structure
15	within <i>P. multocida</i> has been unraveled using this typing tool (Blackall et al., 1998).
16	We have employed this method in characterizing <i>P. multocida</i> strains from Zimbabwe
17	(Dziva et al., 2004), Tanzania (Muhairwa et al., 2001a; 2001b) and Denmark
18	(Petersen et al., 1998). However, when compared to RAPD (see below), we observed
19	that ribotyping offered a limited discrimination capability among <i>P. multocida</i> strains
20	from cases of atrophic rhinitis. Typically, strains from Zimbabwe clustered with a
21	reference toxinogenic strain from Denmark. The same strains were shown to be
22	distinct when analyzed by RAPD. Indeed, it has been reported that ribotyping findings
23	should be validated by RAPD in epidemiological surveys of Pasteurella from animals
24	(Chaslus-Dancla et al., 1996), hence it should continue to provide a complimentary

1	service to other genotyping methods. The enzymes HpaII and HhaI have been found
2	most suitable for P. multocida (Christensen and Bisgaard, 2000; Rimler, 2000).
3	
4	7.3.2. Multiplex PCR typing
5	The multiplex PCR capsular typing scheme of Townsend et al. (2001) has
6	remarkably abolished the labour-intensive traditional indirect haemagglutination
7	(IHA) assays. The IHA test depends on the capsular antigen, but P. multocida
8	typically loses much of the capsular material when subcultured on ordinary laboratory
9	media. Consequently, relatively low amounts of capsular antigen are extracted from
10	such strains rendering them untypable. The multiplex PCR has abolished such
11	limitations and provides a fast, simple and cheap capsular serotyping scheme.
12	However, it has recently been reported that this approach could not type 6% of the 48
13	isolates confirmed as <i>P. multocida</i> by a species specific PCR (Jamaludin et al., 2005).
14	One should also be aware of slight discrepancies between typing results obtained by
15	the passive haemagglutination test and the PCR test (Townsend et al., 2001).
16	
17	7.3.3. Random amplification of polymorphic DNA

18 Random amplification of polymorphic DNA (RAPD) relies on the polymorphic DNA that can be amplified with arbitrary short primers (8-12 19 20 nucleotides) to generate single or multiple amplicons. By resolving on agarose gel, 21 profiles of DNA fragments from strains under study can be compared. We have 22 shown that RAPD to reliably differentiate P. multocida strains where ribotyping is 23 unable to do so (Dziva et al., 2004). RAPD is an easy typing tool which requires 24 minimal molecular biology equipment; a PCR machine and agarose gel 25 electrophoresis. Analysis of resolved fragments can be undertaken by visual

1	inspection, though in some cases it may require a specialized computer programme.
2	Another advantage offered by this protocol is that no prior information of the genome
3	sequence is required to design primers.
4	
5	7.3.4. Other genotyping techniques
6	Amplified fragment length polymorphism (AFLP) has been used recently for
7	typing P. multocida isolates (Amonsin et al., 2002; Moreno et al., 2003) and was
8	shown to provide better resolution than RAPD (Huber et al., 2002).
9	Repetitive extragenetic palindormic (REP)-PCR was observed to differentiate
10	P. multocida isolates from different outbreaks (Gunawardana et al., 2000) and to sort
11	strains into P. multocida subsp. multocida and septica (Chen et al., 2002).
12	Enterobacterial repetitive intergenic consensus (ERIC) – PCR offers another potential
13	typing tool, though there are indications of low discriminatory power when used in <i>P</i> .
14	multocida isolates from dogs (Loubinoux et al., 1999).
15	
16	8. Association between population structure of <i>P. multocida</i> , hosts, diseases and
17	different detection systems
18	
19	With P. multocida implicated in a number of diseases that manifest differently
20	in various hosts and also restricted to a geographical region (i.e. capsular type E), it
21	would be sensible to associate population structure, disease, host and possibly
22	detection system. The population structure of <i>P. multocida</i> was found to be clonal by
23	multilocus enzyme electrophoresis (MLEE). MLEE and ribotyping showed close
24	relationships between the type-strains of Past. multocida subspp. multocida and
25	gallicida, whereas subsp. septica was distantly related to these taxa (Blackall et al.,

1	1998). These results were confirmed by DNA sequence comparisons (Kuhnert et al.,
2	2000; Petersen et al., 2001; Kuhnert and Korczak, 2006). The population structure of
3	P. multocida has not been clearly correlated with specific traits like presence of
4	particular virulence factors, disease patterns or diseases. For example, fowl cholera is
5	normally caused by serotype A of P. multocida (Christensen & Bisgaard, 2000),
6	however, one cannot automatically assume that an isolate with capsular type A will
7	cause fowl cholera in poultry. Capsular type A strains can also be recovered from a
8	variety of other hosts and disease conditions. Besides, virulence may vary due to
9	serial subculture on laboratory media (Heddelston et al., 1964).
10	In this respect, genotypic methods like REA or RAPD considered to provide
11	high level resolution, have not been able to show correlation between serotypic
12	characteristics and genotype (Al-Haddawi et al., 1999; Olson and Wilson, 2001; El-
13	Tayeb et al., 2004). However, a significant association between serotype and RAPD
14	and AFLP has been reported though serotyping provided a lower resolution (Huber et
15	al., 2002). A closer genetic link between the vaccine strain and isolates from
16	vaccinated birds than those from unvaccinated counterparts was established by RAPD
17	and ALFP, but not by serotyping (Huber et al., 2002).
18	It has already been discussed that associations of capsular type, disease, host
19	and even geographical region no longer hold true (section 7.2). It also remains unclear
20	whether a particular detection system can be associated with disease, host or
21	population structure. Therefore, the use of phenotypic tests and confirmatory
22	genotypic technique(s) remain crucial in establishing a definitive diagnosis of <i>P</i> .
23	multocida infections.
24	

25 9. Conclusions and perspectives

1	
2	Considerable progress has been made in the development of diagnostic and
3	typing techniques for P. multocida strains associated with diseases of economic
4	importance. These have brought some added advantages to the control and
5	surveillance programmes as evidenced with PAR of pigs (cited by De Jong, 1999). A
6	wide spectrum of these diagnostic tests is now available and those commercially
7	exploited have subsequently proved invaluable in offering rapid diagnosis of
8	pasteurellosis. Despite the unquestionable progress, the majority of these still await
9	successful commercial exploitation. Similarly, availability of typing techniques has
10	contributed to determination of the population structures and to taxonomic revisions
11	of P. multocida and its related species. Today, studies for epidemiological tracing and
12	population dynamics of endemic strains are easily undertaken. Whereas these
13	successes have been gathered from a vast amount of studies with strains from the
14	developed world, very little information has emerged from the developing world.
15	Striking differences in the husbandry practices between the two worlds exist, and the
16	contributory role of these to the course of infectious disease and epidemiology has
17	been suggested (Madec and Rose, 2003). In recent years, a noteworthy but
18	unexplained decline in the incidence of serotype E strains in Southern Africa has
19	recently been observed. Whether changes in husbandry practices or shortfalls in
20	diagnostic and typing methods play contributory roles, is solely speculative. Indeed,
21	this low incidence of type E strains has been deduced from very few studies and
22	recent reports linking HS with serotype B in Central and Southern Africa, where type
23	E strains had previously been prevalent. It is clear that in-depth studies are required to
24	confirm this suspected change in epidemiology of HS strains in Africa. For this and as
25	for other investigations, it is important to isolate many isolates from a wide variety of

