

Design and implementation of a database for genome annotation

Benoît de Hertogh, Leïla Lahlimi, Christophe Lambert, Jean-Jacques Letesson, Eric Depiereux

▶ To cite this version:

Benoît de Hertogh, Leïla Lahlimi, Christophe Lambert, Jean-Jacques Letesson, Eric Depiereux. Design and implementation of a database for genome annotation. Veterinary Microbiology, 2008, 127 (3-4), pp.369. 10.1016/j.vetmic.2007.09.010 . hal-00532323

HAL Id: hal-00532323

https://hal.science/hal-00532323

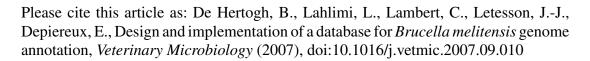
Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Design and implementation of a database for *Brucella melitensis* genome annotation

Authors: Benoît De Hertogh, Leïla Lahlimi, Christophe Lambert, Jean-Jacques Letesson, Eric Depiereux


PII: S0378-1135(07)00433-6

DOI: doi:10.1016/j.vetmic.2007.09.010

Reference: VETMIC 3810

To appear in: *VETMIC*

Received date: 13-3-2006 Revised date: 15-1-2007 Accepted date: 13-9-2007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Design and implementation of a database for *Brucella melitensis* genome annotation.

Benoît De Hertogh¹, Leïla Lahlimi¹, Christophe Lambert², Jean-Jacques Letesson¹, Eric Depiereux¹*.

- 1. U.R.B.M., F.U.N.D.P., Rue de Bruxelles, 61, B-5000, Namur, Belgium.
- 2. BioXpr sa, Rue du séminaire, 22, B-5000, Namur, Belgium.

*To whom correspondence can be addressed:

Eric Depiereux,

Unité de Recherche en Biologie Moléculaire,

Facultés Universitaires Notre-Dame de la Paix,

Rue de Bruxelles, 61

B-5000 Namur,

Belgium

Tel: +32 81724415

Fax: +32 81724420

E-mail: eric.depiereux@fundp.ac.be

- 1 Abstract
- 2 The genome sequences of three *Brucella* biovars and of some species close to *Brucella sp.*

3	have become available, leading to new relationship analysis. Moreover, the automatic
4	genome annotation of the pathogenic bacteria Brucella melitensis has been manually
5	corrected by a consortium of experts, leading to 899 modifications of start sites predictions
6	among the 3198 open reading frames (ORFs) examined. This new annotation, coupled with
7	the results of automatic annotation tools of the complete genome sequences of the B .
8	melitensis genome (including BLASTs to 9 genomes close to Brucella), provides
9	numerous data sets related to predicted functions, biochemical properties and phylogenic
10	comparisons.
11	To made these results avalaible, $\alpha PAGe$, a functional auto-updatable database of the
12	corrected sequence genome of B. melitensis, has been built, using the entity-relationship
13	(ER) approach and a multi-purpose database structure. A friendly graphical user interface
14	has been designed, and users can carry out different kinds of information by three levels of
15	queries: (1) the basic search use the classical keywords or sequence identifiers; (2) the
16	original advanced search engine allows to combine (by using logical operators) numerous
17	criteria: (a) keywords (textual comparison) related to the pCDS's function, family domains
18	and cellular localization; (b) physico-chemical characteristics (numerical comparison) such
19	as isoelectric point or molecular weight and structural criteria such as the nucleic length or
20	the number of transmembrane helix (TMH); (c) similarity scores with E. coli and 10
21	species phylogenetically close to <i>B. melitensis</i> ; (3) complex queries can be performed by
22	using a SQL field, which allows all queries respecting the database's structure.
23	The database is publicly available through a Web server at the following url:
24	http://www.fundp.ac.be/urbm/bioinfo/aPAGe
25	

Keywords: Brucella melitensis, relational, database, annotation, db-main.

