Involvement of in digital dermatitis lesions of dairy cows
Sebastian Schlafer, Marcel Nordhoff, Chris Wyss, Sarah Strub, Julia Hübner, Dorothee Maria Gescher, Annett Petrich, Ulf B. Göbel, Annette Moter

To cite this version:
Sebastian Schlafer, Marcel Nordhoff, Chris Wyss, Sarah Strub, Julia Hübner, et al.. Involvement of in digital dermatitis lesions of dairy cows. Veterinary Microbiology, 2008, 128 (1-2), pp.118. 10.1016/j.vetmic.2007.09.024. hal-00532333

HAL Id: hal-00532333
https://hal.science/hal-00532333
Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Title: Involvement of *Guggenheimella bovis* in digital dermatitis lesions of dairy cows

Authors: Sebastian Schlafer, Marcel Nordhoff, Chris Wyss, Sarah Strub, Julia Hübner, Dorothee Maria Gescher, Annett Petrich, Ulf B. Göbel, Annette Moter

PII: S0378-1135(07)00476-2
DOI: doi:10.1016/j.vetmic.2007.09.024
Reference: VETMIC 3834

To appear in: VETMIC

Received date: 27-6-2007
Revised date: 19-9-2007
Accepted date: 26-9-2007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Involvement of *Guggenheimella bovis* in digital dermatitis lesions of dairy cows

Sebastian Schlafer\(^1\), Marcel Nordhoff\(^2\), Chris Wyss\(^3\), Sarah Strub\(^4\), Julia Hübner\(^1\), Dorothee Maria Gescher\(^1\), Annett Petrich\(^1\), Ulf B. Göbel\(^1\) and Annette Moter\(^1\)*.

\(^1\)Institut für Mikrobiologie und Hygiene, Charité – Universitätsmedizin, Dorotheenstraße 96, D-10117 Berlin, Germany.
\(^2\)Institut für Mikrobiologie und Tierseuchen, Freie Universität Berlin, Philippstraße 13, D-10115 Berlin, Germany.
\(^3\)Institut für Orale Biologie, Zentrum für Zahn-, Mund- und Kieferheilkunde der Universität Zürich, Plattenstraße 11, 8032 Zürich, Switzerland.
\(^4\)Clinic for Ruminants, Vetsuisse Faculty of the University of Berne, Bremgartenstrasse 109a, 3012 Bern, Switzerland.

Corresponding author. *Tel.: +49 30 450524226; fax: +49 30 450524902; E-mail address: annette.moter@charite.de*
Abstract

Digital dermatitis (DD) of cattle leads to lameness and a decrease of milk production and is responsible for major economic losses worldwide. Although a bacterial aetiology is generally accepted, it still is unclear which microorganisms cause and/or maintain the disease. Recently, a previously undiscovered bacterial species, *Guggenheimella bovis*, has been isolated from the front of two DD lesions in Swiss cattle and suggested as a potential pathogen.

The aims of the present study were to determine the prevalence of *G. bovis* in 58 German cows suffering from DD via dot blot hybridization, and to analyse the spatial distribution of *G. bovis* within the affected tissue by fluorescence in situ hybridization (FISH). A species-specific probe, GUBO1, was designed and evaluated. In none of the 58 samples *Guggenheimella* could be detected, while cultured *G. bovis* was reliably identified by GUBO1. Further FISH experiments were carried out on two additional biopsies of Swiss cattle tested positive for *G. bovis* by quantitative PCR and permitted visualization of the newly discovered bacteria in situ. In these biopsies *G. bovis* proved to be tissue invasive forming characteristic spherical microcolonies not only within the bacterial biofilm but also in seemingly unaffected parts of the tissue not yet reached by the advancing bacterial front. Although the presence of *G. bovis* does not constitute an essential premise for DD, it seems likely that the bacterial species involved in DD vary, and that in some cases *G. bovis* is crucial for the development of DD lesions.