1	sources in the developing world and to archive them by - 80 $^{\circ}$ C freezing or
2	lyophilization for further studies. Comparative studies including identification should
3	always include reference strains (Table 1). In this respect, rapid specific diagnostic
4	tests would play an ingenious role in confirming presumptive isolates as P. multocida.
5	We have previously suggested that evidence of phenotypic and genotypic divergence
6	call for the further development of PCR tests and DNA sequencing to document
7	doubtful isolates (Christensen et al., 2005). Further development of definitive typing
8	methods involving DNA sequencing might become feasible with the lower price of
9	such analysis to be foreseen in the near future. Whole genome sequencing of more
10	strains involved in major diseases such HS and PAR are seriously needed to
11	supplement the existing information of strain Pm70 probably representing a small
12	population of <i>P. multocida</i> associated disease of chicken.
13	In conclusion, the ever-ending quest for easy, cheap and rapid diagnostic and
14	typing techniques will continue to breed a challenge for evolving diagnostic
15	technologies for P. multocida and other infectious organisms in general. And with
16	further public availability of whole genome sequences of more P. multocida strains,
17	the design of new probes and more specific PCRs for rapid diagnosis of pasteurellosis
18	is bound to be made easier and faster.
19	
20	Acknowledgements
21	The European Union-funded link programme with the University of
22	Zimbabwe is thanked for establishing this collaboration.
23	
24	References

1	Al-Haddawi, M.H., Jasni, S., Son, R., Mutalib, A.R., Bahaman, A.R, Zamri-Saad, M.,
2	Sheikh-Omar, A.R., 1999. Molecular characterization of Pasteurella multocida
3	isolates from rabbits. J. Gen. Appl. Microbiol. 45, 269-275.
4	
5	Amigot, J.A., Torremorell, M., Pijoan, C., 1998. Evaluation of techniques for the
6	detection of toxigenic Pasteurella multocida strains form pigs. J. Vet. Diagn. Invest.
7	10, 169-173.
8	
9	Amonsin, A., Wellehan, J.F., Li, L.L., Laber, J., Kapur, V., 2002. DNA fingerprinting
10	of Pasteurella multocida recovered from avian sources. J. Clin. Microbiol. 40, 3025-
11	3031.
12	
13	Anon, 2007. International Committee on Systematics of Prokaryotes, Subcommittee
14	on Pasteurellaceace (http://www.the-icsp.org/taxa/Pasteurellaceaelist.htm).
15	
16	Avril, J.L., Donnio, P.Y., Pouedras, P., 1990. Selective medium for Pasteurella
17	multocida and its use to detect oropharyngeal carriage in pig breeders. J. Clin.
18	Microbiol. 28: 1438-1440.
19	
20	Baldrias, L., Frost, A.J., O'Boyle, D., 1988. The isolation of Pasteurella-like
21	organisms from the tonsillar region of dogs and cats. J. Small Anim. Pract. 29, 63-68.
22	
23	Biberstein, E.L., Jang, S.S., Kass, P.H., Hirsh, D.C., 1991. Distribution of indole-
24	producing urease-negative pasteurellas in animals. J. Vet. Diagn. Invest. 3, 319-323.
25	

1	Bisgaard, M., Houghton, S.B., Mutters, R., Stenzel, A., 1991. Reclassification of
2	German, British and Dutch isolates of so-called Pasteurella multocida obtained from
3	pneumonic calf lungs. Vet. Microbiol. 26, 115-124.
4	
5	Blackall, P.J., Miflin, J.K., 2000. Identification and typing of Pasteurella multocida: a
6	review. Avian Pathol. 29, 271-287.
7	
8	Blackall, P.J., Fegan, N., Chew, G.T., Hampson, D.J., 1998. Population structure and
9	diversity of avian isolates of Pasteurella multocida from Australia. Microbiol. 144,
10	279-289.
11	
12	Boerlin, P., Siegrist, H.H., Burnens, A.P., Kuhnert, P., Mendez, P., Pretat, G.,
13	Lienhard, R., Nicolet, J., 2000. Molecular identification and epidemiological tracing
14	of Pasteurella multocida meningitis in a baby. J. Clin. Microbiol. 38, 1235-1237.
15	
16	Bond, R.E., Donahue, J.M., Olson, L.D., 1970. Colony features of Pasteurella
17	multocida and their use in diagnosing fowl cholera in turkeys. Avian Dis. 14, 24-28.
18	
19	Boot, R., Van den Brink, M., Handgraaf, P., Timmermans, R., 2004. The use of the
20	API 20NE bacteria classification procedure to identify Pasteurellaceae strains in
21	rodents and rabbits. Scand. J. Lab. Anim. Sci. 31, 177-183.
22	
23	Botzler, R.G., 1991. Epizootiology of avian cholera in wildfowl. J. Wild. Dis. 27:
24	367-395.
25	

1	Bowersock, T.L,, Hooper, T., Pottenger, R., 1992. Use of ELISA to detect toxigenic
2	Pasteurella multocida in atrophic rhinitis in swine. J. Vet. Diagn. Invest. 4, 419-422.
3	
4	Bragg, R.R., Coetzee, L., Verschoor, J.A., 1996. Changes in the incidences of the
5	different serovars of Haemophilus paragallinarum in South Africa: a possible
6	explanation for vaccination failures. Onderst. J. Vet. Res. 63, 217-226.
7	
8	Brickell, S.K., Thomas, L.M., Long, K.A., Panaccio, M., Widders, P.R., 1998.
9	Development of a PCR test based on a gene associated with the pathogenicity of
10	Pasteurella multocida serotype B:2, the causal agent of haemorrhagic septicaemia in
11	Asia. Vet Microbiol. 59, 295-307.
12	
13	Buys, W.E., Smith, H.E., Kamps, A.M., Kamp, E.M., Smits, M.A., 1990. Sequence of
14	the dermonecrotic toxin of Pasteurella multocida ssp. multocida. Nucleic Acids Res.
15	18, 2815–2816.
16	
17	Cadman, H.F., Kelly, P.J., Zhou, R., Davelaar, F., Mason, P.R., 1994. A serosurvey
18	using enzyme-linked immunosorbent assay for antibodies against poultry pathogens in
19	ostriches (Struthio camelus) from Zimbabwe. Avian Dis. 38, 621-625.
20	
21	Cameroon, R.D.A., O'Boyle, D., Frost, A.J., Fegan, N., 1996. An outbreak of
22	haemorrhagic septicaemia associated with Pasteurella multocida subsp. gallicida in a
23	large pig herd. Aust. Vet. J. 73, 27-29.

1	Carter, G.R., 1955. Studies on Pasteurella multocida. I. A haemagglutination test for
2	the identification of serological types. Am. J. Vet Res. 16, 481-484.
3	
4	Carter, G.R., 1961. A new serological type of Pasteurella multocida from Central
5	Africa. Vet. Rec. 73, 1052.
6	
7	Carter, G.R., 1964. Correlation between hemagglutinating antibody and mouse
8	passive protection in anti-pasteurella (Pasteurella multocida) sera. Can. J. Microbiol.
9	10, 753-756.
10	
11	Carter, G.R., Chengappa, M.M., 1981. Identification of types B and E Pasteurella
12	multocida by counterimmunoelectrophoresis. Vet Rec. 108, 145-6.
13	
14	Carter, G.R., Chengappa, M.M., 1991. Rapid presumptive identification of type B P.
15	multocida from hemorrhagic septicaemia. Vet. Rec. 128, 526.
16	
17	Carter, G.R., De Alwis, M.C.L., 1989. Haemorrhagic septicaemia. In: Pasteurella and
18	pasteurellosis. C. Adlam and JM. Rutter (Eds). Academic Press., London. pp.131-160.
19	
20	Carter, G.R., Rundell, S.W., 1975. Identification of type A strains of P. multocida
21	using staphylococcal hyaluronidase. Vet Rec. 96, 343.
22	
23	Carter, G.R., Subronto, P., 1973. Identification of type D strains of Pasteurella
24	multocida with acriflavine. Am. J. Vet. Res. 34, 293-295.
25	