2

27	Introduction
28	Brucella melitensis
29	Brucellosis is a worldwide distributed bacterial disease, affecting reindeers in Alaska and
30	Siberia, camels in the Middle East, cattles, pigs, goats, sheeps Sheeps and goats are the
31	most susceptible. In human, the disease is known as Malta fever, undulating fever,
32	mediterranean fever or Melitococcie. It causes abortion in females and orchitis in males.
33	Humans catch this disease from contaminated meat or milk, aborted fetuses and
34	slaughtering infected animals (Godfroid et al. 2005).
35	The six known species of Brucella (Proteobacteria; Alphaproteobacteria; Rhizobiales;
36	Brucellaceae; Brucella), of which four are pathogenic for human (B. melitensis, B. abortus,
37	B. suis and B. canis) are often regarded today as being biovars of one single species (for
38	contradictory informations, see Chain et al., 2005).
39	
10	mata a
40	Table 1
	Table 1
41	Table I The development of many chronic diseases involves interactions between environmental
41 42	
41 42 43	The development of many chronic diseases involves interactions between environmental
41 42 43 44	The development of many chronic diseases involves interactions between environmental factors and genes that regulate important physiological processes. Several projects are
41 42 43 44 45	The development of many chronic diseases involves interactions between environmental factors and genes that regulate important physiological processes. Several projects are trying to understand those processes, and to develop methods to predict toxicity and
41 42 43 44 45 46	The development of many chronic diseases involves interactions between environmental factors and genes that regulate important physiological processes. Several projects are trying to understand those processes, and to develop methods to predict toxicity and understand the genetic basis of differential susceptibility (Mattingly <i>et al.</i> , 2004). Genome
41 42 43 44 45 46 47	The development of many chronic diseases involves interactions between environmental factors and genes that regulate important physiological processes. Several projects are trying to understand those processes, and to develop methods to predict toxicity and understand the genetic basis of differential susceptibility (Mattingly <i>et al.</i> , 2004). Genome sequencing projects led to new disciplines in biology, and promise a better comprehension
41 42 43 44 45 46 47 48	The development of many chronic diseases involves interactions between environmental factors and genes that regulate important physiological processes. Several projects are trying to understand those processes, and to develop methods to predict toxicity and understand the genetic basis of differential susceptibility (Mattingly <i>et al.</i> , 2004). Genome sequencing projects led to new disciplines in biology, and promise a better comprehension of disease-associated genes (Miller and Kumar, 2001).
41 42 43 44 45 46 47 48 49	The development of many chronic diseases involves interactions between environmental factors and genes that regulate important physiological processes. Several projects are trying to understand those processes, and to develop methods to predict toxicity and understand the genetic basis of differential susceptibility (Mattingly <i>et al.</i> , 2004). Genome sequencing projects led to new disciplines in biology, and promise a better comprehension of disease-associated genes (Miller and Kumar, 2001). The availability of the genome sequence of three <i>Brucella</i> biovars and eight species
40 41 42 43 44 45 46 47 48 49 50 51	The development of many chronic diseases involves interactions between environmental factors and genes that regulate important physiological processes. Several projects are trying to understand those processes, and to develop methods to predict toxicity and understand the genetic basis of differential susceptibility (Mattingly <i>et al.</i> , 2004). Genome sequencing projects led to new disciplines in biology, and promise a better comprehension of disease-associated genes (Miller and Kumar, 2001). The availability of the genome sequence of three <i>Brucella</i> biovars and eight species phylogenetically close to <i>Brucella sp.</i> (Table 1) opens the way to genomic comparisons

53	The correction consortium
54	The 3198 pCDS of the Brucella melitensis genome were sequenced and automatically
55	annotated by Integrated Genomics Inc. (Delvecchio et al., 2002). However, many errors
56	were notified in predictions of the position of the start codon of these pCDS. The Research
57	Unit in Molecular Biology (URBM) initiated a project of correction of the start position of
58	all the genome sequences. This project was carried out in collaboration with four research
59	teams, members of the European consortium of research COST845 (VLA Weybridge,
60	U.K.; U. Navarra, Spain; U. Cantabria, Spain; Inserm U. 431, France) (Dricot, 2004).
61	
62	Objectives
63	Through this paper, we had five main objectives: (1) to made available the Consortium
64	corrections (2) and the results of the automatic annotation (3) in a polyvalent auto-
65	updatable and easily upgradable (i.e. to others genomes) database (4) using a performing
66	DataBase Management System (DBMS), in order to allow complex queries by the use of
67	(5) performing and user friendly search tools.
68	
69	Material and methods
70	The correction protocol
71	Each pCDS was manually checked by at least two scientific teams, using the following
72	protocol:
73	1. Genome files of <i>Brucella melitensis</i> (NC_003318.gbk and NC_003317.gbk)
74	had been downloaded from the National Center for Biotechnology Information
75	(NCBI) ftp site. The free Artemis software was used to visualize annotations;
76	2. For each ORF, the predicted start was checked. The wrong starts were
77	detected by carrying out the following steps:
78	a. Control of the start codon. TTG is usually a wrong start site;

79		b. Detection of overlapping ORFs, which usually hide a wrong start
80		codon;
81		c. Analyses of the corresponding protein sequence alignment against the
82		Non-Redundant (NR) database from NCBI. If similar sequences in
83		phylogenetically close organisms are longer or shorter, the start site is
84		probably wrong;
85	3.	A new start site was checked using Artemis software with, in increasing
86	prefere	ences corresponding to their observed frequency, start codons: ATG, GTG
87	and TI	TG;
88	4.	If several potential start positions were found, without operon or Ribosome
89	Bindin	ng Site (RBS) (Salgado et al., 2000) identified, the pCDS having the closest
90	size to	homologous sequences detected in NR was selected.
91	Otherwise, the	e longer pCDS with an ATG or GTG was chosen.
92		
93	Functional and	notation
94	Functional and	notations of proteins translated from the ORFeome library are done in silico
95	using the follo	owing programs:
96	1.	BLASTP) against the NR protein database from GenBank and Swiss-Prot
97	databa	ses;
98	2.	BLASTN against the genomes listed in Table 1;
99	3.	hmmpfam against the 8183 proteins of the Protein Family database (Pfam
100	19.0);	
101	4.	Prediction of the cellular localizations by an updated version of PSORTII
102	(Nakai	et al., 1999) for Gram-negative bacteria. PSORTII examines a given protein
102		
102	sequen	ace for amino acid composition, similarity to proteins of known localization,