Keywords: *Guggenheimella*, digital dermatitis, in situ hybridization, biofilm
1. Introduction

Digital dermatitis (DD) was first described by Cheli & Mortellaro in 1974 (Cheli and Mortellaro, 1974) and is an ulcerative acute or chronic inflammatory disease affecting the bovine foot. DD lesions most frequently involve the plantar skin areas proximal to the coronet of the hind limbs of dairy cattle (Blowey and Sharp, 1988; Read and Walker, 1998) and constitute an intensely painful condition, which may persist for weeks and even months impairing the general condition of the affected cattle. Episodes of lameness, weight loss and decrease of milk yield are consequences frequently described (Blowey, 1990; Hernandez et al., 2002; Laven, 2001; Laven and Logue, 2006; Murray et al., 1996). DD has been observed in various parts of the world (Brown et al., 2000; el-Ghoul and Shaheed, 2001; Enevoldsen et al., 1991; Holzhauer et al., 2006; Milinovich et al., 2004; Rodriguez-Lainz et al., 1998; Somers et al., 2003; van Amstel et al., 1995; Weaver and Court, 1993; Wells et al., 1999), its incidence increasing constantly over the past decades (Read and Walker, 1998; Somers et al., 2003; Wells et al., 1999). Up to 90% of the dairy cattle herds have been found to be affected (Laven and Logue, 2006; Read and Walker, 1998; Rodriguez-Lainz et al., 1996; Rodriguez-Lainz et al., 1998; Somers et al., 2003; Wells et al., 1999). Thus it constitutes an important economic factor and warrants intensive research. However, although a bacterial involvement is evident, the aetiology of DD is still under discussion. Treponemes but also various other eubacterial organisms have been isolated from DD lesions and have been supposed as potential pathogens (Blowey et al., 1994; Choi et al., 1997; Collighan and Woodward, 1997; Demirkan et al., 1998; Grund et al., 1995; McLennan and McKenzie, 1996; Moter et al., 1998; Walker et al., 1995).

Recently, high numbers of a previously undiscovered bacterial species, *Guggenheimella bovis*, have been found in two independent cases of DD (Simmental x Red Holstein heifers) in
Switzerland. The obligate anaerobic short to coccoid Gram-positive rods have been isolated from the very front of both lesions and display a chymotrypsin-like proteolytic activity (Wyss et al., 2005). Both findings suggest an important role of *G. bovis* in the aetiology of DD. In the present study dot blot hybridization experiments were performed to determine the prevalence of *G. bovis* in German dairy cows suffering from DD. Furthermore, fluorescence in situ hybridization (FISH) was used to analyse the distribution of *G. bovis* within DD lesions and its topographical relation to other potential pathogens.

2. Materials and methods

2.1. Processing of tissue specimens for dot blot hybridization. Biopsies (0.7 cm in diameter) were taken from typical DD lesions of 58 affected dairy cows (Holstein Friesian breed (n = 49), Red Holstein breed (n = 5), Fleckvieh (n = 4)) from different farms in Germany and transported to the laboratory immediately. DNA isolation, subsequent PCR amplification and preparation of dot blot membranes were performed as described previously (Choi et al., 1997; Moter et al., 2006). Briefly, part of the 16S rRNA gene out of the bulk DNA was amplified using the broad range bacterial primers TPU1 5’-AGA GTT TGA TCM TGG CTC AG-3’ (corresponding to positions 8 to 27 in the *E. coli* 16S rRNA gene) and RTU3 5’-GWA TTA CCG CGG CKG CTG-3’ (corresponding to complementary positions 519 to 536 in *E. coli* 16S rRNA). Successful amplification was verified by agarose gel electrophoresis.
2.2. Processing of tissue specimens for FISH. Parts of the tissue of each of the 58 biopsies were fixed and embedded in cold polymerizing resin (Technovit 8100, Kulzer, Wehrheim, Germany) as previously reported (Moter et al., 1998). The blocks were sectioned on a rotary microtome (Type DDM 0036, Medim, Baar, Switzerland) using steel knives with hard metal edges. Tissue sections (3-5µm) were straightened on sterile water, placed on silanized slides (Starfrost, Burgdorf, Germany) and stored at 4 ºC. Following the evaluation of these samples, two additional biopsies from a study on Swiss cattle (Strub et al., 2007) were included in the experiments and processed in the same way.