1	Catry, B., Chiers, K., Schwarz, S., Kehrenberg, C., Decostere, A., de Kruif, A., 2005.
2	Fatal peritonitis caused by Pasteurella multocida capsular type F in calves. J Clin
3	Microbiol 43, 1480-1483.
4	
5	Chandrasekaran, S., Kennett, L., Yeap, P.C., Muniandy, N., Rani, B., Mukkur, T.K.,
6	1994. Relationship between active protection in vaccinated buffaloes against
7	heamorrhaigc speticamia and passive mouse protection test or serum antibody titres.
8	Vet. Microbiol. 41, 303-309.
9	
10	Chandrasekaran, S., Yeap, P.C., 1982. Pasteurella multocida in pigs: the serotypes
11	and the assessment of their virulence in mice. Br. Vet. J. 138, 332-336.
12	
13	Chanter, N., Rutter, J.M., Luther, P.D., 1986. Rapid detection of toxinogenic
14	Pasteurella multocida by agar overlay method. Vet. Rec. 119, 629-630.
15	
16	Chaslus-Dancla, E., Lesage-Descauses, M.C., Leroy-Setrin, S., Martel, J.L., Coudert,
17	P., Lafont, J.P., 1996. Validation of randomly amplified polymorphic DNA assays by
18	ribotyping as tools for epidemiological surveys of Pasteurella from animals. Vet.
19	Microbiol. 52, 91-102.
20	
21	Chen, H.I., Hulten, K., Clarridge, J.E. 3rd., 2002. Taxonomic subgroups of
22	Pasteurella multocida correlate with clinical presentation. J. Clin. Microbiol. 40,
23	3438-3441.

1	Chengappa, M.M., Carter, G.R., Bailie, W.E., 1986. Identification of type D
2	Pasteurella multocida by counterimmunoelectrophoresis. J. Clin. Microbiol. 24, 721-
3	723.
4	
5	Choi, C., Chae, C., 2001. Enhanced detection of toxigenic Pasteurella multocida
6	directly from nasal swabs using a nested polymerase chain reaction. Vet. J. 162, 255-
7	258.
8	
9	Choi, K.H., Maheswaran, S.K., Molitor, T.W., 1990. Comparison of enzyme-linked
10	immunosorbent assay with dot immunobinding assay for detection of antibodies
11	against Pasteurella multocida in turkeys. Avian Dis. 34, 539-47.
12	
13	Christensen, H., Angen, Ø., Olsen, J. E., Bisgaard, M., 2004. Revised description and
14	classification of atypical isolates of Pasteurella multocida from bovine lungs based
15	on genotypic characterization to include variants previously classified as biovar 2 of
16	Pasteurella canis and Pasteurella avium. Microbiol. 150, 1757-1767.
17	
18	Christensen, H., Bisgaard, M., 2003. The Genus Pasteurella. In: The Prokaryotes: an
19	evolving electronic resource for the microbiological community. Ver. 3.13. Ed.
20	Dworkin, M. and Lyons, C. Springer-Verlag, New York.
21	
22	Christensen, H., Bisgaard, M., Angen, Ø., Frederiksen, W., Olsen, J. E., 2005.
23	Characterization of sucrose negative variants of Pasteurella multocida including
24	isolates from large cat bite-wounds. J. Clin. Microbiol. 43, 259-270.
25	

- 1 Christensen, H., Kuhnert, P., Busse, H.J., Frederiksen, W.C., Bisgaard, M., 2007.
- 2 Proposed minimal standards for the description of genera, species and subspecies of
- 3 the *Pasteurellaceae*. Int. J. Syst. Evol. Microbiol. 57, 166-178.
- 4
- 5 Christensen, J.P., Bisgaard, M., 2000. Fowl cholera. Rev. Sci. Tech. Off. Int. Epiz.

- 7
- 8 Collins, M.T., Swanson, E.C., 1981. Use of API 20E system to identify non-
- 9 *Enterobacteriaceae* from veterinary medical sources. Am. J. Vet. Res. 42, 1269-1273.
- 10
- Collins, M.T., Weaver, N., Ellis, R.P., 1981. Identification of *Pasteurella multocida*and *Pasteurella haemolytica* by API 20E, Minitek and Oxi/Ferm systems. J. Clin.
- 13 Microbiol. 13, 433-437.
- 14
- 15 Corney, B.G., Diallo, I.S., Wright, L.L., Hewitson, G.R., DeJong, A.J., Burrell, P.C.,
- 16 Duffy, P.F., Stephens, C.P., Rodwell, B.J., Boyle, D.B., Blackall, P.J., 2007.
 17 Pasteurella multocida detection by 5` Taq nuclease assay: A new tool for use in

18 diagnosing fowl cholera. J. Microbiol. Meth. 69, 376-380.

- 19
- Davies, R.L., MacCorquodale, R., Caffrey, B., 2003. Diversity of avian *Pasteurella multocida* strains based on capsular PCR typing and variation of the OmpA and
 OmpH outer membrane proteins. Vet. Microbiol. 91, 169-182.
- 23

^{6 19, 626-637.}

1	Davies, R.L., MacCorquodale, R., Reilly, S., 2004. Characterisation of bovine strains
2	of Pasteurella multocida and comparison with isolates of avian, ovine and porcine
3	origin. Vet. Microbiol. 99, 145-158.
4	
5	Dawkins, H.J., Johnson, R.B., Spencer, T.L., Patten, B.E., 1990. Rapid identification
6	of Pasteurella multocida organisms responsible for haemorrhagic septicaemia using
7	an enzyme linked immunosorbent assay. Res. Vet. Sci. 49, 261-267.
8	
9	De Alwis, M. C. L., 1992. Haemorrhagic septicaemia. A general review. Br. Vet. J.
10	148, 99-112.
11	
12	De Jong, M.F., 1999. Progressive and nonprogressive atrophic rhinitis. In: Diseases of
13	Swine. Straw, B.E., D'Allaire, S., Mengeling, W.L. and Taylor, D.J. (Eds.). 8th Edn.
14	Iowa State University Press, Ames, Iowa, pp.355-384.
15	
16	De Jong, M.F., Oei, H.L., Tetenburg, G.J., 1980. Atrophic rhinitis pathogenicity tests
17	for Pasteurella multocida isolates. Proc. Int. Congr. Pig Vet. Soc. 6, 211.
18	
19	DeLong, D., Manning, P.J., 1994. Bacterial diseases. In: The biology of laboratory
20	rabbit. Manning, P.J., Ringler, D.H., Newcomer, C.E., (Eds). Academic Press, San
21	Diego, pp. 129-170.
22	
23	Dziva, F., Christensen, H., Olsen, J.E., Mohan, K., 2001. Random amplification of
24	polymorphic DNA and phenotypic typing of Zimbabwean isolates of Pasteurella
25	multocida. Vet. Microbiol. 82, 361-372.