105	corresponding to specific localizations. A probabilistic method integrates this
106	analysis, returning a list of five possible localization sites with associated
107	probability scores;
108	5. Prediction of the transmembrane segments are predicted by TMHMM v.2.0,
109	the most reliable transmembrane prediction program (Möller, 2001);
110	6. Prediction of the secondary structure of each pCDS using the PSIPRED2
111	protein structure prediction server (McGuffin et al., 2000);
112	7. Prediction of the three-dimensional structure by ESyPred3D (Lambert <i>et al.</i> ,
113	2002), with alignment of the peptidic sequences against the Protein data bank
114	(PDB) (Berman et al., 2000). This program produces a multiple alignment of the
115	query sequence with several sequences from the PDB, and builds a consensus of
116	high reliability. This reliable alignment is subsequently used for the building of the
117	homology model.
118	
119	
120	The DB-MAIN CASE tool
121	Because a genome annotation generates numerous data sets that cannot be easily managed
122	with simple file management software, a powerful and complex knowledge-management
123	software, DB-MAIN, had been used to create a database using the relational model in
124	accordance with the ER model (Entity Relationship). DB-MAIN is a data-oriented
125	Computer Aided Software Engineering (CASE) environment, designed to support most
126	database engineering processes, including: (1) requirement analysis, conceptual design,
127	normalisation, schema integration, logical design, physical design, schema's optimisation
128	and code generation; (2) schema transformation, model transformation; (3) schema
129	analysis, code analysis, data reverse engineering; (4) database migration, database

evolution, database integration and federation, data wrapper design and generation; (5)

131	temporal database design, active database evaluation and generation.
132	In addition, the method-modelling component allows the user to define any of these sub-
133	models (Englebert and Hainaut, 1999; http://www.db-main.be/).
134	
135	The database design
136	The database design follows globally the "Merise" method. It starts with the extraction of
137	the entities from the application domain (in this paper, the data sets provided by both
138	manual and automatic annotation of the B. melitensis genome). These entities will
139	constitute the database classes, which models the real-world organization and its important
140	data elements and relationships.
141	Although there are many conceptual models drawn for biological databases, the conceptual
142	schema remains specific to the application domains, which are various and depend on
143	projects subject. The conceptual model is an extension of the Entity-Relationship model. It
144	defines the logical relationships that link the database entities and the object attributes, in
145	order to build the data structure. This step involves the description of the entire information
146	content of the database.
147	The next step, the logical design, is the translation of the conceptual schema in logical
148	schema. These schemas represent the same information, but the second one (logical)
149	expresses the data through the construct of the DBMS. It shows how data are organised in
150	a relational way: the database is represented as a group of related tables that can be
151	managed by a relational database management system (RDBMS). Finally, the entity
152	relationship model is translated into a database structure that can be afterwards easily
153	expressed using structured query language (SQL).
154	Both conceptual and logical schemas are available on the database website.
155	
156	The web interface

157	The data sets are stored in a MySQL (http://www.mysql.com/) relational database. The
158	database can be queried through a web interface built using PHP Hypertext Preprocessor
159	(PHP), a widely used general-purpose scripting language especially suited for web
160	development and more specifically to be connected to a database (http://www.php.net/).
161	
162	Machines
163	The annotation of the genome and the construction of the database were carried out on
164	Silicon Graphics Octane duo and a cluster of PC (Table 2).
165	
166	Results
167	
168	Increasing of pCDS reliability
169	The correction project consortium has increased the database information reliability. Start
170	positions have been corrected for 899 pCDS. The mean difference in position is 69
171	nucleotides or 23 amino acids. 565 pCDS have been shortened and 334 have been
172	lengthened. The corrected pCDS are mentioned in the commentary field.
173	
174	The αPAGe database
175	The sequence databases offer a great source of information for studies on biological
176	variation, evolutionary patterns and protein family characterization. In order to find all
177	pieces of information available, it is often necessary to search several databases or to click
178	on several links. Facing the complexity to obtain information, each $\alpha PAGe$ entry includes
179	the whole information about a sequence (functional and structural annotation, pCDS's
180	properties, links to other biological databases).
181	The identification and the functional characterization of genes, that may be involved in
182	disease development or may be responsible for virulence, is a critical step. An advanced