2.3. Oligonucleotide probes. Probe EUB 338 (Amann et al., 1990), which is complementary to a region of the 16S rRNA gene conserved in the domain Bacteria, was used in dot blot hybridization as positive control to check successful PCR amplification and in FISH to visualize the entire bacterial population in the specimens. The species-specific probe GUBO1 (5’-CCAGTGGCTATCCCTGTGTGAAGG-3’), corresponding to position 135-158 in Escherichia coli 16S rRNA, was designed after comparative sequence analysis of close phylogenetic neighbours to G. bovis. To assess specificity, the probe sequence was compared to all 16S rRNA entries at the EMBL and GenBank databases (as of February 2007), making use of the Husar program package (DKFZ, Heidelberg, Germany), and to the sequences deposited in the Ribosomal Database Project II (Maidak et al., 2001). The probe was checked for its practical use in hybridization experiments by using the program OLIGO (version 4.0).

2.4. Bacterial Strains. To optimize the dot blot hybridization and FISH conditions, G. bovis (OMZ 913T = CIP 108087T = DSM 15657T) was used as positive and Tindallia magadiensis
2.5. **Dot blot hybridization.** Dot blot hybridization experiments to detect *G. bovis* were performed as described previously (Choi et al., 1997; Moter et al., 2006). PCR-amplified products gained from fixed cells of *G. bovis* and its closest cultured relative *T. magadiensis* were included in all experiments as positive and negative controls respectively. All hybridizations with the probes EUB 338 (Amann et al., 1990) and GUBO1, both synthesized commercially (biomers.net, Ulm, Germany), were performed at a temperature of 54 °C, while stringency washes were carried out at 60 °C with a washing buffer containing 2x SSC (1x SSC is 0.15 M NaCl plus 0.015 M sodium citrate) - 0.1% SDS for EUB 338 and 5x SSC - 0.2% SDS for GUBO1. After detection of the digoxigenin-labelled probes, X-ray films were exposed to the membranes for 1 to 48 hours. After stripping as reported previously (Moter et al., 2006), identical membranes were re-used for further hybridization experiments.

2.6. **FISH.** The probe EUB 338 was 5’ end-labelled with fluorochrome Cy5 (indodicarbocyanine) and GUBO1 was 5’ end-labelled with fluorochrome Cy3 (indocarbocyanine). Both probes were applied simultaneously. FISH experiments were performed as described previously (Sunde et al., 2003), except for mounting the slides with Vectashield containing DAPI (4,6-diamidino-2-phenylindoldihydrochlorid) (Vector Laboratories, Orton Southgate, UK). Hybridizations were carried out at a temperature of 50 °C for 2 to 3 hours. In all experiments fixed cells of *G. bovis* and *T. magadiensis* served as positive and negative controls respectively. To adjust the stringency of GUBO1, FISH experiments were performed incubating fixed cells of *G. bovis* and *T.*
T. magadiensis using different hybridization mixes with formamide concentrations rising in steps of 5% (v/v) from 0% (v/v) to 75% (v/v). Several pictures with a fixed exposure time were taken of each bacterial species at each level of formamide. The program daime (digital image analysis in microbial ecology) (Daims et al., 2006) was used to measure the signal intensity of the stained bacteria at different concentrations of formamide. While the signal intensity of *T. magadiensis* due to unspecific binding of the probe decreased largely at formamide concentrations of 10% and above, the intensity of *G. bovis* remained stable up to formamide concentrations of 30% (v/v) (data not shown). Thus, FISH of the tissue sections was carried out with hybridization buffer containing 30% (v/v) of formamide.

2.7. Epifluorescent microscopy.

To view the bacteria in sections processed for FISH an epifluorescence microscope (AxioPlan II, Zeiss, Jena, Germany) equipped with a 100 W high pressure mercury lamp (HBO 103, Osram, Munich, Germany) and 10x, 40x and 100x objectives was used. Narrow band filter sets HQ F31-000, HQ F41-007 and HQ F41-008 (AHF Analysentechnik, Tübingen, Germany) were used to analyse the DAPI, Cy3 and Cy5 signals respectively. Digital images were generated with an AxioCam HRC (Zeiss) making use of the AxioVision 4.4 software.