1	
2	Dziva, F., Christensen, H., van Leengoed, L.A.M.G., Mohan, K., Olsen, J.E., 2004.
3	Differentiation of Pasteurella multocida isolates from cases of atrophic rhinitis in pigs
4	from Zimbabwe by RAPD and ribotyping. Vet. Microbiol. 102, 117-122.
5	
6	Dziva, F., Mohan, K., Pawandiwa, A., 2000. Capsular serogroups of Pasteurella
7	multocida isolated from animals in Zimbabwe. Onderst. J. Vet. Res. 67, 225-228.
8	
9	El-Eragi, A.M., Mukhtar, M.M., Babiker, S.H., 2001. Specific antibodies of
10	Pasteurella multocida in newborn calves of vaccinated dams. Trop. Anim. Health
11	Prod. 33, 275-283.
12	
13	El Tayeb, A.B., Morishita, T.Y., Angrick, E.J., 2004. Evaluation of Pasteurella
14	multocida isolated from rabbits by capsular typing, somatic serotyping, and restriction
15	endonuclease analysis. J. Vet. Diagn. Invest. 16, 121-125.
16	
17	Escande, F., Crasnier, M., 1993. Detection of an adenylate cyclase gene in Pasteurella
18	species. Zentralbl. Bakteriol. 279, 45-50.
19	
20	Ewers, C., Lubke-Becker, A., Bethe, A., Kiessling, S., Filter, M., Wieler, L.H., 2006.
21	Virulence genotype of Pasteurella multocida strains isolated from different hosts with
22	various disease status. Vet. Microbiol. 114, 304-317.
23	
24	Fegan, N., Blackall, P.J., Pahoff, J.L., 1995. Phenotypic characterisation of
25	Pasteurella multocida isolates from Australian poultry. Vet. Microbiol. 47, 281-286.

1	
2	Foged, N.T., 1988. Quantification and purification of the Pasteurella multocida toxin
3	by using monoclonal antibodies. Infect. Immun. 56, 1901-1906.
4	
5	Foged, N.T., Nielsen, J.P., Barford, K., 1990. The use of ELISA determination of
6	Pasteurella multocida toxin antibodies in the control of progressive atrophic rhinitis.
7	Proc. Int. Congr. Pig Vet. Soc. 11, 49.
8	
9	Foged, N.T., Nielsen, J.P., Pedersen, K.B., 1988. Differentiation of toxigenic from
10	nontoxigenic isolates of Pasteurella multocida by enzyme linked immunosorbent
11	assay. J. Clin. Microbiol. 26, 1419-1420.
12	
13	Frank, G.H., 1989. Pasteurellosis of cattle. In: Pasteurella and pasteurellosis. Adlam,
14	C., Rutter, J.M.(Eds.), Academic Press., London, pp.197-222.
15	
16	Frederiksen, W., 1993. Ecology and significance of Pasteurellaceae in man - an
17	update. Zentralbl Bakteriol. 279, 27-34.
18	
19	Gaertner, D.J., 1991. Comparison of penicillin and gentamicin for treatment of
20	pasteurellosis in rabbits. Lab Anim. Sci. 41, 78-80.
21	
22	Gardner, I.A., Kasten, R., Eamens, G.J., Snipes, K.P., Anderson, R.J., 1994.
23	Molecular fingerprinting of Pasteurella multocida associated with progressive
24	atrophic rhinitis in swine herds. J. Vet. Diagn. Invest. 6, 442-447.
25	

1	Gautam, R., Kumar, A.A., Singh, V.P., Singh, V.P., Dutta, T.K., Shivachandra, S.B.,
2	2004. Specific identification of Pasteurella multocida serogroup A isolates by PCR
3	assay. Res. Vet. Sci. 76, 179-185.
4	
5	Gautier, A-L., Dubois, D., Escande, F., Avril, J-L., Trieu-Cuot, P., Gaillot, O., 2005.
6	Rapid and accurate identification of human isolates of <i>Pasteurella</i> and related species
7	by sequencing the <i>sod</i> A gene. J. Clin. Microbiol. 43, 2307-2314.
8	
9	Glisson, J.R., Hofacre, C.L., Christensen, J.P., 2003. Fowl cholera. In: Diseases of
10	Poultry. Saif, Y.M., Barnes, H.J., Glisson, J.R., Fadly, A.M., McDougald, L.R.,
11	Swayne, D.E. (Eds.), 11 th edn, Iowa State University Press, Ames, Iowa, pp. 658-676.
12	
13	Groom, S.C., Hazlett, M.J., Little, P.B., 1986. An evaluation of the API ZYM system
14	as a means of identifying Haemophilus somnus and related taxa. Can. J. Vet. Res. 50,
15	238-244.
16	
17	Gunawardana ,G.A., Townsend, K.M., Frost A.J., 2000. Molecular characterisation of
18	avian Pasteurella multocida isolates from Australia and Vietnam by REP-PCR and
19	PFGE. Vet Microbiol. 72, 97-109.
20	
21	Hamilton-Miller, JM.T., 1993. A possible pitfall in the identification of Pasteurella
22	spp. with the API system. J. Med. Microbiol. 39, 78-79.
23	
24	Harel, J., Cote, S., Jacques, M., 1990. Restriction endonuclease analysis of porcine
25	Pasteurella multocida isolates from Quebec. Can. J. Vet. Res. 54, 422-426.

1	
2	Harper, M., Boyce, J.D., Adler, B., 2006. Pasteurella multocida pathogenesis: 125
3	years after Pasteur. FEMS Microbiol. Lett. 265, 1-10.
4	
5	Heddleston, K.L., Gallagher, J.E., Rebers, P.A., 1972. Fowl cholera: gel diffusion
6	precipitin test for serotyping Pasteurella multocida from avian species. Avian Dis. 16,
7	925-936.
8	
9	Heddleston, K.L., Watko, L.P., Rebers, P.A., 1964. Dissociation of a fowl cholera
10	strainsof Pasteurella multocida. Avian Dis. 8, 649-657.
11	
12	Holmes, H.T., Matsumoto, M., Patton, N.M., Zehfus, B.R., 1986. Serologic methods
13	for detection of Pasteurella multocida infections in nasal culture negative rabbits.
14	Lab. Anim. Sci. 36, 640-645.
15	
16	Horadagoda, N., Belak, K., 1990. Demonstration of Pasteurella multocida type 6:B
17	(B:2) in formalin-fixed paraffin-embedded tissues of buffaloes by the peroxidase anti-
18	peroxidase (PAP) technique. Acta. Vet. Scand. 31, 493-495.
19	
20	Horadagoda, N.U., Belak, K., De Alwis, M.C.L., Wijewardana, T.G., Gomis, A.I.,
21	Vipulasiri, A.A., 1998. Immunoperoxidase evaluation of buffalo tissues for acute
22	hemorrhagic septicemia. Ann. N. Y. Acad. Sci. 849, 494-496.
23	

1	Hubbert, W.T., Rosen, M.N., 1970. Pasteurella multocida infections. II. Pasteurella
2	multocida infection in man unrelated to animal bite. Am. J. Public Health. 60, 1109-
3	1117.
4	
5	Huber, B.S., Allred, D.V., Carmen, J.C., Frame, D.D., Whiting, D.G., Cryan, J.R.,
6	Olson, T.R., Jackson, P.J., Hill, K., Laker, M.T., Robison, R.A., 2002. Random
7	amplified polymorphic DNA and amplified fragment length polymorphism analyses
8	of Pasteurella multocida isolates from fatal fowl cholera infections. J. Clin.
9	Microbiol. 40, 2163-2168.
10	
11	Hunt, M.L., Adler, B., Townsend, K.M., 2000. The molecular biology of Pasteurella
12	multocida. Vet. Microbiol. 72, 3-25.
13	
14	Hwang, E.J., Holmes, H.T., Zehfus, B.P., Patton, N.M., Matsumoto, M., 1986.
15	Characterization of antigen purified from type 3 strains of Pasteurella multocida and
16	its use for an enzyme-linked immunosorbent assay. Lab. Anim. Sci. 36, 633-639.
17	
18	Jaglic, Z., Jeklova, E., Leva, L., Kummer, V., Kucerova, Z., Falgyna, M., Maskova,
19	K., Alexa, P., 2007. Experimental study of pathogenicity of Pasteurella multocida
20	serogroup F in rabbits. Vet. Microbiol. In press. doi:10.1016/j.vetmic.2007.06.008.
21	
22	Jamaludin, R., Blackall, P.J., Hansen, M.F., Humphrey, S., Styles, M., 2005.
23	Phenotypic and genotypic characterisation of Pasteurella multocida isolated from pigs
24	at slaughter in New Zealand. N. Z. Vet. J. 53, 203-207.
25	