183	search tool form-allows the combination of different criteria and may help to select a
184	subset of pCDS for further analysis. Most databases propose advanced search tools based
185	only on keywords searches. The α PAGe makes possible to perform searches combining
186	several criteria, with the possibility to impose choice constraints (and/or) at each level (see
187	below). The database is publicly available through a Web server at
188	http://www.fundp.ac.be/urbm/bioinfo/aPAGe.
189	
190	ORFeome library
191	Entire libraries composed of all protein-encoding Open Reading Frames (ORF) cloned in
192	highly flexible vectors represent a new type of resource, which is needed to take full
193	advantage of informations generated by the sequencing efforts and to address the new type
194	of question and hypothesis generated in post-genomic area.
195	Thus, the complete genome sequence of B. melitensis had been used to generate a protein-
196	coding ORF database. This ORFeome library contains 3091 Gateway entry clones, each
197	one corresponding to a defined ORF. This strategy may help to validate the genome
198	annotation and to create a resource to functionally characterize the proteome (Dricot et al.,
199	2004). The cloning state field displays the information available for this experiment such
200	as the forward and reverse primers used for each cloned pCDS.
201	Moreover, the "Similarity (BLASTN) in close organisms" field allows a quick overview of
202	the distribution of the homologous sequences in the genomes of 10 alpha-proteobacteria,
203	phylogenetically close to each other, and <i>Escherichia coli K12</i> , as Gram-negative model.
204	In order to facilitate the databases mining, links are proposed to display the precomputed
205	best hits against the following databases: GenBank, Protein Information Resource (PIR),
206	Protein Data Bank (PDB), DNA Data Bank of Japan (dbj), the Protein Research
207	Foundation (PRF) (www4.prf.or.jp/en/), the European Molecular Biology Laboratory
208	(EMBL) and the Protein Family (Pfam) database.

209	
210	Cellular localization and membrane topology
211	The cellular localization field contains three parts: the observed cellular localization (often
212	unknown), the predicted cellular localization (PSORT II) and the compatibility between
213	predicted and observed subcellular localization.
214	The membrane topology and the number of transmembrane helices (TMHs) are also
215	precomputed (TMHMM).
216	
217	Secondary and three-dimensional structure
218	The predicted secondary structures are coloured in the following way: helices, beta sheets,
219	and coils are represented respectively in red, blue and grey. Transmembrane segments are
220	written with underlined bold characters.
221	The 3D structure field reports the homology modelling procedure if a protein with a
222	detectable similarity is found in the PDB. It includes two parts:
223	1. The "3D structure field", which proposes a link to download the 3D final
224	model of the treated pCDS. The model may be displayed using an external software
225	(i.e. the Swiss PDB viewer (http://www.expasy.org) or a browser plug in (Chime)).
226	2. The "Modelling characteristics" field summarizes information used during
227	the modelling step: the template (protein with known 3D structure) used for the
228	alignment, the model building, the template experimental method and its
229	parameters (resolution and R-value), the percentage of sequence modelled and a
230	link to find more information and coordinates of the template structure at the PDB
231	web site. Models are updated each month or at each new PDB release.
232	
233	pCDS properties
234	The last sets of predictions concerns pCDS start and end positions, GC content, theoretical

235	physico-chemical properties, that includes molecular weight and isoelectric point and		
236	nucleic and peptidic sequence in FASTA format.		
237	Promoter and termination sites can easily be studied by displaying the sequence of a		
238	chosen number of nucleotides located upstream or downstream of the pCDS. This tool may		
239	be useful to identify the non-coding upstream and downstream of a pCDS. It also allows to		
240	define the pCDS extremities for the cloning experiments.		
241			
242	References and cross-references		
243	The cross-reference field allows users to be redirected towards KEGG and translated		
244	EMBL (TrEMBL) public databases. In a reference field, users are invited to add references		
245	related to the pCDS treated.		
246			
247	User interface		
248	The database can be browsed using a powerful graphical user interface. One may consider		
249	three levels of queries:		
250			
251	Basic search		
252	The database can be browsed:		
253	1. By the pCDS ID;		
254	2. By keywords (text search). Various fields can be targeted: GenBank		
255	annotation, Swiss-Prot annotation, observed function, comments, predicted or		
256	observed localization, Pfam summary, templates used in the 3D modelling		
257	procedure or a key word related to the cloning state;		
258	3. By the display of the complete list of ORFs;		
259	4. By similarity (using BLAST). Peptidic or nucleic sequences can be blasted		
260	against the whole genomes of B. melitensis, B. suis and B. abortus;		

261	5.	By using regular expression to search for specific patterns (nucleic or
262	peptio	lic).
263		
264	Advanced sea	urch
265	An advanced	search tool allows users to limit queries to some defined fields or to combine
266	search terms	with logical operators.
267		
268	Following fie	elds are available:
269	1.	Keywords searches (text comparison) described in the basic search.
270	2.	Quantitative data (numerical comparisons using "<" and ">" operators)
271	includ	ling:
272		a. Physico-chemical properties, such as isoelectric point or molecular
273		weight;
274		b. Structural properties such as:
275		i. The number of trans-membrane helices (TMHs);
276		ii. The target-template percentage identity (three dimensional structure
277		prediction);
278		iii. The percentage identity of the deduced sequence modelled using the
279		ESyPred3D system.
280		c. The pCDS properties such as:
281		i.The percentage in GC;
282		ii. The position of the first and the last nucleotide;
283		iii. The nucleotidic and peptidic lengths.
284	It is also pos	sible to add constraints (expected value range) related to similarities between
285	the B. meliter	asis pCDS considered and the pCDS of at least one of the 11 species described
286	in Table 1.	