3. Results

3.1. Dot blot hybridization.
When carried out with the probe EUB 338, dot blot hybridization experiments indicated the presence of bacteria in all of the 58 samples as well as in the positive
and negative controls and thus confirmed successful PCR amplification. Using the specific probe GUBO1 under stringent hybridization conditions, *G. bovis* could not be detected in any of the clinical samples while only the positive control yielded a strong signal (Fig. 1).

3.2. FISH. In all FISH experiments performed as determined above cultured *G. bovis* was reliably detected both by the specific probe GUBO1 and by the eubacterial probe EUB 338, while *T. magadiensis* could only be detected by the probe EUB 338 (Fig. 2). All of the examined DD samples from German cattle showed large amounts of various morphological types of bacteria stained by EUB 338 and displayed the characteristic structure of DD ulcers (Fig. 3) with spirochetes or fusiform bacteria being the very outriders invading the tissue at the front-of-lesion (Nordhoff and Wieler, 2005) (Fig. 4). However, *G. bovis* could not be visualized in any of these tissue slides, neither in the superficial parts of the ulcers nor in the centres of the lesions and in particular not at the apical borders (Fig. 3).

Subsequently, we submitted two biopsies from a different study (Strub et al., 2007) tested positive for *G. bovis* by quantitative PCR to FISH to determine the role of *Guggenheimella* in the architecture of DD biofilms. We succeeded in visualizing *G. bovis* in these tissue sections in high numbers. Only few of these bacteria appeared as single cells, while most of them formed characteristic spherical microcolonies. Some of these colonies were observed among the other bacteria in clearly affected areas of the biopsy, but the majority of them could be found in deeper, seemingly unaffected parts of the tissue (Fig. 5). The biofilm structure of the *Guggenheimella*-positive ulcers and the bacterial morphotypes involved differed considerably from the characteristic, spirochete-dominated lesions we observed in the 58 biopsies of German cows (Fig. 4, Fig. 5).
4. Discussion

While the findings of Wyss et al. (2005) strongly suggest an aetiological role of *G. bovis* in the two examined cases of DD, the bacteria being isolated from the very front of the lesions and displaying a proteolytic activity, it is unlikely that their involvement is constitutional for the formation of DD ulcers in cattle. In none of the 58 examined tissue samples from German cows *G. bovis* could be found. It is thus not present in the lesions at all or else only present in numbers below the detection limits of FISH and dot blot hybridization. Even in the latter case it remains questionable if such minute amounts of a bacterial species are likely to influence the pathogenetic process of DD in a significant way.

While this work was in progress, another study on the prevalence of *G. bovis* in DD lesions was conducted (Strub et al., 2007). Strub et al. examined tissue samples of 20 affected cows from Swiss farms by quantitative PCR and detected *G. bovis* in four out of 20 animals, concluding that an involvement of this organism in the aetiology of DD is improbable considering the low prevalence – a conclusion which is consistent with the results of our epidemiology on German cattle.

Nonetheless, the FISH experiments on two of these biopsies tested positive for *Guggenheimella* turned out to be of the utmost importance. The results obtained underline that FISH is a valid tool offering detailed information about the tissue distribution of one or more bacterial species in DD biofilms. They prove that previous detection of *Guggenheimella* (Strub et al., 2007; Wyss et al., 2005) has not been due to contamination by environmental bacteria. *G. bovis* can be part of the bacterial population in DD lesions and it is tissue invasive. As the organism could even be
visualized in unaffected parts of the biopsy way ahead of the advancing bacterial front, one can conjecture that its role for the development of the DD biofilm might be an important one, that, in certain cases, it might prepare the ground for the following bacterial invasion. Considering the striking morphological differences between these Swiss lesions on the one hand and the 58 German lesions on the other, it is tempting to speculate whether there is more than just one entity of DD, that the process of mixed bacterial infection and inflammation leading to the ulcers is not always alike, and that in one of at least two entities the participation of G. bovis might be decisive. However, further and more comprehensive epidemiological data about the various potential DD pathogens, Guggenheimella bovis among them, need to be gained. One cannot overestimate the importance of in situ techniques for this purpose.