1	Johnson, R.B., Dawkins, H.J., Spencer, T.L., 1991. Electrophoretic profiles of
2	Pasteurella multocida isolates from animals with hemorhagic septicemia. Am. J. Vet.
3	Res. 52, 1644-1648.
4	
5	Jonas, M., Morishita, T.Y., Angrick, E.J., Jahja, J., 2001. Characterization of nine
6	Pasteurella multocida isolates from avian cholera outbreaks in Indonesia. Avian Dis.
7	45, 34-42.
8	
9	Kamp, E.M., Bokken, G.C., Vermeulen, T.M., de Jong, M.F., Buys, H.E., Reek, F.H.,
10	Smits, M.A., 1996. A specific and sensitive PCR assay suitable for large-scale
11	detection of toxigenic Pasteurella multocida in nasal and tonsillar swabs specimens of
12	pigs. J. Vet. Diagn. Invest. 8, 304–309.
13	
14	Kamps, A.M., Buys, W.E., Kamp, E.M., Smits, M.A., 1990. Specificity of DNA
15	probes for the detection of toxigenic Pasteurella multocida subsp. multocida strains.
16	J. Clin. Microbiol. 28, 1858–1861.
17	
18	Kasten, R.W., Carpenter, T.E., Snipes, K.P., Hirsh, D.C., 1997. Detection of

- *Pasteurella multocida*-specific DNA in turkey flocks by use of the polymerase chain
 reaction. Avian Dis. 41, 676-682.
- 21

Kawamoto, E., Sawada, T., Sato, T., Suzuki, K., Maruyama, T., 1994. Comparison of
indirect haemagglutination test, gel-diffusion precipitin test, and enzyme-linked
immunosorbent assay for detection of serum antibodies to *Pasteurella multocida* in
naturally and experimentally infected rabbits. Lab. Anim. 28, 19-25.

1	
2	Kelly, P.J., Chitauro, D., Rhode, C., Rukwava, J., Majok, A., Davelaar, F., Mason,
3	P.R., 1994. Diseases and management of backyard chicken flocks in Chitungwiza,
4	Zimbabwe. Avian Dis. 38, 626-629.
5	
6	Klaassen, J.M., Bernard, B.L., DiGiacomo, R.F., 1985. Enzyme-linked
7	immunosorbent assay for immunoglobulin G antibody to Pasteurella multocida in
8	rabbits. J. Clin. Microbiol. 21, 617-21.
9	
10	Krause, T. H., Bertschinger, H. U., Corboz, L., Mutters, R., 1987. V-factor dependent
11	strains of Pasteurella multocida subsp. multocida. Zentralbl. Bakteriol. Hyg. A 266,
12	255-260.
13	
14	Kuhnert, P., Korczak, B.M., 2006. Prediction of whole genome DNA-DNA similarity,
15	determination of G+C content and phylogenetic analysis within the family
16	Pasteurellaceae by multilocus sequence analysis (MLSA). Microbiol. 152, 2537-
17	2548.
18	
19	Kuhnert, P., Boerlin, P., Emler, S., Krawinkler, M., Frey, J., 2000. Phylogenetic
20	analysis of Pasteurella multocida subspecies and molecular identification of feline P.
21	multocida subsp. septica by 16S rRNA gene sequencing. Int. J. Med. Microbiol. 290,
22	599-604.

1	Lane, E.P., Kock, N.D., Hill, F.W.G., Mohan, K., 1992. An outbreak of haemorrhagic
2	septicaemia (septicaemic pasteurellosis) in cattle in Zimbabwe. Trop. Anim. Health
3	Prod. 24, 97-102.
4	
5	Lariviere, S., LeBlanc, L., Mittal, K.R., Martineau, GP., 1993. Comparisons of
6	isolation methods for the recovery of Bordetella bronchiseptica and Pasteurella
7	multocida from nasal cavities of piglets. J. Clin. Microbiol. 31, 364-367.
8	
9	Lax, A.J., Chanter, N., Pullinger, G.D., Higgins, T., Staddon, J.M., Rozengurt, E
10	1990. Sequence analysis of the potent mitogenic toxin of Pasteurella multocida.
11	FEBS Lett. 277, 59-64.
12	
13	Lee, C.W., Wilkie, I.W., Townsend, K.M., Frost, A.J., 2000. The demonstration of
14	Pasteurella multocida in the alimentary tract of chickens after experimental oral
15	infection. Vet. Microbiol. 72, 47-55.
16	
17	Levonen, K., Frandsen, P.L., Seppanen, J., Veijalainen, P., 1996. Detection of
18	toxigenic Pasteurella multocida infections in swine herds by assaying antibodies in
19	sow colostrum. J. Vet. Diagn. Invest. 8, 455-459.
20	
21	Lichtensteiger, C.A., Steenbergen, S.M., Lee, R.M., Polson, D.D., Vimr, E.R., 1996.
22	Direct PCR analysis for toxigenic Pasteurella multocida. J. Clin. Microbiol. 34, 3035-
23	3039.
24	

1	Liu. W.,	Chemaly,	R.F	Tuohy.	M.J	LaSalvia.	M.M.,	Procop.	G.W., 2	2003.
-	L 169, 11.9	cinemary,		1 4011 ,	,	Labar , ray		11000p,	· · · · · , 2	-005.

- 2 Pasteurella multocida urinary tract infection with molecular evidence of zoonotic
- 3 transmission. Clin. Infect. Dis. 36, E58-60.
- 4
- 5 Liu, D., Lawrence, M.L., Austin, F.W., 2004. Specific PCR identification of
 6 *Pasteurella multocida* based on putative transcriptional regulator genes. J. Microbiol.
 7 Meth. 58, 263-267.
- 8
- 9 Loubinoux, J., Lozniewski, A., Lion, C., Garin, D., Weber, M., Le Faou, A.E., 1999.
- 10 Value of enterobacterial repetitive intergenic consensus PCR for study of Pasteurella
- 11 *multocida strains* isolated from mouths of dogs. J. Clin. Microbiol. 37, 2488-2492.

12

- Lugtenberg, B., van Boxtel, R., de Jong, M., 1984. Atrophic rhinitis in swine:
 correlation of *Pasteurella multocida* pathogenicity with membrane protein and
 lipopolysaccharide patterns. Infect. Immun. 46, 48-54.
- 16
- 17 Lukas, V.S., Ringler, D.H., Chrisp, C.E., Rush, H.G., 1987. An enzyme-linked
- 18 immunosorbent assay to detect serum IgG to Pasteurella multocida in naturally and

19 experimentally infected rabbits. Lab. Anim. Sci. 37, 60-64.