287	
288	Figure 1
289	
290	To allow combinations of quantitative data with the logical operators "and" and "or" and
291	with the comparisons operators "<" and ">" is probably the most interesting particularity of
292	the advanced search tool (Fig. 1). This unusual way to proceed permits to extract data in
293	order to perform statistical analysis. For example, the study of the frequency distribution of
294	the predicted pI shows a bimodal distribution (Fig. 2). It is well known that, in disruptive
295	selection, selection pressures act against individuals in the middle of the trait distribution,
296	resulting in a bimodal curve. Thus, this predicted pI bimodal distribution seems to suggest
297	an important evolutionary selection pressure applied against B. melitensis, which
298	unfavorise the B. melitensis ORFs around pI's of 8. However, for different authors, this
299	multimodal distribution is an effect of allowed combinations of the charged amino acids,
300	and not due to evolutionary causes (i.e. Nandy et al., 2005; Schwartz et al., 2001).
301	Similarly, data extraction for various statistical analysis, implying one or more fields, can
302	easily be performed.
303	
304	Figure 2
305	
306	SQL search
307	For advanced users, data may be retrieved from the Web interface using SQL queries.
308	
309 310	
311	Conclusion and Perspectives
	-v
312	We developed, under DBMS, a relational updatable database dedicated to the pathogenic
313	bacteria Brucella melitensis, from the sequenced genome manually corrected by a

314	specialists consortium and from the data generated in silico by several among the most
315	powerful prediction programs.
316	Search tools are efficient, friendly, but also original. In the advanced search, users may
317	combine, by using logical operators, several criteria related to the pCDS properties in order
318	to select one or more specific pCDS: (1) keywords (textual comparison) related to the
319	pCDS's function, family domains and cellular localization; (2) physico-chemical
320	characteristics (numerical comparison) such as isoelectric point, molecular weight or
321	structural criteria such as the nucleic length or the number of TMHs; (3) homology (or not)
322	in 10 species phylogenetically close to <i>B. melitensis</i> (expected value range).
323	The structure of the database allows its extension to other genomes, especially those
324	phylogenetically close to Brucella melitensis, but also to model organism like
325	Saccharomyces cerevisiae, Drosophila melanogaster or Homo sapiens. The functional and
326	structural annotation of these genomes could be incorporated automatically from
327	nucleotidic sequences.
328	The extension of the advanced search to new fields, like TMHs or motives is also on the
329	way. Such improvements will permit more complex queries.
330	New advanced search tool form that deal with all the data types and new links to biological
331	databases for complementary information will also be added.
332	
333	Finally, a special attention must be paid in order to make sure that the alteration is
334	compatible with the existing database. The DB-MAIN CASE tool supports such meta-data
335	evolution. The approach relies on a generic database model and on the transformational
336	paradigm that states that database engineering processes can be modelled by schema
337	transformation. Indeed, a transformation provides both structural and instance mappings
338	that formally define how to modify database structures and contents.

339	
340	Acknowledgements
341	The authors gratefully acknowledge the aMAZE team and BioXpr colleagues for their help
342	for the database conceptual schema design. They also address a special thank the DB-
343	MAIN team for their assistance and to Fabrice Berger and Xavier De Bolle for critical
344	discussions and comments.
345	
346	References
347	Alsmark, C.M., Frank, A.C., Karlberg, E.O., Legault, B.A., Ardell, D.H., Canback, B.,
348	Eriksson, A.S., Naslund, A.K., Handley, S.A., Huvet, M., Scola, B.L., Holmberg, M. and
349	Andersson, S.G., 2004. The louse-borne human pathogen Bartonella quintana is a
350	genomic derivative of the zoonotic agent Bartonella henselae. Proc. Natl. Acad. Sci. USA.,
351	101, 9716-9721.
352	Barnett, M.J., Fisher, R.F., Jones, T., Komp, C., Abola, A.P., Barloy-Hubler, F., Bowser,
353	L., Capela, D., Galibert, F., Gouzy, J., Gurjal, M., Hong, A., Huizar, L., Hyman, R.W.,
354	Kahn, D., Kahn, M.L., Kalman, S., Keating, D.H., Palm, C., Peck, M.C., Surzycki, R.,
355	Wells, D.H., Yeh, K.C., Davis, R.W., Federspiel, N.A. and Long, S.R., 2001. Nucleotide
356	sequence and predicted functions of the entire Sinorhizobium meliloti pSymA
357	megaplasmid. Proc. Natl. Acad. Sci. USA., 98, 9883-9888.
358	Blattner, F.R., Plunkett, G., Bloch, C.A., Perna, N.T., Burland, V., Riley, M., Collado-
359	Vides, J., Glasner, J.D., Rode, C.K., Mayhew, G.F., Gregor, J., Davis, N.M., Kirkpatrick,
360	H.A., Goeden, M.A., Rose, D.J., Mau, B. and Shao, Y., 1997. The complete genome
361	sequence of Escherichia coli K-12. Science. 277, 1453-1474.
362	Chain PS, Comerci DJ, Tolmasky ME, Larimer FW, Malfatti SA, Vergez LM, Aguero F,
363	Land ML, Ugalde RA, Garcia E., 2005. Whole-genome analyses of speciation events in
364	pathogenic Brucellae. Infect. Immun. 73, 8353-61.