Acknowledgements

We thank Peter Meyerhuber for excellent technical assistance. The epifluorescence microscope was a gift from the Sonnenfeld-Stiftung.

References

Amann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R., Stahl, D.A., 1990, Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56, 1919-1925.

Figure captions

Fig. 1. Dot blot hybridizations of the identical membrane using the eubacterial probe EUB 338 (a) and the species-specific probe GUBO1 (b). In lanes A to E and fields F1 to F3 PCR-amplified products from DD lesions of 58 affected German dairy cows were applied. In fields F10 and F11 PCR products from *G. bovis* (F10) and its closest cultured relative, *T. magadiensis* (F11) were applied as positive and negative controls respectively. Fields F4 to F9 were left empty. (a) Strong signals in all fields prove successful PCR amplification. (b) *G. bovis* was not detected in any of the clinical samples, while the positive control yielded a strong signal.

Fig. 2. Simultaneous hybridization of fixed cells of *G. bovis* (a and c) and *T. magadiensis* (b and d) with the probes EUB 338-Cy5 (magenta) and GUBO1-Cy3 (bright orange). (a and c) Identical microscopic fields show detection of *G. bovis* by both EUB 338 (a) and GUBO1 (b) whereas detection of *T. magadiensis* by EUB 338 only (b) and not GUBO1 (d) proves specificity of the FISH experiment.

Fig. 3. FISH on a tissue section of a typical DD lesion using probes EUB 338-Cy5 and GUBO1-Cy3 and unspecific nucleic acid stain DAPI. (a and b) Overview. (a) Overlay of the Cy5- and FITC-filter sets shows the bacterial biofilm (magenta) while background fluorescence (green) allows orientation within the tissue. (b) Identical microscopic field using the Cy3-filter set. (c to f) Higher magnifications of the inserts. (c) Overlay of the Cy5-, FITC- and DAPI-filter sets shows massive bacterial invasion (magenta), autofluorescent erythrocytes (green) and host cell nuclei (blue) in the superficial part of the ulcer. (d) No *G. bovis* is seen in the same microscopic field using the Cy3- and DAPI-filter sets. (e and f) Likewise, *G. bovis* was not detected in the central part of the biofilm.
Fig. 4. FISH of the apical border of the ulcer (as indicated in Fig. 3a) using EUB 338-Cy3 and DAPI. Overlay of Cy3-, FITC- and DAPI-filter sets shows bacteria (orange) and cell nuclei (blue) in the deepest part of the biofilm. Single spirochetes (arrowheads) invade the tissue at the front of lesion.

Fig. 5. FISH on a tissue section of a DD biopsy tested positive for *G. bovis* by PCR. Simultaneous hybridization with the probes EUB 338-Cy5 and GUBO1-Cy3 combined with DAPI stain. (a-c) Overlay of the Cy3-, Cy5-, FITC- and DAPI-filter sets. (a) The overview shows a massive bacterial biofilm (magenta) and also distinct round colonies of *G. bovis* (orange). (b) High resolution of the insert shows two microcolonies of *G. bovis* visualized by GUBO1 (orange) close to the bacterial biofilm (magenta). Note that the bacterial morphotypes involved in this lesion differ considerably from those in Fig. 3 and Fig. 4. (c) High magnification of the insert shows a solitary microcolony of *G. bovis* detected by GUBO1 in seemingly intact tissue distant from the bacterial front.

The online version of this paper contains two supplementary movie files.

Movie 1. Typical DD lesion with spirochetes and fusiform bacteria invading the tissue. Deconvolution of a Z-stack reveals the spiral morphotype of the bacterial outriders (orange) detected by the eubacterial probe EUB 338-Cy3.

Movie 2. FISH of a *Guggenheimella*-positive DD ulcer. Z-stacking through the section shows the spherical shape of the *G. bovis* microcolony (orange) detected by GUBO1-Cy3. Note the considerable morphological differences between the bacteria visualized by EUB 338-Cy5 (magenta) and those in *Guggenheimella*-negative lesions (movie 1). Note the absence of spirochetes.