- 20
- Madec, F., Rose, N., 2003. How husbandry practices may contribute to the course of
 infectious diseases in pigs. 4th Intern. Symp. Emerg. and Re-emerg. Pig Dis. Rome,
 June 29th to Jul 2nd, pp 9-18.
- 24

1	Magyar, T., Rimler, R.B., 1991. Detection and enumeration of toxin-producing
2	Pasteurella multocida with a colony-blot assay. J. Clin. Microbiol. 29, 1328–1332.
3	
4	Mahler, M., Stunkel, S., Ziegowski, C., Kunstyr, I., 1995. Inefficacy of enrofloxacin
5	in the elimination of <i>Pasteurella multocida</i> in rabbits. Lab. Anim. 29, 192-199.
6	
7	Manning, P.J., Brackee, G., Naasz, M.A., DeLong, D., Leary, S.L., 1987. A dot-
8	immunobinding assay for the serodiagnosis of Pasteurella multocida infection in
9	laboratory rabbits. Lab. Anim. Sci. 37, 615-620.
10	
11	Marandi, M., Mittal, K.R., 1996. Characterization of an outer membrane protein of
12	Pasteurella multocida belonging to the OmpA family. Vet. Microbiol.53, 303-314.
13	
14	Marandi, M.V., Mittal, K.R., 1995. Identification and characterization of outer
15	membrane proteins of Pasteurella multocida serotype D by using monoclonal
16	antibodies. J. Clin. Microbiol. 33, 952-957.
17	
18	Marshall, M.S., Robison, R.A., Jensen, M.M., 1981. Use of an enzyme-linked
19	immunosorbent assay to measure antibody responses in turkeys against Pasteurella
20	multocida. Avian Dis. 25, 964-971.
21	
22	Martrenchar, A., Njanpop, B.M., 1994. First case of an outbreak of hemorrhagic
23	septicemia caused by Pasteurella multocida serotype B6 in northern Cameroon. Rev.
24	Elev. Med. Vet. Pays. Trop. 47, 19-20.
25	

1	May, B.J., Zhang, Q., Li, L.L., Paustian, M.L., Whittam, T.S., Kapur, V., 2001.
2	Complete genomic sequence of Pasteurella multocida, Pm70. Proc. Natl. Acad. Sci.
3	USA 98, 3460-3465.
4	
5	Mbuthia P.G., Christensen, H., Boye, M., Petersen, K.M.D., Bisgaard, M., Nyaga,
6	P.N., Olsen, J.E., 2003. Specific detection of Pasteurella multocida in chickens with
7	fowl cholera and in pig lung tissues using fluorescent rRNA in situ hybridisation. J.
8	Clin. Microbiol. 39, 2627-2633.
9	
10	Miflin, J,K., Blackall, P.J., 2001. Development of a 23S rRNA-based PCR assay for
11	the identification of Pasteurella multocida. Lett. Appl. Microbiol. 33, 216-221.
12	
13	Moore, M.K., Cicnjak-Chubbs, L., Gates, R.J., 1994. A new selective enrichment
14	procedure for isolating Pasteurella multocida from avian and environmental samples.
15	Avian Dis. 38, 317-324.
16	
17	Moreno, A.M., Baccaro, M.R., Ferreira, A.J., Pestana De Castro, A.F., 2003. Use of
18	single-enzyme amplified fragment length polymorphism for typing Pasteurella
19	multocida subsp. multocida isolates from pigs. J. Clin. Microbiol. 41, 1743-1746.
20	
21	Morris, E.J., 1958. Selective media for some Pasteurella species. J. Gen. Microbiol.
22	19, 305-311.

1	Muhairwa A.P., Christensen, J.P., Bisgaard, M., 2000. Investigations on the carrier
2	rate of Pasteurella multocida in healthy commercial poultry flocks and flocks affected
3	by fowl cholera. Avian Pathol. 29, 133-142.
4	
5	Muhairwa, A.P., Christensen, J.P., Bisgaard, M., 2001a. Relationships among
6	Pasteurellaceae isolated from free ranging chickens and their animal contacts as
7	determined by quantitative phenotyping, ribotyping and REA-typing. Vet. Microbiol.
8	78, 119-137.
9	
10	Muhairwa, A.P., Mtambo, M.M.A., Christensen, J.P., Bisgaard, M., 2001b.
11	Occurrence of Pasteurella multocida and related species in village free ranging
12	chickens and their animal contacts. Vet. Microbiol. 78, 139-153.
13	
14	Murty, K.D., Kaushik, R.K., 1965. Studies on an outbreak of acute swine
15	pasteurellosis due to Pasteurella multocida type B (Carter, 1955). Vet. Rec. 77, 411-
16	416.
17	
18	Mutters, R., Christensen, H., Bisgaard, M., 2005. Genus I. Pasteurella Trevisan 1887,
19	94 ^{AL} Nom. cons. Opin. 13, Jud. Comm. 1954b, 153. In: Bergey's Manual of
20	Systematic Bacteriology. Brenner, D.J., Krieg, N.R., Staley J.T., Garrity, G.M. (eds.),
21	Spinger, New York, pp. 857-866.
22	
23	Nagai, S., Someno, S., Yagihashi, T., 1994. Differentiation of toxigenic from
24	nontoxigenic isolates of Pasteurella multocida by PCR. J. Clin. Microbiol. 32, 1004-
25	1010.

1	
2	Namioka, S., Murata, M., 1961a. Serological studies on Pasteurella multocida. I. A
3	simplified method for capsule typing of the organism. Cornell Vet. 51, 498-507.
4	
5	Namioka, S., Murata, M., 1961b. Serological studies on Pasteurella multocida. III. O
6	antigenic analysis of cultures isolated from various animals. Cornell Vet. 51, 522-528.
7	
8	Oberhofer, T.R., 1981. Characteristics and biotypes of Pasteurella multocida isolated
9	from humans. J. Clin. Microbiol. 13, 566-571.
10	
11	Olson, L.D., Wilson, M.A., 2001. DNA fingerprint patterns of Pasteurella multocida
12	from the same turkey farm on the same and different years. Avian Dis. 45, 807-812.
13	
14	Pedersen, K., Dietz, H.H., Jorgensen, J.C., Christensen, T.K., Bregnballe, T.,
15	Andersen, T.H., 2003. Pasteurella multocida from outbreaks of avian cholera in wild
16	and captive birds in Denmark. J. Wildl. Dis. 39, 808-816.
17	
18	Pennings, A.M., Storm, P.K., 1984. A test in Vero cell monolayers for toxin
19	production by strains of Pasteurella multocida isolated from pigs suspected of having
20	atrophic rhinitis. Vet. Microbiol. 9, 503–508.
21	
22	Petersen, K.D., Christensen, J.P., Bisgaard, M., 1998. Phenotypic and genotypic
23	diversity of organisms previously classified as maltose positive Pasteurella
24	multocida. Zentralbl Bakteriol. 288, 1-12.
25	

1	Petersen, K.D., Christensen, H., Bisgaard, M., Olsen, J.E., 2001. Genetic diversity of
2	Pasteurella multocida fowl cholera isolates as demonstrated by ribotyping and 16S
3	rRNA and partial <i>atp</i> D sequence comparisons. Microbiol. 147, 2739-2748.
4	
5	Petersen, S.K., Foged, N.T., 1989. Cloning and expression of the Pasteurella
6	multocida toxin gene, toxA, in Escherichia coli. Infect. Immun. 57, 3907-3913.
7	
8	Peterson, R.R., Deeb, B.J., DiGiacomo, R.F., 1997. Detection of antibodies to
9	Pasteurella multocida by capture enzyme immunoassay using a monoclonal antibody
10	against P37 antigen. J. Clin. Microbiol. 35, 208-212.
11	
12	Pijoan, C., 1999. Pneumonic pasteurellosis. In: Diseases of swine. Straw, B.E.,
13	D`Allaire S., Mengeling, W.L., Taylor, D.J. (Eds.), Iowa State University Press,
14	Ames, Iowa, pp. 511-520.
15	
16	Polzhofer, G.K., Hassenpflug, J., Petersen, W., 2004. Arthroscopic treatment of septic
17	arthritis in a patient with posterior stabilized total knee arthroplasty. J. Arthros & Rel.
18	Surger. 20, 311-313.
19	
20	Prado, M.E., Prado, T.M., Payton, M., Confer, A.W., 2006. Maternally and naturally
21	acquired antibodies to Mannheimia haemolytica and Pasteurella multocida in beef
22	calves. Vet. Immun. Immunpathol. 111, 301-307.
23	