- Delvecchio, V.G., Kapatral, V., Redkar, R.J., Patra, G., Mujer, C., Los, T., Ivanova, N.,
- 366 Anderson, I., Bhattacharyya, A., Lykidis, A., Reznik, G., Jablonski, L., Larsen, N.,
- 367 D'souza, M., Bernal, A., Mazur, M., Goltsman, E., Selkov, E., Elzer, P.H., Hagius, S.,
- 368 O'callaghan, D., Letesson, J.J., Haselkorn, R., Kyrpides, N. and Overbeek, R., 2002. The
- 369 genome sequence of the facultative intracellular pathogen Brucella melitensis. Proc. Natl.
- 370 Acad. Sci. USA. 99, 443-448.
- 371 Dricot, A., Rual, J.F., Lamesch, P., Bertin, N., Dupuy, D., Hao, T., Lambert, C., Hallez, R.,
- 372 Delroisse, J.M., Vandenhaute, J., Lopez-Goñi, I., Moriyon, I., Garcia-Lobo, J.M., Sangari,
- F.J., Macmillan, A.P., Cutler, S.J., Whatmore, A.M., Bozak, S., Sequerra, R., Doucette-
- 374 Stamm, L., Vidal, M., Hill, D.E., Letesson, J.J. and Debolle, X., 2004. Generation of
- 375 Brucella melitensis ORFeome version 1.1. Genome Research. 14, 2201-2206.
- Englebert, V. and Hainaut, J.L., 1999. DB-MAIN: A Next Generation Meta-CASE.
- 377 Journal of Information Systems. 24, 99-112.
- Galibert F., Finan T.M., Long S.R., Puhler A., Abola P., Ampe F., Barloy-Hubler F.,
- Barnett M.J., Becker A., Boistard P., Bothe G., Boutry M., Bowser L., Buhrmester J.,
- Cadieu E., Capela D., Chain P., Cowie A., Davis R.W., Dreano S., Federspiel N.A., Fisher
- 381 R.F., Gloux S., Godrie T., Goffeau A., Golding B., Gouzy J., Gurjal M., Hernandez-Lucas
- 382 I., Hong A., Huizar L., Hyman R.W., Jones T., Kahn D., Kahn M.L., Kalman S., Keating
- D.H., Kiss E., Komp C., Lelaure V., Masuy D., Palm C., Peck M.C., Pohl T.M., Portetelle
- D., Purnelle B., Ramsperger U., Surzycki R., Thebault P., Vandenbol M., Vorholter F.J.,
- Weidner S., Wells D.H., Wong K., Yeh K.C., Batut J., 2001. The composite genome of the
- legume symbiont *Sinorhizobium meliloti*. Science. 293:668-72.
- 387 Godfroid J., Cloeckaert A., Liautard J.P., Kohler S., Fretin D., Walravens K., Garin-Bastuji
- B., Letesson J.J., (2005) From the discovery of the Malta fever's agent to the discovery of a
- marine mammal reservoir, brucellosis has continuously been a re-emerging zoonosis. Vet.
- 390 Res. 36:313-26.

- Goodner, B., Hinkle, G., Gattung, S., Miller, N., Blanchard, M., Qurollo, B., Goldman, B.
- 392 S., Cao, Y., Askenazi, M., Halling, C., Mullin, L., Houmiel, K., Gordon, J., Vaudin, M.,
- 393 Iartchouk, O., Epp, A., Liu, F., Wollam, C., Allinger, M., Doughty, D., Scott, C., Lappas,
- 394 C., Markelz, B., Flanagan, C., Crowell, C., Gurson, J., Lomo, C., Sear, C., Strub, G., Cielo,
- 395 C. and Slater, S., 2001. Genome sequence of the plant pathogen and biotechnology agent
- 396 Agrobacterium tumefaciens C58. Science. 294:2323-2328.
- 397 Halling S.M., Peterson-Burch B.D., Bricker B.J., Zuerner R.L., Qing Z., Li L.L., Kapur V.,
- 398 Alt D.P., Olsen S.C. (2005) Completion of the genome sequence of *Brucella abortus* and
- 399 comparison to the highly similar genomes of Brucella melitensis and Brucella suis. J
- 400 Bacteriol. 187:2715-26.
- 401 Kaneko, T., Nakamura, Y., Sato, S., Asamizu, E., Kato, T., Sasamoto, S., Watanabe, A.,
- 402 Idesawa, K., Ishikawa, A., Kawashima, K., Kimura, T., Kishida, Y., Kiyokawa, C.,
- 403 Kohara, M., Matsumoto, M., Matsuno, A., Mochizuki, Y., Nakayama, S., Nakazaki, N.,
- 404 Shimpo, S., Sugimoto, M., Takeuchi, C., Yamada, M. and Tabata, S., 2000. Complete
- 405 genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA
- 406 Res. 7:331-338.
- 407 Lambert, C., Leonard, N., Xavier De Bolle and Depiereux, E., 2002. ESyPred3D:
- 408 Prediction of proteins 3D structures. Bioinformatics. 18:1250-1256.
- 409 Larimer, F.W., Chain, P., Hauser, L., Lamerdin, J., Malfatti, S., Do, L., Land, M.L.,
- 410 Pelletier, D.A., Beatty, J.T., Lang, A.S., Tabita, F.R., Gibson, J.L., Hanson, T.E., Bobst,
- 411 C., Torres, J.L., Peres, C., Harrison, F.H., Gibson, J. and Harwood, C.S. (2004) Complete
- 412 genome sequence of the metabolically versatile photosynthetic bacterium
- 413 Rhodopseudomonas palustris. Nat. Biotechnol. 22:55-61.
- 414 Mattingly, C.J., Colby, G.T., Rosenstein, M.C., Forrest, J.N. and Boyer, J.L., 2004.
- Promoting comparative molecular studies in environmental health research: an overview of
- the comparative toxicogenomics database (CTD). Pharmacogenomics J., 4, 5-8.