1	Register, K.B., DeJong, K.D., 2006. Analytical verification of a multiplex PCR for
2	identification of Bordetella bronchiseptica and Pasteurella multocida from swine.
3	Vet. Microbiol. 117, 201-210.
4	
5	Register, K.B., Lee, R.M., Thomson, C., 1998. Two-color hybridization assay for
6	simultaneous detection of Bordetella bronchiseptica and toxigenic Pasteurella
7	multocida from swine. J. Clin. Microbiol. 36, 3342-3346.
8	
9	Rhoades, K.R., Rimler, R.B., 1987. Capsular groups of Pasteurella multocida isolated
10	form avian hosts. Avian Dis. 31, 895-898.
11	
12	Rimler, R.B., 1978. Coagglutination test for identification of Pasteurella multocida
13	associated with hemorrhagic septicaemia. J. Clin. Microbiol. 8, 214-218.
14	
15	Rimler, R.B., 1990. Comparisons of Pasteurella multocida lipopolysaccharides by
16	sodium dodecyl sulfate polyacrlyamide gel electrophoresis to determine relationship
17	between group B and E hemorrhagic septicemia strains and serologically related
18	group A strains. J. Clin. Microbiol. 28, 654-659.
19	
20	Rimler, R. B., 1994. Presumptive identification of Pasteurella multocida serogroups
21	A, D and F by capsule depolymerization with mucopolysaccharidases. Vet. Rec. 134,
22	191-192.

23

- 1 Rimler, R.B., 2000. Restriction endonuclease analysis using *Hha*1 and *Hpa*II to
- 2 discriminate among group B Pasteurella multocida associated with haemorrhagic
- 3 septicaemia. J. Med. Microbiol. 49, 81-87.
- 4
- 5 Rimler, R.B., Rhoades, K.R., 1987. Serogroup F, a new capsule serogroup of
- 6 Pasteurella multocida. J. Clin. Microbiol. 25, 615-618.
- 7
- 8 Rocke, T.E., Smith, S.R., Miyamoto, A., Shadduck, D.J., 2002. A serotype specific
- 9 polymerase chain reaction for the identification of *Pasteurella multocida* serotype 1.
- 10 Avian Dis. 46, 370-377.
- 11
- 12 Rosenbusch, C.T., Merchant, A.I., 1939. A study of the hemorrhagic septicemia
- 13 Pasteurella. J. Bacteriol. 37, 69-89.
- 14
- 15 Ruble, R.P., Cullor, J.S., Brooks, D.L., 1999. Evaluation of commercially available
- 16 Escherichia coli J5 bacterin as protection against experimental challenge with
- 17 *Pasteurella multocida* in rabbits. Am. J. Vet. Res. 60, 853-859.
- 18
- 19 Rutter, J.M., 1983. Virulence of *Pasteurella multocida* in atrophic rhinitis of
- 20 gnotobiotic pigs infected with *Bordetella bronchiseptica*. Res. Vet. Sci. 34, 287-295.
- 21
- 22 Rutter, J.M., Luther, P.D., 1984. Cell culture assay for toxigenic Pasteurella
- 23 *multocida* from atrophic rhinitis of pigs. Vet. Rec. 114, 393–396.
- 24

1	Samuel, M.D., Shadduck, D.J., Goldberg, D.R., Baranyuk, V., Sileo, L., Price, J.I.,
2	1999. Antibodies against Pasteurella multocida in snow geese in the Western Arctic.
3	J. Wild. Dis. 35, 440-449.
4	
5	Samuel, M.D., Shadduck, D.J., Goldberg, D.R., Johnson, W.P., 2003a. Comparison of
6	methods to detect Pasteurella multocida in carrier waterfowl. J. Wildl. Dis. 39, 125-
7	135.
8	
9	Samuel, M.D., Shadduck, D.J., Goldberg, D.R., Wilson, M.A., Joly, D.O., Lehr,
10	M.A., 2003b. Characterization of Pasteurella multocida isolates from wetland
11	ecosystems during 1996 to 1999. J. Wildl. Dis. 39, 798-807.
12	
13	Sanchez, S., Mizan, S., Quist, C., Schroder, P., Juneau, M., Dawe, D., Ritchie, B.,
14	Lee M.D., 2004. Serological response to Pasteurella multocida NanH sialidase in
15	persistently colonized rabbits. Clin. Diagn. Lab. Immunol. 11, 825-834.
16	
17	Sawada, T. Rimler, RB., Rhoades, K.R., 1985. Haemorrhagic septicaemia: naturally
18	acquired antibodies against Pasteurella multocida types B and E in calves in the
19	United States. Am. J. Vet. Res. 46, 1247-1250.
20	
21	Sawada, T., Rimler, R.B., Rhoades, K.R., 1982. Indirect hemagglutination test that
22	uses glutaraldehyde-fixed sheep erythrocytes sensitized with extract antigens for the
23	detection of Pasteurella antibody. J. Clin. Microbiol. 15, 752-756.

1	Shigidi, M.T., Mustafa, A.A., 1979. Biochemical and serological studies on
2	Pasteurella multocida isolated form cattle in Sudan. Cornell Vet. 69, 77-84.
3	
4	Shivachandra, S.B., Kumar, A.A., Gautam, R., Singh, V.P., Chaudhuri, P., Srivastava,
5	S.K., 2004. PCR assay for rapid detection of <i>Pasteurella multocida</i> serogroup A in
6	morbid tissue materials from chickens with fowl cholera. Vet. J. 168, 349-352.
7	
8	Smith, I.M., Baskerville, A.J., 1983. A selective medium for the isolation of
9	Pasteurella multocida in nasal specimens from pigs. Br. Vet. J. 139, 476-484.
10	
11	Takashima, H., Sakai, H., Yanai, T., Masegi, T., 2001. Detection of antibodies to
12	Pasteurella multocida using immunohistochemical staining in an outbreak of rabbit
13	pasteurellosis. J. Vet. Med. Sci. 63, 171-174.
14	
15	Thomson, J.R., MacIntyre, N., Henderson, L.E., Meikle, C.S., 2001. Detection of
16	Pasteurella multocida in pigs with porcine dermatitis and nephropathy syndrome.
17	Vet. Rec. 149, 412-417.
18	
19	Tomer, P., Chaturvedi, G.C., Minakshi, Malik, P., Monga, D.P., 2002. Comparative
20	analysis of the outer membrane protein profiles of isolates of the Pasteurella
21	multocida (B:2) associated with haemorrhagic septicaemia. Vet. Res. Commun. 26,
22	513-522.
23	