- 417 Mcguffin, L.J., Bryson, K. and Jones, D.T., 2000. The PSIPRED protein structure
- 418 prediction server. Bioinformatics. 16:404-405.
- 419 Miller, M. and Kumar, S., 2001. Understinding human disease mutations through the use
- of interspecific genetic variation. Hum. Mol. Genet. 10:2319-2328.
- 421 Möller, S., Croning, M.D.R. and Apweiler, R., 2001. Evaluation of methods for the
- prediction of membrane spaning regions. Bioinformatics. 17, 646-653.
- 423 Nandi S., Mehra N., Lynn A.M., Bhattacharya A., 2005. Comparison of theoretical
- 424 proteomes: Identification of COGs with conserved and variable pI within the multimodal
- 425 pI distribution. BMC Genomics. 6:116.
- Nierman, W.C., Feldblyum, T.V., Laub, M.T., Paulsen, I.T., Nelson, K.E., Eisen, J.A.,
- 427 Heidelberg, J.F., Alley, M.R., Ohta, N., Maddock, J.R., Potocka, I., Nelson, W.C., Newton,
- 428 A., Stephens, C., Phadke, N.D., Ely, B., Deboy, R.T., Dodson, R;J., Durkin, A.S., Gwinn,
- 429 ML., Haft, D.H., Kolonay, J.F., Smit, J., Craven, M.B., Khouri, H., Shetty, J., Berry, K.,
- 430 Utterback, T., Tran, K., Wolf, A., Vamathevan, J., Ermolaeva, M., White, O., Salzberg,
- 431 S.L., Venter, J.C., Shapiro, L., Fraser, C.M. and Eisen, J., 2001. Complete genome
- 432 sequence of Caulobacter crescentus. Proc. Natl. Acad. Sci. USA.. 98, 4136-4141.

- 434 Paulsen, I.T., Seshadri, R., Nelson, K.E., Eisen, J.A., Heidelberg, J.F., Read, T.D., Dodson,
- 435 R.J., Umayam, L., Brinkac, L.M., Beanan, M.J., Daugherty, S.C., Deboy, R.T., Durkin,
- 436 A.S., Kolonay J.F., Madupu, R., Nelson, W.C., Ayodeji, B., Kraul, M., Shetty, J., Malek,
- 437 J., Aken, S.E.V., Riedmuller, S., Tettelin, H., Gill, S.R., White, O., Salzberg, S.L., Hoover,
- 438 D.L., Lindler, L.E., Halling, S.M., Boyle, S.M. and Fraser, C.M., 2002. The Brucella suis
- 439 genome reveals fundamental similarities between animal and plant pathogens and
- 440 symbionts. Proc Natl. Acad. Sci. USA.. 99, 13148-13153.
- 441 Salgado, H., Moreno-Hagelsieb, G., Smith, T.F. and Collado-Vides, J., 2000. Operons in
- 442 Escherichia coli: genomic analyses and predictions. Proc. Natl. Acad. Sci., 97, 6652-6657.

- 443 Sanchez, D.O., Zandomeni, R.O., Cravero, S., Verdun, R.E., Pierrou, E., Faccio, P., Diaz,
- 444 G., Lanzavecchia, S., Aguero, F., Frasch, A.C., Andersson, S.G., Rossetti, O.L., Grau, O.
- and Ugalde, R.A., 2001. Gene discovery through genomic sequencing of Brucella abortus.
- 446 Infect. Immun. 69, 865-868.
- 447 Schwartz, R., Ting, C.S., King, J., 2001. Whole proteome pI values correlate with
- 448 subcellular localizations of proteins for organisms within the three domains of life.
- 449 Genome Res. 11:703-709.
- 450 Wood, D.W., Setubal, J.C., Kaul, R., Monks, D.E., Kitajima, J.P., Okura, V.K., Zhou, Y.,
- Chen, L., Wood, G.E., Almeida, N.F., Woo, L., Chen, Y., Paulsen, I.T., Eisen, J.A., Karp,
- 452 P.D., Bovee, D., Chapman, P., Clendenning, J., Deatherage, G., Gillet, W., Grant, C.,
- 453 Kutyavin, T., Levy, R., Li, M.J., Mcclelland, E., Palmieri, A., Raymond, C., Rouse, G.,
- 454 Saenphimmachak, C., Wu, Z., Romero, P., Gordon, D., Zhang, S., Yoo, H., Tao, Y.,
- 455 Biddle, P., Jung, M., Krespan, W., Perry, M., Gordon-Kamm, B., Liao, L., Kim, S.,
- 456 Hendrick, C., Zhao, Z.Y., Dolan, M., Chumley, F., Tingey, S.V., Tomb, J.F., Gordon, M.
- 457 P., Olson, M.V. and Nester E.W., 2001. The genome of the natural genetic engineer
- 458 Agrobacterium tumefaciens C58. Science, 294, 2317-2323.

459	Figure legends
460	
461	Fig. 1. Combinations of numerous fields and both logical and comparisons operators allow
462	to construct complex queries through a user-friendly interface.
463	
464	. Fig. 2. The bimodal distribution of the predicted isoeletric point seems to suggest an
465	important evolutionary selection pressure to B. melitensis, but some authors invalid this
466	suggestion (see text) (each classes defines an half-unity of pI).
467	

Bimodal distribution of the predicted pl.

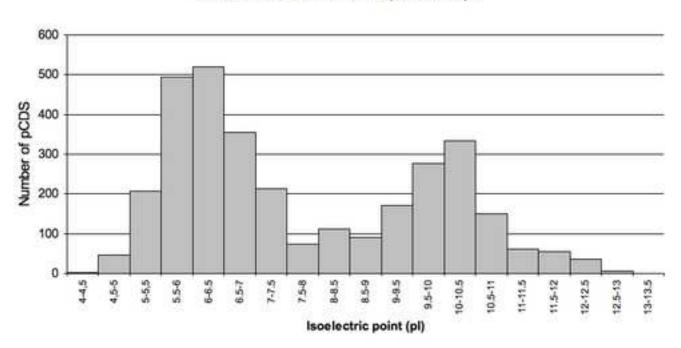


Table 1. Characteristics of the 10 species phylogenetically close to Brucella sp. present in the database.

Escherichia coli is used as a model Gram-negative bacteria (from EMBL-EBI and quoted authors).

Brucella biovars	Reference	Life cycle	Host	Genome	Orfs
Brucella abortus	Sanchez et al., 2001; Halling et al., 2005	pathogenic	human and livestock	2,1 MB and 1,2 Mb circular chromosomes	3,076
Brucella melitensis	Delvecchio et al., 2002	pathogenic	human and livestock	2,1 MB and 1,2 Mb circular chromosomes	3,197
Brucella suis	Paulsen et al., 2002	pathogenic	human and livestock	2,1 MB and 1,2 Mb circular chromosomes	3,256.
Close to Brucella					
Agrobacterium tumefaciens C58	Wood <i>et al.</i> , 2001; Goodner <i>et al.</i> , 2001	pathogenic	numerous plants (crown, roots and stems)	2,8 MB circular chromosome; 0,54 Mb Plasmid pMLa; 0,2 Mb Plasmid pMLa	5,304
Bartonella henselae str. Houston-1,	Alsmark et al., 2004	pathogenic	human and cat	1,9 Mb circular chromosome	1,464
Bartonella quintana str. Toulouse	Alsmark et al., 2004	pathogenic	human specific	1,6 Mb circular chromosome	1,137
Caulobacter crescentus	Nierman et al., 2001		dilute aquatic environment	1,2 Mb circular chromosome	3,718
Mesorhizobium loti	Kaneko et al., 2000	symbiotic	nitrogen-fixing soil plant	7 Mb circular chromosomes; 0,4 Mb Plasmid pMLa; 0,2 Mb Plasmid pMLa	7,255
Sinorhizobium meliloti	Barnett et al., 2001; Galibert et al., 2001	symbiotic	nitrogen-fixing soil plant	3,6 Mb chromosome and two megaplasmids, pSyma (1,3 Mb) and pSymb (1,7 Mb)	6,148
Rhizobium leguminosarum	unpublished data	symbiotic	nitrogen-fixing soil plant	5 Mb circular chromosomes and six plasmid	-
Rhodopseudomonas palustris	Larimer et al., 2004	metabolically versatile	soils and water	5,5 Mb circular chromosome; 8,427 bp plasmid pRPA	4,798
GRAM -		•			
Escherichia coli K12	Blattner et al., 1997	pathogenic	human	4,6 Mb circular chromosome; 1 MB plasmid F	4,338

Table 2. Machines dedicated to the *B. melitensis* genome database.

	Processors	CPU	RAM	OS
Silicon Graphics Octane duo		225 Mhz		IRIX 6.5
	2 x 32 bits Intel Pentium 4			Red Hat Linux 7.3
6 nodes Priminfo Xeon	2 x 32 bits Intel Pentium 4	2.2 Ghz	2 GB	Red Hat Linux 7.3