1	Townsend, K.M., Frost, A.J., Lee, C.W., Papadimitriou, J.M., Dawkins, H.J.S., 1998.
2	Development of PCR assays for species-and type-specific identification of
3	Pasteurella multocida isolates. J. Clin. Microbiol. 36, 1096-1100.
4	
5	Townsend, K.M., Hanh, T.X., O'Boyle, D., Wilkie, I., Phan, T.T., Wijewardana, T.G.,
6	Trung, N.T., Frost, A.J., 2000. PCR detection and analysis of Pasteurella multocida
7	from the tonsils of slaughtered pigs in Vietnam. Vet. Microbiol. 72, 69-78.
8	
9	Townsend, K.M., Boyce, J.D., Chung, J.Y., Frost, A.J., Adler, B., 2001.Genetic
10	organization of Pasteurella multocida cap Loci and development of a multiplex
11	capsular PCR typing system. J. Clin. Microbiol. 39, 924-929.
12	
13	Tsuji, M., Matsumoto, M., 1989. Pathogenesis of fowl cholera: influence of
14	encapsulation on the fate of Pasteurella multocida after intravenous inoculation into
15	turkeys. Avian Dis. 33, 238-247.
16	
17	van Diemen, P.M., de Vries Reilingh, G., Parmentier, H.K., 1994. Immune responses
18	of piglets to Pasteurella multocida toxin and toxoid. Vet. Immunol. Immunopathol.
19	41, 307-321.
20	
21	Vasfi Marandi, M., Harel, J., Mittal, K.R., 1997. Identification by monoclonal
22	antibodies of serotype D strains of Pasteurella multocida representing various
23	geographic origins and host species. J. Med. Microbiol. 46, 603-610.
24	

1	Verma, R., Jaiswal, T.N., 1998. Haemorrhagic septicaemia vaccines. Vaccine 16,
2	1184-1192.
3	
4	Voigts, A., Ngaisiue, G., Henton, M.M., Hubschle, O.J., 1997. Haemorrhagic
5	septicaemia due to Pasteurella multocida type B2 in Namibia. Trop. Anim. Health
6	Prod. 29, 247-248.
7	
8	Ward, G.W., 1973. Development of a pasteurella-free rabbit colony. Lab. Anim. Sci.
9	23, 671-674.
10	
11	Weiser, G.C., DeLong, W.J., Paz, J.L., Shafii, B., Price, W.J., Ward, A.C., 2003.
12	Characterization of Pasteurella multocida associated with pneumonia in bighorn
13	sheep. J. Wildl. Dis. 39, 536-544.
14	
15	Zaoutis, T.E., Reinhard, G.R., Cioffe, C.J., Moore, P.B., Stark, D.M., 1991. Screening
16	rabbit colonies for antibodies to Pasteurella multocida by an ELISA. Lab. Anim. Sci.
17	41, 419-422.
18	
19	

Table 1. List of reference strains of *Pasteurella multocida* available from culture collections with public access.

Species	Strain*	Alternative strain	Reference strain for
		number(s)	
P. multocida	CCUG25971	X-73, ATCC11039	Somatic type 1
P. multocida	CCUG25973	P1059, ATCC15742	Somatic type 3
P. multocida	CCUG25974	P1662	Somatic type 4
P. multocida	CCUG25975	P1702	Somatic type 5
P. multocida	CCUG25976	P2192	Somatic type 6
P. multocida	CCUG25977	P1997	Somatic type 7
P. multocida	CCUG25978	P1581	Somatic type 8
P. multocida	CCUG25979	P2095	Somatic type 9
P. multocida	CCUG25980	P2100	Somatic type 10
P. multocida	CCUG25981		Somatic type 11
P. multocida	CCUG25982		Somatic type 12
P. multocida	CCUG25983		Somatic type 13
P. multocida	CCUG25984	P2235	Somatic type 14
P. multocida	CCUG25985	P2237	Somatic type 15
P. multocida	CCUG25986		Somatic type 16
P. multocida	CCUG25987	P1059	Capsular type A
P. multocida subs. multocida	ATCC43017	NCTC10323	Capsular type B
P. multocida	CCUG25988	P3881	Capsular type D
P. multocida subs. multocida	ATCC43019	NCTC10325	Capsular type D
P. multocida subs. multocida	ATCC43020	NCTC10326	Capsular type E
P. multocida subs. multocida	CCUG17976 ^T	W9217	Type strain of species
		NCTC10322 ^T	Capsular type A
P. multocida subs. gallicida	CCUG17977 ^T	NCTC10204 ^T	Type strain of
			subspecies gallicida
P. multocida subs. septica	CCUG17978 ^T	NCTC11995 ^T	Type strain of
			subspecies septica
P. multocida	CCUG26990	NCTC12177	toxinogenic
			Capsular type A
P. multocida	CCUG26985	NCTC12178	toxinogenic
			Capsular type D
P. multocida	ATCC6530		HS positive

*CCUG (Culture Collection, University of Göteborg, http://www.ccug.se),

ATCC, the American Type Culture Collection, Rockville, U. S. A., <u>http://www.lgcpromochem-atcc.com/common/catalog/bacteria/bacteriaIndex.cfm</u>), NCTC (National Collection of Type Cultures, London, http://www.hpa.org.uk/nctc/searcher.html).

Protocol	Target gene/antigen	Intended target population	Reference
Genotype			
Conventional PCR	Capsular genes	All capsular types	Townsend et al., 2001
	toxA gene	Porcine	Lichtensteiger et al., 1996
	tRNA-intergenic spacer	All	Catry et al., 2004
	hyaC-hyaD	Avian capsular type A	Gautam et al., 2004
	23S rRNA	All	Miflin & Blackall, 2001
	pls	Avian	Kasten et al., 1997
	Unknown gene	Serotype 1	Rocke et al., 2002
	toxA	Porcine	Nagai et al., 1994
	<i>Pm0762</i> and <i>Pm1231</i>	All serotypes	Liu et al., 2004
	Unknown	All serotypes	Townsend et al., 1998
	Unknown gene	Capsular type B	Townsend et al., 1998
	Adenylate cyclase	All	Escande & Crasnier, 1993
	toxA	All	Kamp et al., 1996
	16S rRNA-23S rRNA	Serotype B:2	Brickell et al., 1998
N. IDOD	nanH sialidase	Rabbit	Sanchez et al., 2004
Nested PCR	toxA	Porcine	Choi & Chae, 2001
Hybridisation	toxA	Porcine	Kamps et al., 1990
	16S rRNA	All	Mbuthia et al., 2003
N T 1	toxA	Porcine	Register et al., 1998
5` Taq nuclease assay	16S rRNA	All	Corney et al., 2007
Sequencing	sodA	All	Gautier et el., 2005
	16S rRNA,	All and separation of subsp. <i>septica</i>	Kuhnert et al., 2000
	recN	All and separation of subsp. <i>septica</i>	Kuhnert & Korczak., 2006
Antibody-based			
ELISA	PMT toxin	Porcine	Foged et al., 1990
ELISA kit (commercial)	PMT toxin	Porcine	Dako, Glostrup, DK
, ,	Whole cell lysate	Avian	Samuel et al., 1999
	Potassium thiocyanate	Rabbit	Lukas et al., 1987
	extract		
	Boiled cell extract	Rabbit	Klaasen et al., 1985
	37kDa outer membrane protein	Rabbit	Peterson et al., 1997
	NanH sialidase	Rabbit	Sanchez et al., 2004
	Outer membrane	Bovine	Prado et al., 2006
	proteins Killed whole cells	HS	Dawkins et al., 1990.
FlockChek (commercial)	Soluble antigen	Avian	IDEXX, Westbrook, Maine
Indirect haemagglutination	Crude capsular extract	HS strains	Sawada et al., 1985
Dot immunobinding assay	Heat-stable antigen, crude capsular extract, whole cell, formalin extract	Avian	Choi et al., 1990
Mouse protection assay In situ detection	extract Capsular extract	All serotypes	Carter, 1964.

Table 2: Genotype- and antibody-based detection methods for Pasteurella multocida.

Immunohistochemic al staining	Whole cells	Porcine	Thomson et al., 2001
Immunohistochemic al staining	Whole cells attached to calf fibrin	Rabbit	Takashima et al., 2001
Peroxidase anti- peroxidase	Whole cells	HS	Horadagoda et al., 1990; 1998
Coagglutination	Soluble antigen	All serotypes	Rimler, 1978

Page 66 of 66